Our brains continuously transform the sensory information we encounter into meaningful perceptions. Thus, points of lights turn into colorful three dimensional structures, often carrying some emotional significance when perceived to match a memory stored image. What transforms the apparently meaningless patterns of light into familiar shapes? How does the brain organize the incoming information and transform physical entities into perceptual objects? We try to understand brain processes involved in visual transformations, such as encoding sequences of line points into curves, curves into shapes, and shapes into recognizable images. Though these processes are mostly visual, we find they also make use of more general brain functions such as information chunking, decision making, learning and memory that are employed by other brain faculties.

Perceiving images from light may not be very different from perceiving music from sound or from the creation of mental concepts from information external to the brain.

Toward achieving the goal of understanding human vision we use psychophysical methods, in an attempt to quantify perceptual and cognitive abilities. Though human brains are not accessible for direct activity measurements, much of its logic can be uncovered by measuring human performance in well controlled settings. For example, our inability to discriminate between some color mixtures (red+green=yellow) puts constraints on models of color processing and detailed experiments can be carried out to further understand the way we see colors. In a similar way, we try to understand processes involved in pattern vision, by manipulating specific shape components. We design computer generated displays aimed at testing human performance on well defined detection and discrimination tasks, with targets being carefully selected to probe brain processes such as image segmentation, perceptual organization, learning, memory and decision.

As visual perception involves many interacting processes, each dealing with a somewhat different aspect of the visual task, we made a strategic decision to start from relatively simple low level processes involved in image segmentation. These processes, probably residing at the entrance stage of the visual cortex, were believed to be devoid of cognitive intervention, and indeed we could successfully model their performance on texture segmentation and perceptual grouping tasks by using simple localized image-analyzers with lateral excitatory and inhibitory interactions. The architecture of these interactions was explored using contrast detection tasks. However, it became evident that performance on these texture tasks improves with time, pointing toward learning effects. Further experiments provided evidence for a genuine learning process, probably governed by associative rules, occurring at an early stage of visual processing. Our extended knowledge of segmentation processes contributed here to develop an understanding of the learning process and to quantify some learning abilities. Recently we could also demonstrate a cognitive modulation of lateral interactions by using mental imagery (as in trying to

Fig. 1 In one experiment we exposed observers to many presentations of face stimuli which were gradually changed between presentations from one face (source) to another (target). These presentations (0.2 sec each) were separated by presentations of other faces. Local differences within the sequence were largely unnoticed. Experimental results showed that such an exposure dramatically change our memory and perception of the experienced faces. Source and target faces which were initially perceived to be different were judged to be the same after training and their identities were confused. Such a result was not obtained with random ordering of stimuli. We believe that such confusion takes place in real life when we are exposed to gradual changes of aging people, or more generally to gradual changes in cognitive concepts as in art and culture (Preminger, Sagi & Tsodyks, Vision Research 2007). The experimental results motivated a new model for learning in neuronal networks (Blumenfeld, Preminger, Sagi & Tsodyks, Neuron 2006).
imagine a visual object).

Current research emphasizes global processes within early vision and plasticity of the system. The visual system is studied using a neuronal network approach with basic units (receptive fields) having mutual excitatory and inhibitory interactions. Such interactions underlie our ability to group local perceptual elements to form low-level visual objects. Recently we were able to show that such objects have an important role in perceptual crowding, a well known visual effect which limits our ability to identify form (e.g., a letter) in the presence of neighboring elements (such as when a letter is embedded in a word). In the psychophysical experiments, we measure local contrast and orientation discrimination-thresholds when the target’s visual context (neighboring stimuli) is manipulated. The results show a nontrivial dependence of detection and discrimination on spatial context.

Of particular interest is the stability of local network nodes in the absence of interacting visual objects, even with extended periods of practice. This stability is lost when contextual elements are present, with the local nodes entering a ‘learning’ mode. We also find a strong dependency on the relevance of the visual context for the task, pointing toward selection processes (attention) that modulate the efficacy of network connections.

Attention seems to have a critical role in the generation of memory traces leading to long-term modifications of connectivity. Using psychophysical and electrophysiological (EEG) we study the different processes taking part in perceptual learning, including memory consolidation, the transition between the immediate perceptual activity and long-term memory, with a particular emphasize on the role of sleep in memory stabilization. Our recent results show that sleep has a particularly important role in consolidating the results of efficient learning before reaching saturation due to over training. Overall, these results show that the visual system is constantly rewired to accommodate behaviorally relevant changes in the environment.

Selected publications

A. Gorea and D. Sagi (2000) Failure to handle more than one internal representation in visual detection tasks. Proceedings of the National Academy of Sciences USA, 97, 12380-12384.

Fig. 2 Visual objects we perceive are generated by subconscious processes that select the relevant image parts defining the object. Selection is based on “perceptual organization” laws that make use of geometrical relationships and stored associations (experience). In a typical environment multiple objects compete for conscious access, with only one object gaining access at a given time. Here, movement of the black dots puts the visual system into a “limited access” mode, slowing down the competition. As a result, the two aligned Gabor patches on the left (a) tend to disappear and re-appear together while the orthogonal patches on the right (b) compete. To experience the effect download a demo from www.weizmann.ac.il/~masagi/MIB and fixate your eyes steadily at the center of the rotating sphere (Bonneh, Cooperman & Sagi, 2001).

Acknowledgements

D.S. is incumbent of the George Zlotowski Professorial Chair.

The research supported by The Basic Research Foundation administered by the Israel Academy of Sciences and Humanities, The Levine trust, Benoziyo center for Neurobiology, The Nella and Leon Benoziyo Center for Neurological Diseases, The Rosenmayer foundation.