

Ron Milo

Department of Plant Sciences Weizmann Institute of Science

What limits maximal growth rates?

A major frontier for systems biology: Carbon Fixation

Requires majority of land and fresh water used by humanity
A molecular process that affects global climate
Major uncertainties about rates and limits

What governs the efficiency of photosynthesis and carbon fixation?

Constraints on metabolites concentrations, enzyme rates and pathways structure

(Noor et al, Mol. Cell 2010 Bar-Even et al, Biochemistry 2011 Bar-Even et al, PLOS CB 2011)

growth

Light reactions

Rubisco rate is at a limit

(Savir et al, PNAS 2010)

Design principles in photosynthesis:

wavelengths utilized (Milo, Photos. Res. 2009)

3-Phosphoglycerate Photosystem II Electron transport Photosystem Starch (storage) Amino acids Chloroplast Fatty acids Sucrose (export)

Calvin cycle

Synthetic carbon fixation pathways for higher productivity

(Bar-Even et al, PNAS 2010; Bar-Even et al, JXB 2012)

The Calvin-Benson cycle drives carbon fixation

Photosynthesis fixates carbon into organic compounds

Rubisco - key carboxylating enzyme: capturing CO₂ and producing 3-carbon sugars

Can we find novel ways to achieve carbon fixation?

Constraints are different \rightarrow productivity and rates might be higher (e.g. domestication)

Test our understanding of what limits Nature in evolving metabolic pathways

Finding synthetic alternatives to the Calvin-Benson Cycle

A B C

Nature uses six carbon fixation pathways for increased productivity

Synthetic carbon KEGG database ~5000 naturally occuring enzymes

Synthetic biology & metabolic engineering (following Kiesling, Stephanopoulos, Maranas, Hatzimanikatis,...)

A "mix and match" approach

How to compare the synthetic pathways?

Exploration of (5000)ⁿ possible networks

Novel visualization method of metabolic pathways

Manual curation

- >1500 papers
- >100 metabolic cycles

New methods to predict pathways rates

Integrated thermodynamic models

We systematically compare all possible synthetic carbon fixation pathways

Superior kinetics

maximal flux sustained by 1mg of total pathway enzymes (Pathway Specific Activity)

Favourable thermodynamics

feasibility of overall pathway and of all sub-pathways

Evaluation Criteria

Ш

ATP & NADPH cost

Topological compatibility

number of enzymes, controlability integration w/endogenous

| W metabolic network

The simplest carbon fixation cycles are not useful

The simplest cycles are:

- (1) Thermodynamically infeasible
- (2) Kinetically slower
- (3) Employing oxygen sensitive enzymes

Bar-Even et al., PNAS, 2010

Equilibrator - a web interface for thermodynamic analysis of biochemical systems

Search

Type a compound name or reaction or try an example below.

Examples

Reactions	Compounds	Enzymes
Glucose => 2 Ethanol + 2 co2	ATP	Rubisco
L-Malate + NAD+ => Oxaloacetate + NADH	Glucose	Aldolase
ATP + Water <=> ADP + Phosphate	Succinyl-CoA	Hexokinase

Rational design converges with natural selection

Under constraint of using Rubisco as carboxylating enzyme:-> Ideal solution is Calvin cycle

With no constraints other than using naturally occurring enzymes...

We find a family of promising novel pathways

The Malonyl-CoA – Oxaloacetate – Glyoxylate family of pathways is predicted to be:

- (1) Kinetically faster2-3 fold faster than Calvin Cycle
- (2) Thermodynamically & energetically feasible
- (3) Impose least metabolic changes

Can we achieve better results than natural pathway? Maybe if the constraints are different

Bar-Even et al., PNAS, 2010

Testing the synthetic cycles by merging enzymes from several organisms

Testing computational predictions in vivo:

we develop a model system for comparing novel carbon fixation pathways

Only two genes are missing in *E. coli* to complete the Calvin-Benson cycle

The real energy sources....

Toxicity hampers cloning efforts

Enzyme levels are either too high or too low, or combination

Requires a novel method for exploring space of expression levels

Different expression levels in a synthetic metabolic pathway should be tested to find a balanced pathway

Location in expression space of the "ideal" balance is very difficult to predict

Requires experimental method to explore expression space efficiently

Ribosome binding site modulation explores expression space

Following: Salis, Mirsky & Voigt, NBT 2009

Proof of concept – using ribosome binding sites to span fluorophores expression space

Expression space is spanned in a combinatorial manner over ~2 orders of magnitude

Ribose-5-P

Expressing & testing key steps of carboxylation

(Ribose-5-phosphate isomerase, E. coli)

Ribulose-5-P

PRK (Phosphoribulokinase, S. elongatus)

Ribulose-1,5-BP

Rubisco (R. rubrum)

Glycerate-3P(x2)

Ribose-5 in-vitro carbon fixation assay using E.coli extracts

1

(Ribose-5-phosphate isomerase, E. coli)

Ribulose-5-P

PRK (Phosphoribulokinase, S. elongatus)

Carbon fixation assay using LC-MS

Ilana Rogachev and Sergey Malitsky (Asaph Aharoni lab)

Ribose-5-P

"Carbon fixating", halie isomerase, E. coli) cell extract

Ribulo Pe-5-P

"Carbon fixating" coli (Phosphoribulokinase, S. elongatus)

Ribulo Pe-1,5-BP

"Car**Rubisting** (Ropubrum)
cell extract

¹³Glyce ate-3P + Glycerate-3P

Experimentally engineer carbon fixating *E. coli* as part of grand plan

fixation pathways in phototrophs

We are aware that "evolution is smarter than you are" (Orgel's law)

We expect to learn about horizontal gene transfer, constraints on metabolic networks and limits to productivity

B10NUMB3R5

The number you need, with reference in just a minute
BioNumbers – Useful biological numbers database
Wiki-like, users edit and comment
Over 3500 properties & 5000 users/month

www.BioNumbers.org

Median haploid volume: 42 μm³ Number of ribosomes: ~200,000 Nucleus volume: 7% of cell mRNA out of total RNA: 5% mRNA in cell: 15,000 Kcat of Pyruvate kinase: 71,400/min

Cell diameter: ~5μm RNA to DNA ratio: 50

Se	arch
Find Terms: rbdsorra	sec. pSD, turaconiption
Organisms (ml)	8
search	reset

0	Property	Organism	Vokes	Range	Units
198	Available ribosomes	Bactoria Escherchia coli	500		ror.
92	Average distance between riticosomes on mANA	Bacteria Escheristra coll	80	41-78	nucleofites
122	Diameter of ribospeve	Bactaria Escherichia cali	20		nni
343	Etengation rate of ribosomes in Nanopus laevis stage VI posytea	Affician clawed frog Yerispus leevis	3		nucleofides?
119	M/k of ribusome	Bacteria Excherishia coll	2700		kDarlon.
112	Number of protein types to make ribosome	Bastaria Escheristva coli	55		Unitiess
268	Number of recognies	Budding yeast Saccharomyces cerevisiae	200000		Undless
111	Number of ribosomes/cell	Bacteria Escherichia call	18300		Unitiess
113	Number rRNA heles to make ribosome	Bactaria Eccherichia coli	3		Unitiess
253	Percent of total transpiction devoted to ribe somal RNA	Yeast	60		Percent
193	Ribesome + RNAn> Ribesome RNAn+1	Bacteria Escherichia coli	100		bpise:
484	R become diameter	Generic	30		nn
483	Ribosome volume	0enetic	1.46-5		um3
395	R bosomes	African clawed hag Xenopus faevis	10e+11		ribosomes
51	Volume occupied by ribosomes	Bastolia Escherithia coli	8		Percent
123	Volume of ribosome	Bacteria Escheristria coli	4.2±-6		im3

Total number of taste buds: 10,000 Cell divisions in a life-time: 10¹⁷ Abundance of p53 per cell: ~160,000 Average brain weight: ~1350g Hairs on the head: 90,000-150,00 Diameter of erythrocytes: 7.5μm Weight of skin: 4.1 Kg Average time between blinks: 2.8 Sec

ATP to make one cell: ~55 billion

Volume occupied by RNA: 6%

Number of tRNA/cell: ~200,000

Speed: 50 µm/sec

Ribosomes: 6,800 - 72,000

Proteins: ~3.6x106

Translation rate: 12 - 21 aa/sec

Volume occupied by water: 70%

SnapShot: Key Numbers in Biology

Uri Moran,¹ Rob Phillips,² and Ron Milo¹

¹Weizmann Institute of Science, Rehovot, Israel; ²California Institute of Technology, Pasadena, CA, USA

Cell size

Bacteria (*E. coli*): ≈ 0.7 -1.4 µm diameter, ≈ 2 -4 µm length, ≈ 0.5 -5 µm³ in volume; 10^8 - 10^9 cell/ml for culture with $OD_{eno} \approx 1$

Yeast (S. cerevisiae): ≈3-6 μm d'ameter ≈20-160 μm³ in volume

Mammalian cell volume: 100-10,000 μ m³; HeLa cell: 500-5000 μ m³ (adhering to slide \approx 15-30 μ m diameter)

Length scales inside cells

Nucleus volume: ≈10% of cell volume Cell membrane thickness: ≈4-10 nm

"Average" protein diameter: ≈3-6 nm

Base pair: 2 nm (D) x 0.34 nm (H)

Water molecule diameter: ≈0.3 nm

Energetics

Membrane potential ≈70-200 mV → 2-6 k_BT per electron (k_BT ≡ thermal energy)

Concentration

Concentration of 1 nM:

in *E. coli* ≈1 molecule/cell; in HeLa cells ≈1000 molecules/cell

Characteristic concentration for a signaling protein: ≈10 nM-1 μM

Water content: \approx 70% by mass; general elemental composition (dry weight) of *E. coli:* \approx C₄H₇O₂N₁; Yeast: \approx C₆H₁₀O₃N₁

Composition of *E. coli* (dry weight): ≈55% protein, 20% RNA, 10% lipid, 15% other

Protein concentration: ≈100 mg/ml = 3 mM. 10⁶-10⁷ per *E. coli* (depending on growth rate); Total metabolites (MW < 1 kDa) ≈300 mM

Division, replication, transcription, translation, and degradation rates

at 37°C with a temperature dependence (Q10) of ≈2-3

Cell cycle time (exponential growth in rich media): *E. coli* ≈20-40 min; budding yeast 70-140 min; HeLa human cell line: 15-30 hr

Diffusion and catalysis rate

Diffusion coefficient for an "average" protein: in cytoplasm $D \approx 5-15 \ \mu m^2/s \rightarrow \approx 10 \ ms$ to traverse an *E. coli* $\rightarrow \approx 10 \ s$ to traverse a mammalian HeLa cell; small metabolite in water $D \approx 500 \ \mu m^2/s$

Diffusion-limited on-rate for a protein: $\approx 10^8 - 10^9 \text{ s}^{-1}\text{M}^{-1} \rightarrow \text{for a protein substrate}$ of concentration $\approx 1~\mu\text{M}$ the diffusion-limited on-rate is $\approx 100 - 1000~\text{s}^{-1}$ thus limiting the catalytic rate k_{co} .

Genome sizes and error rates

Genome size:

- E. coli (enterobacteria) ≈5 Mbp
- S. cerevisiae (budding yeast) ≈12 Mbp
- C. elegans (nematode) ≈100 Mbp
- D. melanogaster (fruit fly) ≈120 Mbp
- A. thaliana (plant) ≈120 Mbp
- M. musculus (mouse) ≈2.5 Gbp
- H. sapiens (human) ≈2.9 Gbp
 T. aestivum (wheat) ≈16 Gbp

