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The ribosome is an essential universal cellular apparatus common to all 
life forms. This molecular assembly decodes the genetic information and 
catalyzes peptide bond formation. Analyses of all of the known three-
dimensional structures of ribosomes revealed that the major ribosomal 
functions are performed by the ribosomal RNA, in accordance with the 
suggestion that RNA existed before proteins. Careful examination of the 
conformations of the ribosomal functional sites revealed that the peptide 
bonds are being formed within a highly conserved pocket-like region, 
which seems to be a vestige of a prebiotic bonding entity, termed by us 
“the proto-ribosome”.  

Based on the suggested existence of an RNA world, and on the findings 
that RNA chains can replicate and elongate themselves, as well as possess 
catalytic capabilities, we proposed that the proto-ribosome is the entity 
around which life has evolved. We also discuss the consequences of the 
plausible chemical capabilities of the proto-ribosome in producing random 
oligopeptides. Based on the “survival of the fittest” evolutionary 
pathways, we propose that the genetic code co-evolved together with its 
products, the proteins, as well as the machinery creating them, the 
ribosomes. 

The fundamental role played by the ribosome 

Polymerization of amino acids into nascent proteins according to the 
genetic code is a complex cellular process performed by ribosomes. The 



Chapter Six 
 

88

contemporary ribosomes are a multi-component universal cellular 
assemblies, built of two unequal subunits, each comprising of very long 
RNA chains (called ribosomal RNA or r-RNA) and a large number of 
proteins (called ribosomal proteins or r-proteins). For example, bacterial 
ribosomes, which are the smallest known, are composed of about 54 
different proteins and three rRNA chains of a total of 4500 nucleotides and 
have a molecular weight of ~2.5 mega Da. The more evolved ribosomes 
(e.g. of mammalians) contain many more rRNA and r-proteins 
components, and their molecular weights can reach 4 mega Da. 
Nevertheless, throughout evolution, the actual translation process is 
performed almost identically by the ribosomes, together with messenger 
RNA (mRNA) that carries the genetic information, and aminoacylated 
tRNA molecules that carry the amino acids.  

All ribosomes possess three tRNA binding sites, termed A-(aminoacylated), 
P-(peptidyl) and E-(Exit) sites, each of which resides on both subunits (Fig 
1). The amino acylated tRNA resides at the A-site and the peptidylated 
tRNA at the P-site. The decoding of the genetic information by codon-
anticodon base-pairing between the mRNA and the tRNA occurs in the 
small ribosomal subunit. Peptide bonds are being formed within the large 
subunit, between the amino acid of the A-site tRNA and the peptidyl of the 
P site tRNA at the Peptidyl Transferase Center (PTC), and the newly born 
protein emerges from the ribosomes through a long (~100A) internal 
tunnel. 

We have determined the high resolution crystal structures of the two 
ribosomal subunits from eubacteria: the small subunit from Thermus 
thermophilus, T30S (Schluenzen et al., 2000 ) and the large one from 
Deinococcus radiodurans, D50S (Harms et al., 2001). Additionally, we 
determined the structures of their complexes with various substrate 
analogues (Bashan et al., 2003), inhibitors, non-ribosomal factors, and 
over two dozen of clinically-useful, as well as of antibiotics not yet in 
clinical use, but with the potential to become lead compounds (Auerbach 
et al., 2009, 2010; Baram, et al., 2005; Belousoff et al., 2011; Berisio et al, 
2003a & b, Davidovich et al., 2007,2008; Pioletti, et al., 2001; Pyetan et 
al., 2007; Schluenzen, et al.,2001, 2004; Yonath 2005).  

These studies led to an atomic portrait of the various functional stages of 
the bacterial translation apparatus, which provides in-depth understanding 
of the fundamental process of protein biosynthesis. Particularly, analyses 
of all of the high resolution structures showed that the main catalytic 
activity of the ribosome is substrate positioning in stereochemistry, 
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allowing for peptide bond formation. Importantly, in all ribosomes, RNA 
is the major component (RNA: proteins=2:1), except for in mitochondria, 
where ½ of the RNA is replaced by proteins (RNA: proteins=1:1). Yet, 
even in mitochondrial ribosomes the ribosomal active regions are 
composed of RNA. Remarkably, an RNA machine for peptide bond 
formation had already been suggested by F. Crick, in 1968. However, as 
protein enzymes were known to produce almost all cellular tasks, this idea 
was “hidden” for over two decades, and even when experimental results 
led to a similar suggestion (Noller et al., 1992).), it was hardly accepted.  

The primordial ribosome (the proto-ribosome) 

Among our novel findings is the identification of an internal ribosomal 
region that seems to be a vestige of a prebiotic bonding molecular machine 
(Agmon et al., 2005; Belousoff et al., 2010; Krupkin, et al., 2011). Thus, 
analysis of all known three-dimensional structures of ribosomes from 
prokaryotes, archæa and eukaryotes (Ban et al., 2000; Bashan et al., 2003; 
Ben-Shem et al., 2011; Harms et al., 2001; Korostelev et al., 2006; 
Krupkin et al., 2011; Schuwirth et al., 2005; Selmer et al., 2006) revealed 
that despite the size difference (prokaryotes: 2.5 MDa, eukaryotes: 4 MDa) 
all known ribosomes function in a similar (almost identical) manner, and 
that the PTC is situated at the centre of a region of an exceptionally high 
sequence and structure conservation (Fig 2). This pocket-like structural 
element accounts for 3–4% of the total ribosomal RNA (depending on the 
source). It is made of 180 rRNA nucleotides, and is arranged in a semi-
symmetrical manner (Bashan et al., 2003 Agmon et al., 2005; Yonath, 
2009; Harms et al., 2001; Bashan et al., 2003; Krupkin et al., 2011). This 
is an extremely unusual feature within the otherwise asymmetric 
contemporary ribosome. In this pocket-shape element each half binds the 
3’ ends of the amino acylated and the peptidylated tRNA, at a 
stereochemistry required for peptide bond formation, hence called A- and 
P- regions, respectively. In addition, we showed that this region provides 
not only the scaffold for peptide bond formation, but also for the 
elongation of the nascent proteins, which involves the translocation of the 
aminoacylated 3’ end of tRNA within the PTC (Bashan et al., 2003).  

Importantly, only the backbone and the orientation of the nucleotides of 
the RNA composing the symmetrical region obey the pseudo two-fold 
symmetry. There is no sequence identity between its two halves. It is 
conceivable that the lack of sequence symmetry in the contemporary 
ribosomes reflects that small, albeit significant differences in the chemical 
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environments required for each of the PTC parts to perform its specific 
tasks. Thus, although basically the aminoacylated and the peptidylated 
tRNA 3’ ends are almost identical, each has to support a different action. 
Whereas the A-site should encourage rotatory translocation to the P-site 
(Bashan et al., 2003) the P-site tRNA should support stable positioning 
until peptide bond is formed, and then exit sideways.  

The universality of this region implies that it may be a vestige of a 
prebiotic entity that could have functioned as a bonding apparatus in the 
RNA world during the prebiotic era. Once amino acids appeared, these 
turned into forming peptide bonds molecular machines, hence termed by 
us the proto-ribosomes (Bashan et al., 2003; Harms et al., 2001; Krupkin 
et al., 2011; Yonath, 2009). 

The Proto-ribosome hypothesis 

Our hypothesis is consistent with the proposition that the contemporary 
nucleic acids and protein dominated life emerged from RNA based world, 
namely the RNA world. This proposition is consistent with observations 
made by analyzing structures of ribosomes from phylogenetic disparate 
regions (Bokov &. Steinberg, 2009). It is based on RNA dual 
functionality, as it can act as a replicase capable of storing and expressing 
genetic information and, in parallel, as an enzyme with some inherent 
functions that could have been useful in the RNA world (e.g. splicing, 
self-splicing and replication, namely synthesis of complementary RNA 
strands by template-directed assembly of oligonucleotides, where the 
template could have been one of its own strands, etc.). Notably, the ability 
of RNA to form peptide bonds was shown by in vitro selection 
experiments (Zhang &Cech. 1997), albeit in a fashion that may allow 
chain elongation in the reverse fashion compared to natural nascent protein 
synthesis. 

The prebiotic creation of the proto-ribosome 

It is conceivable that the proto-ribosome evolved from a molecular entity 
that performed RNA needs in the RNA world, termed the pre-proto-
ribosome, which was made solely of RNA with still uncertain structural 
properties. It could have been an enzymatically active (Doudna et al., 
1991; Zhang, & Cech. 1997) entity reconstituted by a spontaneous self-
assembly of two oligonucleotides, each of a rather unstructured RNA 
chain. It could have had a stable or semi rigid conformation containing a 
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chemically active pocket, which was “hijacked” by the amino acids, once 
they invaded the RNA world. Interestingly, the main structural motif of 
the symmetrical region, namely stem-elbow-stem motif (SES, figure 2) 
(Belousoff et al., 2010; Davidovich et al., 2009; Krupkin et al., 2011) has 
been detected frequently in many “ancient” RNA molecules, including 
tRNA (Fig 2). It is also likely that this prebiotic entity has been rather 
flexible and possessed an inducible conformation, which could obtain its 
functional fold upon its substrates binding. The latter options bypasses the 
seemingly formidable challenge for two relatively large RNA chains to 
form a pocket with its active site situated at the interface between them.  

Evidence for the pathway of the creation of the proto-ribosome is scarce. 
However, chemical synthetic biology experiments aimed at examination of 
some logical suggestions are being carried out (Belousoff et al., 2010; 
Davidovich et al., 2009; Krupkin et al., 2011). One of our hypotheses 
suggests that the catalytic proto-ribosome is a product of dimerization, and 
requires the existence of self-replicating, self-folding and self-dimerizing 
RNA molecules capable of self- and/or substrate-induced pocket 
formation. Ongoing experiments showed a non-uniform tendency to 
dimerize. Thus, when examining the dimerization tendency of chains 
resembling the P-region, the A-region (Fig. 3), and mixtures of A- and P-
regions, only P-region homodimers could be detected. The preference of 
selected sequences over very similar ones (albeit not identical) seems to 
indicate that natural selection, which is commonly related to the evolution 
of species, could have played a major role in the prebiotic world.  

Furthermore, the observed significant tendency to form homodimers 
composed of two P-region chains, as opposed to A-site homodimers or 
A/P heterodimers, may indicate that the proto-ribosome was originally a 
symmetrical dimer of an RNA chain of sequence resembling the P-side of 
the contemporary PTC, which later underwent optimization from homo to 
hetero dimers alongside the evolution of the entire translational machinery. 
Such homodimers could also be produced from a single chain obtained by 
“RNA-gene” duplication or fusion. 

Proto-ribosome confinement 

The proto-ribosome could have evolved in any environment, independent 
of any kind of compartization. However, confinement within vesicles that 
could act as protocells may have occurred. Such environment may have 
been advantageous for the contingency in proto-ribosome formation, as 
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compartization ensures proximity, hence higher local concentrations of the 
proto-ribosome components, their substrates and the major synthetic 
intermediates. It was shown that the combination of stability and dynamics 
of the cell boundaries is critical for building functional and replicating 
proto-cells, and that membranes made from simple amphiphiles can form 
stable vesicles capable of retaining encapsulated functional RNAs in the 
presence of divalent cations.  

Such circumstances could have played a major role in the proto-ribosome 
stabilization. In support of this scenario is the finding that RNA can bind 
to vesicles made of ordered phospholipid with a high affinity (Janas & 
Yarus, 2006), thus may facilitate localization of the RNA apparatuses and 
enhance the interactions between their products. It is noteworthy that our 
approach, namely a bottom-up attempt at constructing an autonomous 
molecular bonding machine, is different from the top-down approach 
performed elsewhere, aimed at creating a minimal ribosome-like entity by 
detaching selected components from the contemporary ribosome (e.g. 
(Bokov, & Steinberg, 2009; Hsiao et al., 2009; Noller et al., 1992). 

Modified nucleotides 

The contemporary symmetrical region contains several post-translational 
modified RNA bases (Green & Noller, 1996). Interestingly, compared to 
the overall fold and sequence detected in this region (e.g. Woese et al., 
1978), their number and positions are less conserved. In the contemporary 
world, modified nucleosides, which exist in all organisms, are formed 
during processing of nascent precursor RNA transcripts, and seem to 
provide additional functions since the variety of complex tertiary 
structures that can be formed of the four canonical bases are not sufficient 
to fulfill all functions required in the contemporary world (Doudna & 
Cech, 2002). Basically, such modifications could have occurred in the 
prebiotic RNA world by spontaneous chemistry (e.g. of adding an amine 
or an amino group to adenine and guanine under prebiotic conditions 
(Levy & Miller,1998; Maurel & Ninio, 1987). However, we have no 
evidence that implies that the proto-ribosome could not function without 
them. 

The proto-ribosome within the contemporary ribosome 

The preservation of RNA activity in performing the extremely important 
process of genetic code translation indicates that RNA is capable of 
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handling the complexity of the current cellular life, which requires a 
highly controlled sophisticated regulatory mechanism. Obviously, 
translation is much more complicated than accidental peptide bond 
formation. We propose that the kernel of the ribosome function has been 
transferred from the RNA world, and that most of the additional ribosome 
components were added while entering the protein-DNA-RNA-life era, 
which, in addition to peptide bond formation, requires performing the task 
of translation. Remarkably, within the contemporary ribosomes the 
distances between the regions involved in ribosome’s function are far 
beyond the possibility of any direct “chemical talk” (70-140 A). The 
symmetrical region is located at the heart of the ribosome, and chemically 
connects to all of the ribosome functional centres involved in translation 
(fig 3). Hence, it can transmit signals between them. 

From proto-ribosome to the contemporary ribosome 

The ribosome has been, and still is, an RNA machine. RNA enzymes are 
known to be inefficient and hence earned nicknames such as lousy and 
lazy. Nevertheless, in the contemporary world, the ribosome is an amazing 
chemical apparatus, indicating that nature devised means to create an 
efficient apparatus even from RNA.  

We propose that the turn from the inefficient prebiotic RNA enzymes to 
the amazingly efficient contemporary ribosome occurred by the addition 
of the ribosomal proteins. Thus, in the contemporary world, the 
ribosomes’ architecture is stabilized by proteins, and although the actual 
catalytic and decoding events are performed by rRNA, the ribosomal 
proteins contribute significantly to the maintenance of the ribosome 
accurate structure and function. The ribosomal proteins also perform 
various functions: particularly the interactions with cellular components 
utilize r-proteins.  

How did the ribosomal proteins appear? It is conceivable that the initial di-
amino acids were the substrates for the following peptide bond formation 
reaction, and so on. Molecular selection maintained and multiplied those 
oligopeptides that stabilized the proto-ribosome, or fulfilled tasks needed 
in the RNA world. It is conceivable, albeit not obligatory, that the initial 
oligopeptides were rather small, contained a high proportion of basic 
amino acids, and had a rather simple tertiary structure. As they were 
performing needed tasks, their existence could have triggered the creation 
of the initial genetic code. With the appearance of life, including the initial 
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genetic code and the evolution of cellular entities, there was a need to 
increase the complexity of the machinery that produces proteins. 

We suggest that the contemporary ribosomes expanded around the proto-
ribosome. Although no species carrying a ribosome that is smaller or 
simpler than that of the bacterial ribosome is known, a careful analysis of 
the internal ribosome RNA interactions confirmed the above hypothesis 
(Bokov, & Steinberg, 2009; Hsiao et al., 2009).  

The number and complexity of the proteins that interacted with the proto-
ribosome grew simultaneously with the expansion of the ribosomal RNA. 
Some of those became the current ribosomal proteins. All bacterial 
ribosomal proteins acquired a three-dimensional structure tailored for their 
main function—stabilizing and maintaining the ribosomal accurate 
structure (Fig 4). In all species several proteins interact with the 
symmetrical region. Some of those that are in close proximity to the 
symmetrical region may contribute to its functionality. An example is the 
bacterial protein L2 that facilitates protein elongation although it is not 
needed for single peptide bond formation (Cooperman et al., 1995). It has 
direct interaction with the symmetrical region of the contemporary 
prokaryotic and eukaryotic ribosomes (Fig 5) and has been suggested to be 
one of the most ancient ribosomal protein appeared (Sobolevsky and 
Trifonov, 2005).  

A few bacterial ribosomal proteins evolved to withstand extreme 
conditions. Examples are S17 and CTC (Schlunzen et al., 2000; Harms et 
al., 2001, respectively), the structures of which reveal possible pathways 
from mesophiles to thermophiles to extremely robust radiophiles. Thus, in 
thermophiles, both S17 and CTC possess at least one additional domain 
(compared to mesophiles), which is positioned at a location that can 
minimize the harm that can be caused by the increased motions of the 
proteins owing to the increased available energy at high temperature (Fig 
6). Further adaptation to the environment is observed in protein CTC, 
which contains an additional domain, connected to the rest of the protein 
by highly flexible hinge, which allows swinging into the active site and 
preventing tRNA binding under starvation (Bashan et al, 2003; Yonath, 
2002).  

A Similar trend is observed in the evolution from prokaryotes to 
eukaryotes, as the growth in ribosome size is related mainly to additional 
ribosomal proteins. Furthermore, a large fraction of them have more 
sophisticated chemistry, obtained mainly by post-translational modifications 
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(e.g. phosphorylation), which seem to be needed for interactions and 
signal transmission with higher organisms cellular components, in order to 
function at much higher life complexity.  

The emergence of the genetic code 

As mentioned, we propose that the genetic code was developed and 
optimized alongside the evolution of the ribosome and the appearance of 
the proteins. We envisage this process as progressing from accidental 
formation of peptide bonds. Activated amino acids are suitable substrates 
for the modern as well as the ancient bonding machine. These could be 
formed by their attachment to nucleotides, exploiting rather common 
reactions that were shown to occur by diverse processes under prebiotic 
conditions. Structural analysis of the contemporary ribosomes indicated 
that the suggested pocket-like entity can accommodate substrates such as 
amino acids bound to up to three nucleotides. Hence mono, di- and tri- 
nucleotide carrying natural or modified amino acids could serve as 
substrates of the proto-ribosome. In the RNA world such compounds 
could have been obtained by self aminoacylation (Illangasekare & Yarus, 
1999). 

It is conceivable that some of the initial accidental dipeptides produced by 
the proto-ribosome could have been the substrates for following reactions 
of peptide bond formation, which could have been elongated into 
oligopeptides. The well performing oligopeptides may have survived, and 
consequently led to the emergence of the genetic code. Examples for well 
performing oligopeptides are those catalyzing fundamental reactions. A 
hypothetical non-coded “enzyme” that can be useful for RNA metabolism 
could have been formed from histidine-rich oligopeptides, which could be 
useful as metal carriers (Belousoff et al., 2010). In contrast to the common 
view, histidine may been among the first amino acids, since its imidazole 
ring could be snatched by the amino acids, owing to its availability in the 
RNA world as a left-over of damaged nucleotides. 

Another task that could have been needed in the RNA world, and that 
could have been performed by the oligopeptides, is stabilizing the 
machines producing them (Fig 5), namely the proto-ribosome. Such a 
sequence of events suggests that the genetic code was created by, or 
according to, its products, which were found fit and useful—therefore 
survived. They could have led to the creation of a primitive genetic code, 
which co-evolved together with its products and the ribosomes.  
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Indeed, the high-resolution structures of the ribosomes show that almost 
all ribosomal proteins possess extended termini and/or elongated internal 
loops that are injected into the ribosomal RNA in a fashion that can 
stabilize its structure, hinting that they are presumably partially 
responsible for the transition from a poorly operating proto- ribosome to 
an efficient contemporary apparatus. This is in accord with the general 
description of proteins as essential features in the transition of the RNA 
world into the protein-nucleic acids era ( Szathmary, 1999). 

Conclusions and open questions 

We suggest that the origin of the contemporary ribosome is a functionally 
active proto-ribosome, which can be defined as an RNA molecular entity 
capable of binding substrates and catalyzing the formation of chemical 
bonds that functioned in the prebiotic era as a molecular machine. We 
further propose that the proto-ribosome was the “molecular kernel” around 
which the modern ribosome evolved, although still open is the question: 
was the sequence of the proto-ribosome identical, similar, or different to 
the sequence observed in the symmetrical region within contemporary 
ribosomes?  

The preservation of RNA activity in performing ribosomal functions 
shows that RNA, which is commonly known to be a rather inefficient 
enzyme, could become an efficient biological machine for producing 
proteins. Our hypothesis also suggests that the incorporation of ribosomal 
proteins facilitated the alteration of the ribosomes from an inefficient to a 
highly efficient molecular machine. This notion is in line with the 
suggestion that the genetic code co-evolved together with the ribosome as 
well as its products, the proteins. Hence, from this point of view we 
provide a plausible answer to the chicken-or-the-egg conundrum.  
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