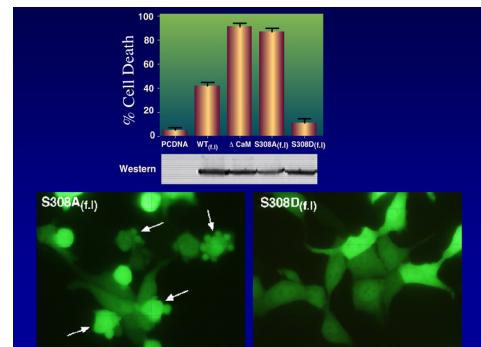


Shani Bialik Eran Reem
 Devrim Gozuacik Einat Zalckvar
 Amir Gamliel Lior Teitelbaum
 Hanna Berissi Yishai Shoval
 Zohar Mukamel
 Gidi Shani
 Galit Shohat
 Sharon Reef
 Lea Marash

Deciphering the molecular basis of programmed cell death: from single genes to global views of protein networks

Department of Molecular Genetics

Tel. 972 8 934 2428 Fax. 972 8 934 4108

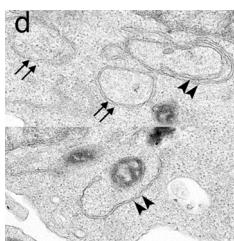

E-mail: Adi.kimchi@weizmann.ac.il

Web page: www.weizmann.ac.il/molgen/members/kimchi.html

Molecular networks that underlie programmed cell death are composed of hundreds of proteins that communicate with each other, mainly through post-translational modifications. The main goals of our laboratory are: 1. to identify novel proteins that serve as central 'nodes' in these cell death networks; 2. to draw a 'static map' delineating each component's position in the network and its links to a precise sub-cellular change; and 3. to introduce a functional dimension into the global analysis of the network's performance.

Over the past years, we have identified and characterized several new components of the cell death network - the so called DAP (Death-Associated Protein) genes. One of them, DAP-kinase (DAPk), is a Ca²⁺/calmodulin regulated Ser/Thr kinase. We found that DAPk is regulated by a unique auto-inhibitory phosphorylation on Ser308 within the calmodulin regulatory domain. In parallel, we have functionally linked DAPk to two death related sub-cellular events i.e., membrane blebbing and the formation of autophagic vesicles. The blebbing function is attributed to DAPk's position at the actin cytoskeleton, where it phosphorylates the regulatory light chain of myosin II, thereby activating myosin contractility. A third functional arm of DAPk, which predominates in some cellular settings is linked to p53 activation in a p19ARF dependent manner. While searching for potential substrates in this pathway, a novel short form of p19ARF was discovered which localizes to the mitochondria, alters the normal mitochondrial morphology and reduces the inner membrane potential. Currently, major efforts in the lab are directed towards the unbiased discovery of additional DAPk substrates and interacting proteins via two independent proteomics-based approaches involving biochemical and/or affinity purification strategies followed by mass spectrometric analysis.

In addition, we are also analyzing a DAPk knockout


Fig. 1 The blebbing phenotype and ultimate cell death appearing in human 293 cells after transient transfection with activated DAPk that carries Ser to Ala mutation at position 308, but not with the inactive Ser to Asp mutant.

mouse, generated in our lab, to understand the contribution of DAPk to various physiological and pathological conditions. We are currently generating lung and breast cancer-prone mice lacking DAPk by crossing DAPk KO mice to Ras or Myc transgenic mice. DAPk is the founding member of a family of death-associated kinases, which includes DRP-1 and ZIP-kinase (ZIPk). These family members share homology in their catalytic domains, yet differ in their extra-catalytic structures and intracellular localization. Recently we demonstrated the existence of physical and functional cross-talk between DAPk and ZIPk. We found that trans-phosphorylation of ZIPk by DAPk controls the shuttling of the former between nuclear and cytosolic compartments and amplifies the death promoting signals.

Additional functional modules within the apoptotic network were discovered in our laboratory with the elucidation of the structural/functional aspects of the other DAP genes that we isolated. DAP3 is a mitochondrial GTP-binding protein, which we discovered to contribute to the mitochondrial fragmentation that occurs during cell death. The discovery of DAP5 highlighted the contribution of

translational processes to cell death. DAP5 (p97/NAT1), a member of the eIF4G translation initiation factor family, supports cap-independent translation via specific IRESes. A novel unbiased screen for DAP5 mRNA targets has been implemented in our laboratory, and several potential mRNA candidates are currently undergoing validation for their physiological roles in cells.

Currently, one of the challenges is to integrate the molecular information emerging from the various DAP genes into a coherent global view of the network. In parallel, we determine the 'functional weight' of individual nodes, by applying a high-throughput strategy of siRNA-mediated silencing analysis. We expect that this multi silencing approach (MSA) will yield novel principles that delineate a network's performance in general.

Fig. 2 Transmission electron micrographs of DAPk-induced autophagic cell death. Typical autophagic vesicles containing cytoplasmic material (double arrows), ER or mitochondrion (double arrowheads) are shown.

Selected Publications

Inbal, B., Shani, G., Cohen, O., Kissil, J.L. and Kimchi, A. (2000) DAP-kinase-related protein-1 (DRP-1), a novel serine/threonine kinase involved in apoptosis. *Mol. Cell. Biol.*, 20,1044-1054.

Henis-Korenblit, S., Levy-Strumpf, N., Goldstaub, D., and Kimchi, A. (2000) A novel form of DAP5 accumulates in apoptotic cells as a result of caspase cleavage and IRES-mediated translation. *Mol. Cell. Biol.*, 20,496-506.

Raveh, T., Drogue, G., Horwitz, M.S., DePinho, R.A. and Kimchi, A. (2001) DAP-kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. *Nature Cell. Biol.*, 3, 1-7.

Shani G., Henis-Korenblit, S., Jona G., Gileadi O., Eisenstein M., Ziv, T., Admon, A. and Kimchi, A. (2001) Autophosphorylation restrains the apoptotic activity of DRP-1 kinase by controlling dimerization and CaM binding. *EMBO J.*, 20, 1-15.

Shohat, G., Spivak, T., Cohen O., Bialik, S., Berissi, H., Eisenstein, M., and Kimchi, A. (2001) A novel mechanism of negative autophosphorylation restrains the pro-apoptotic function of DAP-kinase. *J. Biol. Chem.*, 276, 47460-47467.

Kimchi, A. (2001) A cell death-promoting kinase. *Nat. Struct. Biol.*, 8, 824-826.

Inbal, B., Bialik, S., Sabanay, I., Shani, G. and Kimchi, A. (2002) DAP-kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. *J. Cell. Biol.*, 15, 455-468.

Henis-Korenblit, S., Shani, G., Sines, T., Marash, L., Shohat, G. and Kimchi, A. (2002) The caspase cleaved DAP5 protein supports internal ribosome entry site -mediated translation of death proteins. *Proc. Natl. Acad. Sci. USA* 99, 5400-5405.

Shohat, G., Shani, G., Eisenstein, M. and Kimchi, A. (2002) The DAP-kinase family of proteins: study of a novel group of calcium-regulated death-promoting kinases. *BBA*, 36701,1-6.

Kimchi, A. (2003) Antisense libraries to isolate tumor suppressor genes. *Methods Mol. Biol.*, 222, 399-412.

Bialik, S., Bresnick, A.R., and Kimchi, A. (2004) DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. *Cell Death Differ.*, On line.

Gozuacik, D., and Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. *Oncogene*, 23:2891-906.

Mukamel, Z., and Kimchi, A. (2004) DAP3 localizes to the mitochondria and is involved in the process of mitochondrial fragmentation during cell death. *J. Biol. Chem.*, (in revision).

Shani, G., Marash, L., Gozuacik, D., Bialik, S., Teitelbaum, L., Shohat, G. and Kimchi, A. (2004) DAP-kinase phosphorylates ZIP-kinase forming a unique kinase hierarchy to activate its cell death functions. *Mol. Cell. Biol.*, (in revision).

Reef, S., Shifman, O., Shohat, G., Oren, O. and Kimchi, A. (2004) A novel mitochondrial short form of p19ARF impairs the mitochondrial membrane potential., (Submitted).

Acknowledgements:

Our laboratory is supported by grants from the Israel Science Foundation, the European Community, Pasteur-Weizmann, Seroussi grant for Cancer Research and DIP.

Internal grants: Feinberg Foundation, Anne P. Lederer Research Institute, Clore Center.