

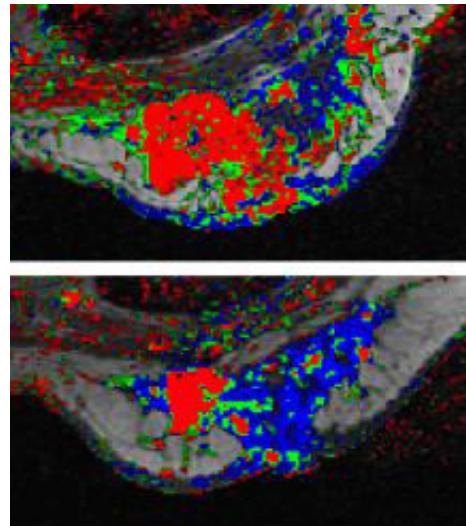
Edna Furman-Haran
Dalia Seger
Tamar Kreizman
Raanan Margalit
Yael Rosen
Maya Dadiani-Chetrit
Galit Elyahu
Yaron Hassid

Angiogenesis and Metabolism in cancer; Molecular and Physiological characterization by means of MRI/MRS.

Department of Biological Regulation

Tel. 972 8 934 3920 Fax. 972 8 934 4186

E-mail: hadassa.degani@weizmann.ac.il


Web page: www.weizmann.ac.il/Biological_Regulation

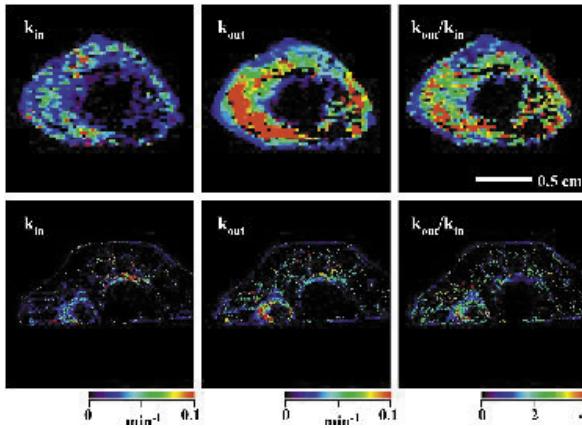
We have investigated tumor growth, progression and metastasis, using molecular and cellular methodologies, as well as non-invasive imaging and spectroscopic techniques based on magnetic resonance. The studies were conducted in human breast, prostate and lung cancer cell cultures and tumors developed in animal models. In addition, clinical investigations of breast and lung cancer patients were performed by means of MRI and CT, respectively.

The research focused on the following topics:

1. Estrogen regulation of breast cancer angiogenesis
2. Vascular physiology of benign and malignant breast lesions and of metastases to lymph nodes, bones and lungs.
3. Choline transport and metabolism in the course of malignant transformation of epithelial cells.
4. Mechanism(s) of glucose transport and glycolysis in breast cancer and their modulation by induced differentiation..
5. Quantifying response of breast cancer patients to chemotherapy by means of dynamic contrast enhanced MRI (Figure 1).

Specific efforts were directed to develop and improve non-invasive magnetic resonance imaging (MRI) and spectroscopic (MRS) methods that quantified tissue physiologic and metabolic processes. With these methods we were able to monitor dynamic processes at steady state and during changing conditions. Specifically, we have characterized flow and permeability limited perfusion, water and contrast agent diffusion, convection and the disparity in perfusion due to interstitial fluid pressure (Figure 2). We also developed the means to monitor glucose transport and glycolysis *in vivo* and designed MRI sensitive molecular probes that can bind specifically to the estrogen receptor and thereby map its distribution.

Fig. 1 3TP images of breast cancer before (top) and after 4 courses of chemotherapy (bottom) indicating partial response to therapy. The red regions in the breast represent cancerous tissue. After therapy the blue regions represent reparative, fibrous tissue that responded to the treatment.


Selected Publications

Furman-Haran E, Kelcz F, Degani H (2002) Magnetic resonance imaging of breast cancer angiogenesis: a review. *J Exp Clin Cancer Res.* 21(3), 47-54.

Kelcz F, Furman-Haran E, Grobgeld D, Degani H (2002) Clinical testing of a high spatial resolution, parametric, contrast-enhanced method, for breast MRI diagnosis, *Am J Roentgenol.* 179, 1485-1492.

Katz-Brull R, Kudinov AR, Degani H (2002) Choline in the aging brain, *Brain Res.* 951, 158-165, (2002).

Bogin L, Margalit R, Mispelter J, Degani H (2002) Parametric imaging of tumor perfusion using flow- and permeability-limited tracers. *J. Magn. Reson. Imaging.* 16, 289-299.

Fig.2 Parametric image of the disparity in the transcapillary transfer constants (k_{in} / k_{out}) of MDA-MB- 231 breast tumor inoculated in the mammary of a SCID mouse. The lower panel demonstrates the parameters in an axial slice through the mouse lower abdomen. The tumor on the left has higher transcapillary transfer constants than other parts of the body. The upper panel demonstrates the spatial distribution of the transcapillary transfer constants in the tumor tissue.

Rivenzon-Segal D, Margalit R, Degani H (2002) Glycolysis as a metabolic marker in orthotopic breast cancer, monitored by *in vivo* ^{13}C MRS. *Am. J Physiol. Endocrinology and Metabolism* 283, E623-E630.

Walenta S, Feigk B, Wachsmuth I, Dunkern T, Degani H, Mueller-Klieser W (2002) Differential changes in purine nucleotides after Doxorubicin treatment of human cancer cells *in vitro*, *Int J Oncol.* 21, 289-296.

Bogin L, Margalit R, Ristau H, Mispelter J, Degani H (2002) Parametric imaging of tumor perfusion with deuterium magnetic resonance imaging. *Microvasc Res.* 64, 104-115.

Furman-Haran E, Degani H (2002) Parametric analysis of breast MRI, *J Comput Assist Tomogr* 26, 376-386.

Bogin L, Degani H (2002) Hormonal regulation of VEGF in orthotopic MCF7 Human breast cancer. *Cancer Res* 62, 1948-1951.

Katz-Bruell R., Seger D, Rivenson-Segal D, Rushkin E, Degani H (2002) Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether- phospholipid synthesis. *Cancer Res.* 62, 1966-1970.

Degani H, Chetrit-Dadiani M, Bogin L, Furman-Haran E (2003) Magnetic resonance imaging of tumor

vasculature *Thromb Haemost.* 89, 25-33.

Paran Y, Adamsky-Boldin S, Margalit R, Degani H (2003) Diffusion-weighted MRI and response to anti-cancer therapies. *Israel J Chem* 43, 103-114.

Rivenzon-Segal D, Boldin-Adamsky S, Seger D, Seger R, Degani H (2003) Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. *Int. J. Cancer* 107, 177-182.

Paran Y, Bendel P, Margalit R, Degani H (2004) Water diffusion in the different microenvironments of breast cancer , NMR in Biomed. in press

Dadiani M, Margalit R, Sela N, Degani H (2004) High resolution magnetic resonance imaging of disparities in the transcapillary transfer rates in orthotopically inoculated invasive breast tumors, *Cancer Res.* in press.

Maril N, Margalit R, Mispelter J, Degani H (2004) Functional sodium magnetic resonance imaging of the intact rat kidney, *Kidney Int.* 65, 927-935.

Acknowledgements:

H.Degani is the incumbent of the Andrea Fallek Professorial Chair for Breast Cancer Research and heads the Willner Family Center for Vascular Biology.
 The work has been supported by:
 The US Army;
 NIH, USA;
 Israel Science Foundation;
 Washington Square Health Foundation, USA.
 Moross Cancer Institute;
 Sir David Alliance, CBE UK;
 Edith Degani and Lynne and Simon Mochon;