

Amos Arieli Dirk Jancke
David Backlash Eyal Seidemann
Fredric Chavane Dahlia Sharon
Dori Derdikman Hamutal Slovin
Zion Eliyahu A. Sterkin
Dov Ettner Yuval Toledo
Silvana Freund Eyal Tzubari
Rina Hildesheim

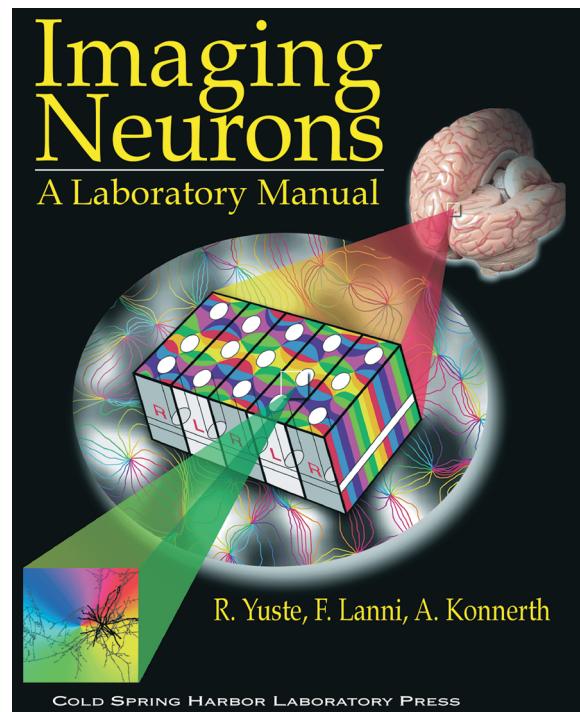
Seeing the brain in action: Exploring higher brain functions by optical imaging

Department of Neurobiology

Tel. 972 8 934 3832 Fax. 972 8 934 2438
E-mail: amiram.grinvald@weizmann.ac.il

Objectives

Our long term goal has been to contribute to the discovery of principles underlying perception and cortical processing, higher brain functions and the “**neural code**”.


Background

A precondition to deciphering the “**neural code**” is to determine the functional architecture of cortex. Clearly one must first understand what is the basic function(s) actually performed by a given neuronal group(s) before one can hope to understand the strategy they employ. Next, one should define how these groups of neurons are organized in space. Subsequently, spatio-temporal patterns of electrical activity should be monitored and only then can the code in these tangled communication networks be deciphered. Long-standing questions related to perception and higher cognitive functions can be finally resolved by direct visualization of the architecture and function of mammalian cortex in unprecedented detail. This advance has been accomplished with the aid of two **optical imaging** techniques one based on voltage sensitive dyes and one on intrinsic signals (Grinvald et al., 1999). Utilizing these techniques one can “directly see” how the brain functions. Our explorations are combined with traditional neuroanatomical and neurophysiological techniques and are guided by computational theories and modeling. The combination of real time optical imaging and single unit recording have facilitated the direct visualization of **neuronal assemblies**. Recently, a number of imaging techniques such as PET, EEG, MEG, f-MRI and optical imaging have made feasible many experiments which were considered by neuroscientists’ “fantasy” only a decade ago. Among these imaging techniques, optical imaging stands out because it is the only imaging technique offering the temporal and spatial resolutions required to study the functional organization and the dynamics of neuronal assemblies.

Recent Findings

These include establishing the pinwheel-like organization of orientation domains in primary visual cortex responsible for shape perception; description of the cortical point spread function implying that **cortical processing** is far more distributed than previously estimated; discovery of the functional organization

for direction selectivity and its spatial relation to orientation columns in visual areas MT and 18; discovery of two subsystems of spatio-temporal frequency columns; discovery of the relationships between various functional domains in monkey primary visual cortex and in cat visual cortex, underlying

Fig.1 Mapping of the geometrical relationships between various processing modules underlying visual perception in primary visual cortices of monkeys (the cube) and cats (the ellipse) by Intrinsic optical imaging. Intrinsic optical imaging can be combined with anatomical methods such as biocytin labeling of single neurons thus elucidating the relationship between neuronal structure and function (bottom left square). Figure courtesy of Amiram Grinvald and Tobias Bonhoeffer (“*Imaging Neurons*” book cover, CSHL Press 1999).

visual perception (see illustration); visualization of neuronal assemblies and discovery of the dynamic organization of coherent on-going activity; discovery that on-going activity of a single neuron is a reflection of the functional architecture rather

Fig. 2 Spatial relationships between three columnar domains. Spatial relationships among three columnar systems in cat area 17 (Cell, February 18, 2000). 1) Gray and white regions are columns of neurons that receive inputs from the left and right eye respectively. This system is responsible for depth perception. 2) The 'pinwheel' spokes are formed by neuronal groups involved in the perception of shape, with each color line marking the border between neurons responsible for detecting a particular orientation in space.

than stochastic activity; discovery of the relationship between electrical activity and the responses of the **microcirculation** and its implication for improving of the spatial resolution of f-MRI. Clinical applications of optical imaging for neurosurgery were pursued in local and foreign hospitals.

Selected Publications

Shoham, D., D.E. Glaser, A. Arieli, Tal Kenet, R. Hildesheim, and A. Grinvald (1999). Imaging cortical architecture and dynamics at high spatial and temporal resolution with new voltage-sensitive dyes. *Neuron*, 24, 1-12.

Vanzetta I., and A. Grinvald (1999) Cortical activity-dependent oxidative metabolism revealed by direct oxygen tension measurements; implications for functional brain imaging. *Science*, 286, 1555-1558.

Tsodyks M., T. Kenet, A. Grinvald and A. Arieli (1999) The spontaneous activity of single cortical neuron depends the underlying global functional architecture. *Science*, 286,

1943-1946

Grinvald, A. D. Shoham, A. Shmuel, D.E. Glaser I. Vanzetta, E. Shtoyerman, H. Slovin C. Wijnbergen, R. Hildesheim, A. Sterkin and A. Arieli, (1999) *In-vivo Optical Imaging of cortical Architecture and Dynamics*. A. in *Modern Techniques in Neuroscience Research*. U. Windhorst and H. Johansson (Editors) Springer Verlag, pp 893-969.

Grinvald, A. Slovin H. and Vanzetta I (2000) Non-invasive visualization of Cortical Columns by f-MRI. *Nature Neuroscience*. 3, 105-107.

Shmuel, A. and Grinvald, A (2000) Coexistence of linear Zones and pinwheels within Orientation Maps in Cat Visual Cortex. *Proc. Natl. Acad. Sci., USA*, 97, 5568-5573.

Nicholas V. Swindale, Amiram Grinvald, Doron Shoham, Tobias Bonhoeffer and Mark Hübener (2000) Visual Cortex Maps are Optimized for Uniform Coverage. *Nature Neuroscience*, 3, 822-826.

Shtoyerman, E., A. Arieli, H. Slovin, I. Vanzetta and A. Grinvald (2000) Long term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 OF behaving monkeys. *J. Neuroscience*, 20, 8111-21.

Vanzetta I., Grinvald A. (2001) Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging. *NeuroImage*. 13, 959-967.

Shoham D., A. Grinvald A. (2001). Visualization of the hand representation in the hand in macaque and human area S-I using intrinsic signal optical imaging. *J. Neuroscience*, 21:6820-6835.

Arieli, A. Grinvald, A., and Slovin H. (2001) An Implant of transparent artificial dura for a long term imaging of cortical activity in behaving monkeys and its clinical implications. *J. Neurusc. Methods*. In press.

Sharon, D. and A. Grinvald (2001) The dynamics of orientation tuning in cat visual cortex measured by optical imaging. *Science*, in press.

Acknowledgements

Supported by grants from Grodetsky Center, NIH, MDA, PVA, BSF, ISF, EMBO, GIF, The Joint German Israeli Research Program, The Jewish Agency, March of Dimes, USA Airforce, The Jewish Agency, the Center for Psychobiology and by grants from the Klingenstein, Horace Goldsmith Foundation, Henri and Francoise Glasberg Foundation, Ms. Margaret Enoch, Riklis, Schilling, Minerva, Wolfson, and Bat Sheva de Rothschild Foundations and IBM and DuPont Corporations.

AG is the incumbent of the Helen and Norman Asher Professorial Chair of Brain Research.

For additional information see:

www.weizmann.ac.il/brain/grinvald