

Fortune Kohen
 Mati Fridkin
 Miri Eisenstein
 Tali Scherf
 Dalia Somjen
 Batya Gayer
 Tikva Kulik
 Natarajan Venkatesh
 Roni Kasher

Peptides As A New Family Of Compounds With Estrogen-like Activity

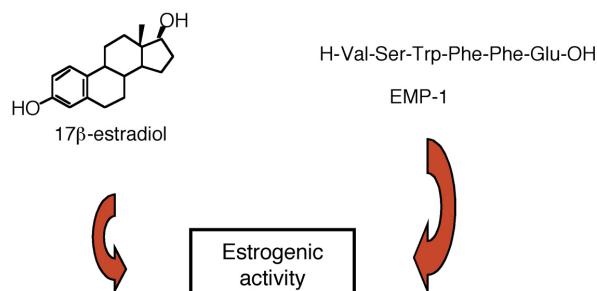
Department of Biological Chemistry

Tel. 972 8 934 3947 Fax. 972 8 934 8256

E-mail: ephraim.katzir@weizmann.ac.il

Web page: www.weizmann.ac.il

Currently used anti-estrogenic drugs against hormone dependent-breast cancer, and estrogenic drugs used in treatment of osteoporosis, are associated with risk factors (Pradhan et al., 2002). Therefore, there is a strong need to develop selective estrogen receptor modulators with better tissue selectivity (Jordan, 2003). In a recent study (Venkatesh et al, 2002) we used a monoclonal antibody to estradiol (mAb-E2) to screen a phage-display peptide library, and identified a 15-mer peptide (peptide H5) that recognizes mAb-E2 (IC_{50} 1 μ M) and estrogen receptor (ER) α (IC_{50} 500 μ M) but not ER β , and displays estrogen-like activity in vitro and in vivo. In this study we designed and prepared peptides that are based on peptide H5, that possess improved estrogenic activity, by evaluating their binding to mAb-E2 and to ERs. Initially, we determined the minimal binding sequence of peptide H5 capable of binding mAb-E2 and ER. Subsequently, a systematic single-residue replacements of the minimal sequence, followed by multiple residue replacements, yielded hexa- and hepta-peptides with increased affinities to mAb-E2 and to ER. The most promising peptides, VSWFFE (EMP-1; see Fig. 1) and VSWFFED (EMP-2), bind


mAb-E2 with high affinity (IC_{50} of 6 and 30 nM, respectively), recognize ERs with increased affinity (IC_{50} of 100 μ M for ER α , and 100 - 250 μ M for ER β), and possess estrogenic activity in-vivo. The short peptides described in this study may be used as potential lead-compounds for developing new ER ligands.

Selected Publications

Pradhan, A.D., Manson, J.E., Rossouw, J.E., Siscovick, D.S., Mouton, C.P., Rifai, N., Wallace, R.B., Jackson, R.D., Pettinger, M.B. and Ridker, P.M. (2002) Inflammatory Biomarkers, Hormone Replacement Therapy, and Incident Coronary Heart Disease: Prospective Analysis From the Women's Health Initiative Observational Study. *JAMA*, 288, 980-987

Venkatesh, N., Zaltsman, Y., Somjen, D., Gayer, B., Boopathi, E., Kasher, R., Kulik, T., Katchalski-Katzir, E. and Kohen, F. (2002) A synthetic peptide with estrogen-like activity derived from a phage-display peptide library. *Peptides*, 23, 573-580

Jordan, V.C. (2003) Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions. *J. Med. Chem.*, 46, 883-908

Fig. 1 Chemical structures of the steroid hormone estradiol (E2) and amino acid sequence of the synthetic peptide EMP-1, which possess estrogen-like activity.

Acknowledgements:

We thank Mrs. Aviva Kapitkovsky and Mrs. Sara Rubinraut (Weizmann Institute of Science) for assistance in peptide synthesis.

This work was supported by Yeda Fund, Weizmann Institute of Science