Membrane Trafficking and Cytokinesis

Sreekumar Ramachandran
Vladimir Litvak
Nili Dahan
Tal Lavie
Roy Amarilio
Rachel Argov
Assaf Lask

Cytokinesis is the critical final stage of eukaryotic cell division. It ensures the production of two daughter cells endowed with a complete set of chromosomes and cytoplasmic organelles, and is tightly coordinated with mitotic progression. As the final step of mitosis, it must occur following chromosome segregation to ensure the integrity of genetic transfer to each future daughter cell. Thus, cytokinesis is essential for the completion of cell division, and defects in this process can lead to chromosomal instability - a driving force of tumorigenesis and cancer development.

In animal cells, cytokinesis requires the constriction of an equatorial actomyosin ring, which assembles between the spindle poles and provides the necessary force to constrict the cytoplasm. Contraction of the actomyosin ring pulls the plasma membrane inward and creates an ingressing cleavage furrow. Ingression of the furrow is followed by disassembly of the contractile ring, resealing of the plasma membrane and cell separation (Fig. 1).

Growing lines of evidence suggest that membrane trafficking events mediate crucial aspects of animal cytokinesis. Insertion of membranes at the cleavage furrow provides the additional surface area necessary for ingestion of the cleavage furrow, and membrane fusion events are required for resealing of the plasma membranes at the final stage of cytokinesis. In addition, membrane trafficking may be necessary for insertion of specific proteins or lipids that are required for localization of the cytokinetic machinery or that alter membrane curvature.

While cytokinesis has been studied for decades, its underlying molecular machinery is not completely understood. The major goal of our studies is to understand the mechanisms and regulation of cytokinesis, and to define the role of membrane trafficking events in this fundamental process.

During the past few years, our studies have been focused on a novel family of proteins designated Nir/rdgB, which are implicated in regulation of lipid trafficking and membrane biogenesis. Current studies from our laboratory indicate that Nir2, a representative of this protein family, plays an essential role in cytokinesis, is tightly regulated during mitosis, and affects specific membrane trafficking events.

Nir2 belongs to a highly conserved family of proteins that have been identified in a variety of eukaryotic organisms. It shares a high sequence homology with the Drosophila retinal degeneration B (rdgB) protein, a protein that is required for photoreceptor cell viability and light response, and it consists an amino-terminal phosphatidylinositol (PI)-transfer domain. Nir2 mainly localizes in the Golgi apparatus in interphase cells, but is recruited to the cleavage furrow and midbody during cytokinesis, where it colocalizes with the small GTPase RhoA (Fig. 1C).

Biochemical studies indicate that Nir2 interacts with RhoA via its Rho-inhibitory domain (Rid), which resides within the N-terminal region adjacent to the PI-transfer domain. Overexpression of Rid markedly affects cell contractility, and causes aberrant cytokinesis progression, whereas expression of a truncated Nir2 mutant, which lacks the N-terminal region consisting the PI-transfer domain and Rid, induces multinucleate-cell formation due to cleavage furrow regression. These results suggest that Nir2 is essential for cytokinesis and its N-terminal region is critical for this process.

More recently, we found that Nir2 is tightly regulated during mitosis by the mitotic kinase cyclin-dependent kinase 1 (Cdk1). We showed that at the onset of mitosis, Cdk1 phosphorylates Nir2 at multiple sites and facilitates its dissociation from the Golgi apparatus. We also found that phosphorylation of Nir2 by Cdk1 provides a docking mechanism for
approaches, including real-time imaging, immunofluorescence analysis, confocal and electron microscopy, RNA-interference (RNAi), and a variety of molecular and biochemical approaches.

Overall, our results on the Nir/RdgB protein, are novel and provide the first functional studies of these family members in mammalian cells. Future studies will further examine the roles of membrane lipids and membrane trafficking in cytokinesis, as well as more general mechanisms of cytokinesis, including those that are regulated by key mitotic kinases or small GTPases, such as Plks and Aurora B, or RhoA and Arf1, respectively.

Selected Publications

Acknowledgements:
Sima Lev is an incumbent of the Helena Rubinstein Career Development Chair. This work was supported by the Israel Science Foundation, the Israel Cancer Research Foundation and the Binational Science Foundation Harry and Jeanette Weinberg Fund for the Molecular Genetics of Cancer