Ron Milo Department of Plant Sciences Weizmann Institute of Science # What limits maximal growth rates? ### A major frontier for systems biology: Carbon Fixation Requires majority of land and fresh water used by humanity A molecular process that affects global climate Major uncertainties about rates and limits ## What governs the efficiency of photosynthesis and carbon fixation? Constraints on metabolites concentrations, enzyme rates and pathways structure (Noor et al, Mol. Cell 2010 Bar-Even et al, Biochemistry 2011 Bar-Even et al, PLOS CB 2011) growth Light reactions Rubisco rate is at a limit (Savir et al, PNAS 2010) Design principles in photosynthesis: wavelengths utilized (Milo, Photos. Res. 2009) 3-Phosphoglycerate Photosystem II Electron transport Photosystem Starch (storage) Amino acids Chloroplast Fatty acids Sucrose (export) Calvin cycle Synthetic carbon fixation pathways for higher productivity (Bar-Even et al, PNAS 2010; Bar-Even et al, JXB 2012) # The Calvin-Benson cycle drives carbon fixation Photosynthesis fixates carbon into organic compounds Rubisco - key carboxylating enzyme: capturing CO₂ and producing 3-carbon sugars # Can we find novel ways to achieve carbon fixation? Constraints are different \rightarrow productivity and rates might be higher (e.g. domestication) Test our understanding of what limits Nature in evolving metabolic pathways ### Finding synthetic alternatives to the Calvin-Benson Cycle A B C Nature uses six carbon fixation pathways for increased productivity Synthetic carbon KEGG database ~5000 naturally occuring enzymes Synthetic biology & metabolic engineering (following Kiesling, Stephanopoulos, Maranas, Hatzimanikatis,...) A "mix and match" approach ### How to compare the synthetic pathways? Exploration of (5000)ⁿ possible networks Novel visualization method of metabolic pathways Manual curation - >1500 papers - >100 metabolic cycles New methods to predict pathways rates Integrated thermodynamic models # We systematically compare all possible synthetic carbon fixation pathways ### Superior kinetics maximal flux sustained by 1mg of total pathway enzymes (Pathway Specific Activity) ### Favourable thermodynamics feasibility of overall pathway and of all sub-pathways #### Evaluation Criteria Ш ATP & NADPH cost ### Topological compatibility number of enzymes, controlability integration w/endogenous | W metabolic network ### The simplest carbon fixation cycles are not useful ### The simplest cycles are: - (1) Thermodynamically infeasible - (2) Kinetically slower - (3) Employing oxygen sensitive enzymes Bar-Even et al., PNAS, 2010 **Equilibrator** - a web interface for thermodynamic analysis of biochemical systems Search Type a compound name or reaction or try an example below. #### **Examples** | Reactions | Compounds | Enzymes | |--|--------------|------------| | Glucose => 2 Ethanol + 2 co2 | ATP | Rubisco | | L-Malate + NAD+ => Oxaloacetate + NADH | Glucose | Aldolase | | ATP + Water <=> ADP + Phosphate | Succinyl-CoA | Hexokinase | ### Rational design converges with natural selection Under constraint of using Rubisco as carboxylating enzyme:-> Ideal solution is Calvin cycle With no constraints other than using naturally occurring enzymes... ### We find a family of promising novel pathways The Malonyl-CoA – Oxaloacetate – Glyoxylate family of pathways is predicted to be: - (1) Kinetically faster2-3 fold faster than Calvin Cycle - (2) Thermodynamically & energetically feasible - (3) Impose least metabolic changes Can we achieve better results than natural pathway? Maybe if the constraints are different Bar-Even et al., PNAS, 2010 # Testing the synthetic cycles by merging enzymes from several organisms Testing computational predictions in vivo: we develop a model system for comparing novel carbon fixation pathways ## Only two genes are missing in *E. coli* to complete the Calvin-Benson cycle ## The real energy sources.... ### Toxicity hampers cloning efforts Enzyme levels are either too high or too low, or combination Requires a novel method for exploring space of expression levels # Different expression levels in a synthetic metabolic pathway should be tested to find a balanced pathway Location in expression space of the "ideal" balance is very difficult to predict Requires experimental method to explore expression space efficiently # Ribosome binding site modulation explores expression space Following: Salis, Mirsky & Voigt, NBT 2009 # Proof of concept – using ribosome binding sites to span fluorophores expression space # Expression space is spanned in a combinatorial manner over ~2 orders of magnitude ### Ribose-5-P # Expressing & testing key steps of carboxylation (Ribose-5-phosphate isomerase, E. coli) Ribulose-5-P **PRK** (Phosphoribulokinase, S. elongatus) Ribulose-1,5-BP Rubisco (R. rubrum) Glycerate-3P(x2) # Ribose-5 in-vitro carbon fixation assay using E.coli extracts 1 (Ribose-5-phosphate isomerase, E. coli) Ribulose-5-P PRK (Phosphoribulokinase, S. elongatus) ### Carbon fixation assay using LC-MS Ilana Rogachev and Sergey Malitsky (Asaph Aharoni lab) ### Ribose-5-P "Carbon fixating", halie isomerase, E. coli) cell extract Ribulo Pe-5-P "Carbon fixating" coli (Phosphoribulokinase, S. elongatus) Ribulo Pe-1,5-BP "Car**Rubisting** (Ropubrum) cell extract ¹³Glyce ate-3P + Glycerate-3P # Experimentally engineer carbon fixating *E. coli* as part of grand plan fixation pathways in phototrophs # We are aware that "evolution is smarter than you are" (Orgel's law) We expect to learn about horizontal gene transfer, constraints on metabolic networks and limits to productivity ## B10NUMB3R5 The number you need, with reference in just a minute BioNumbers – Useful biological numbers database Wiki-like, users edit and comment Over 3500 properties & 5000 users/month ### www.BioNumbers.org Median haploid volume: 42 μm³ Number of ribosomes: ~200,000 Nucleus volume: 7% of cell mRNA out of total RNA: 5% mRNA in cell: 15,000 Kcat of Pyruvate kinase: 71,400/min Cell diameter: ~5μm RNA to DNA ratio: 50 | Se | arch | |----------------------|-------------------------| | Find Terms: rbdsorra | sec. pSD, turaconiption | | Organisms (ml) | 8 | | search | reset | | 0 | Property | Organism | Vokes | Range | Units | |-----|---|--|--------|-------|--------------| | 198 | Available ribosomes | Bactoria Escherchia coli | 500 | | ror. | | 92 | Average distance between riticosomes on mANA | Bacteria Escheristra coll | 80 | 41-78 | nucleofites | | 122 | Diameter of ribospeve | Bactaria Escherichia cali | 20 | | nni | | 343 | Etengation rate of ribosomes in Nanopus laevis stage VI posytea | Affician clawed frog Yerispus leevis | 3 | | nucleofides? | | 119 | M/k of ribusome | Bacteria Excherishia coll | 2700 | | kDarlon. | | 112 | Number of protein types to make ribosome | Bastaria Escheristva coli | 55 | | Unitiess | | 268 | Number of recognies | Budding yeast Saccharomyces cerevisiae | 200000 | | Undless | | 111 | Number of ribosomes/cell | Bacteria Escherichia call | 18300 | | Unitiess | | 113 | Number rRNA heles to make ribosome | Bactaria Eccherichia coli | 3 | | Unitiess | | 253 | Percent of total transpiction devoted to ribe somal RNA | Yeast | 60 | | Percent | | 193 | Ribesome + RNAn> Ribesome RNAn+1 | Bacteria Escherichia coli | 100 | | bpise: | | 484 | R become diameter | Generic | 30 | | nn | | 483 | Ribosome volume | 0enetic | 1.46-5 | | um3 | | 395 | R bosomes | African clawed hag Xenopus faevis | 10e+11 | | ribosomes | | 51 | Volume occupied by ribosomes | Bastolia Escherithia coli | 8 | | Percent | | 123 | Volume of ribosome | Bacteria Escheristria coli | 4.2±-6 | | im3 | Total number of taste buds: 10,000 Cell divisions in a life-time: 10¹⁷ Abundance of p53 per cell: ~160,000 Average brain weight: ~1350g Hairs on the head: 90,000-150,00 Diameter of erythrocytes: 7.5μm Weight of skin: 4.1 Kg Average time between blinks: 2.8 Sec ATP to make one cell: ~55 billion Volume occupied by RNA: 6% Number of tRNA/cell: ~200,000 Speed: 50 µm/sec Ribosomes: 6,800 - 72,000 Proteins: ~3.6x106 Translation rate: 12 - 21 aa/sec Volume occupied by water: 70% ### **SnapShot: Key Numbers in Biology** Uri Moran,¹ Rob Phillips,² and Ron Milo¹ ¹Weizmann Institute of Science, Rehovot, Israel; ²California Institute of Technology, Pasadena, CA, USA #### Cell size Bacteria (*E. coli*): ≈ 0.7 -1.4 µm diameter, ≈ 2 -4 µm length, ≈ 0.5 -5 µm³ in volume; 10^8 - 10^9 cell/ml for culture with $OD_{eno} \approx 1$ Yeast (S. cerevisiae): ≈3-6 μm d'ameter ≈20-160 μm³ in volume Mammalian cell volume: 100-10,000 μ m³; HeLa cell: 500-5000 μ m³ (adhering to slide \approx 15-30 μ m diameter) #### Length scales inside cells Nucleus volume: ≈10% of cell volume Cell membrane thickness: ≈4-10 nm "Average" protein diameter: ≈3-6 nm Base pair: 2 nm (D) x 0.34 nm (H) Water molecule diameter: ≈0.3 nm #### **Energetics** Membrane potential ≈70-200 mV → 2-6 k_BT per electron (k_BT ≡ thermal energy) #### Concentration #### Concentration of 1 nM: in *E. coli* ≈1 molecule/cell; in HeLa cells ≈1000 molecules/cell Characteristic concentration for a signaling protein: ≈10 nM-1 μM **Water content:** \approx 70% by mass; general elemental composition (dry weight) of *E. coli:* \approx C₄H₇O₂N₁; Yeast: \approx C₆H₁₀O₃N₁ Composition of *E. coli* (dry weight): ≈55% protein, 20% RNA, 10% lipid, 15% other **Protein concentration:** ≈100 mg/ml = 3 mM. 10⁶-10⁷ per *E. coli* (depending on growth rate); Total metabolites (MW < 1 kDa) ≈300 mM ### Division, replication, transcription, translation, and degradation rates at 37°C with a temperature dependence (Q10) of ≈2-3 Cell cycle time (exponential growth in rich media): *E. coli* ≈20-40 min; budding yeast 70-140 min; HeLa human cell line: 15-30 hr #### Diffusion and catalysis rate Diffusion coefficient for an "average" protein: in cytoplasm $D \approx 5-15 \ \mu m^2/s \rightarrow \approx 10 \ ms$ to traverse an *E. coli* $\rightarrow \approx 10 \ s$ to traverse a mammalian HeLa cell; small metabolite in water $D \approx 500 \ \mu m^2/s$ Diffusion-limited on-rate for a protein: $\approx 10^8 - 10^9 \text{ s}^{-1}\text{M}^{-1} \rightarrow \text{for a protein substrate}$ of concentration $\approx 1~\mu\text{M}$ the diffusion-limited on-rate is $\approx 100 - 1000~\text{s}^{-1}$ thus limiting the catalytic rate k_{co} . #### Genome sizes and error rates #### Genome size: - E. coli (enterobacteria) ≈5 Mbp - S. cerevisiae (budding yeast) ≈12 Mbp - C. elegans (nematode) ≈100 Mbp - D. melanogaster (fruit fly) ≈120 Mbp - A. thaliana (plant) ≈120 Mbp - M. musculus (mouse) ≈2.5 Gbp - H. sapiens (human) ≈2.9 Gbp T. aestivum (wheat) ≈16 Gbp