Polarized cell growth is essential for most cellular processes including: cell division, growth control, differentiation, motility, and body plan morphogenesis. The establishment of cell polarity in eukaryotes involves the asymmetric organization of the both cytoskeleton and secretory pathway to lead to the polarized distribution of new membrane along a given axis. We are identifying the molecular requirements necessary for the transport of newly synthesized proteins and lipids to the cell surface via secretory vesicles, as well as the role of mRNA transport and localization in polarized growth.

We are using the yeast, Saccharomyces cerevisiae, as a model system in which to study these processes, as both simple and complex organisms utilize similar strategies to deliver proteins and lipids to the cell surface. Because yeast are genetically tractable, it allows us to identify genes that control protein and mRNA transport in a rapid fashion. Our work can be divided into three major subjects: SNARE regulation; endosomal protein sorting and human disease; and mRNA trafficking.

First, we are studying the connection between cell signaling pathways and the control of membrane fusion events. We have shown that SNAREs, which are conserved membrane fusogens, are modified post-translationally by kinases involved in cell cycle and growth control. SNARE phosphorylation at specific residues was found to regulate both exo- and endocytosis, as well as fragmentation of the Golgi. In contrast, dephosphorylation by a conserved phosphatase restores secretion and endocytosis, and results in the ordering of the Golgi. Thus, signaling cascades that regulate the cell cycle also regulate SNARE function leading to intracellular membrane trafficking and growth control. This is important for the coordination of DNA replication and nuclear division with cell division. Ongoing work seeks to reveal the mechanisms by which SNARE functions are controlled by both phosphorylation and SNARE regulatory proteins throughout the secretory pathway.

Second, we have identified three SNARE binding proteins (Vsm1, Btn2, Gcs1) of which at least two (Btn2, Gcs1) act upon endosomal protein sorting. The human ortholog of Btn2 may be involved in Batten Disease, a lysosomal storage disorder that results in neurodegeneration in humans. We found that Btn2 encodes a Hook-like protein that localizes to late endosomes, binds to both SNAREs and the retromer coat complex, and that the deletion of BTN2 results in the leakage of Golgi proteins to the vacuole (Figure 1). We propose that Btn2 confers protein retrieval to the Golgi from late endosomes and that defects in this process may result in Batten Disease. In the case of Gcs1, we have shown that it regulates protein recycling from early endosomes to the Golgi, while Vsm1 is a SNARE regulator that may help target SNAREs or coat proteins for degradation.

Fig 1. Yeast as a model for Batten Disease. Yif1 is a Golgi marker that shows a dispersed pattern of labeling in wild-type yeast. In contrast, yeast lacking the BTN2 gene show a vacuolar pattern of localization (FM4-64 labels vacuolar membranes). Thus, Yif1 retrieval to the Golgi is blocked in btn2Δ cells and this phenotype may parallel defects in Batten Disease patients.
Together, these studies show a direct relationship between SNARE binding proteins and endosomal protein sorting. Future studies aim at using yeast as a model system for the study of lysosomal storage disorders.

Finally, are exploring the role of mRNA trafficking in the localization of the secretory apparatus at the cell surface and subsequent polarized secretion. We have found that mRNAs encoding polarity and exocytosis factors are trafficked to sites where polarized growth eventually occurs (Figure 2.) and that mRNA trafficking is necessary to facilitate polarization. Ongoing work has demonstrated the protein factors involved in mRNA trafficking in both budding (dividing) and shmooing (mating) yeast cells. In addition, we have demonstrated a direct connection between ER transport and mRNA trafficking suggesting that these processes are interconnected in eukaryotic cells.

Together, these studies aim at elucidating the involvement of vesicle and mRNA transport in the control of polarized growth in simple eukaryotes.

Selected publications

Acknowledgements

Henry Kaplan Chair in Cancer Research, Supported by grants from the: Batten Disease Research and Support Association, USA, Israel Science Foundation, Minerva Foundation, Germany, Minna James Heineman – Minerva Foundation, Germany; Josef Cohn – Minerva Center for Biomembrane Research, Kahn Fund for Systems Biology