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Abstract

We analyze a set of observations from a recently published, field-scale tracer test in a fractured
till. These observations demonstrate a dominant, underlying non-Fickian behavior, which cannot
be quantified using traditional modeling approaches. We use a continuous time random walk
Ž .CTRW approach which thoroughly accounts for the measurements, and which is based on a
physical picture of contaminant motion that is consistent with the geometric and hydraulic
characterization of the fractured formation. We also incorporate convolution techniques in the
CTRW theory, to consider transport between different regions containing distinct heterogeneity
patterns. These results enhance the possibility that limitations in predicting non-Fickian modes of
contaminant migration can be overcome. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fractured aquifers are highly complex systems. Within them, groundwater movement
is influenced by several superposing factors, which lead to highly variable velocity
fields. Controlling factors include small- and large-scale roughness of the fracture walls,
presence of fracture filling material, variable fracture network geometry, and interaction
with the rock matrix. A principal challenge is to describe the movement of chemicals in
such domains. Realistic quantification of this movement is complicated by the uncer-
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tainty in characterization of aquifer properties. As a consequence, modeling approaches
which describe the important features of the problem with a minimum of information are
needed. In this paper, we focus on the movement of conservative chemicals in saturated
fractured aquifers.

ŽIn spite of its many limitations, as frequently discussed in the literature e.g., Adams
.and Gelhar, 1992; Fitts, 1996; Eggleston and Rojstaczer, 1998 , the advection–disper-

Ž .sion equation ADE is still used often for the characterization of large-scale tracer
movement in fractured formations. Application of the ADE is based on the assumptions
that the center of mass of the tracer plume moves with the average fluid velocity, and
that dispersion behaves macroscopically as a Fickian diffusive process, with the
dispersivity being assumed constant in space and time. Throughout this paper, we shall
refer to these assumptions as AFickian transport assumptionsB. Although the ADE
describes tracer movement for ideal systems, the literature is full of examples demon-
strating that the ADE fails to describe tracer transport even in AhomogeneousB systems.
This is evidently because heterogeneities, which cannot be ignored, occur at all scales
and not only on larger scales.

Another approach is to treat the complex geometry of an interconnected fracture
Žsystem by use of a discrete fracture network for an extensive overview see, e.g., Chap.

.7.2 of Sahimi, 1995 . Fractures are modeled as simple planes or discs, which form an
Žinterconnected network in space. Flow is described by the Reynolds equation local

.cubic law and contaminant transport is analyzed by use of either direct solution of the
transport equation or by use of a particle tracking method. Although discrete fracture

Ž . Žmodels DFMs have been applied successfully in specific instances see, e.g., in
.National Research Council, 1996 , the major disadvantage with this approach is that a

full description of the fracture geometry, or at least a good knowledge of the fracture
statistics, is needed.

Of course, many alternative modeling approaches exist, including stochastic contin-
Žuum, double continuum, AdiscontinuumB, and various other hybrid models National

.Research Council, 1996 . These models have been applied with varying degrees of
success; the drawbacks are that their application usually requires large spatial scales and
high fracture density, a large number of fitting parameters, andror a Aleap of faithB in
order to justify them physically. More importantly, these approaches are often unable to

Žcapture even the general measured transport patterns; we suggest that this is because in
.addition to the drawbacks just listed the approaches assume, either implicitly or

explicitly, underlying Fickian transport assumptions.
A more general approach to quantifying transport — one that does not rely on

Ž .Fickian transport assumptions — is based on continuous time random walk CTRW
Žtheory. It was first applied to electron movement in disordered semiconductors e.g.,

.Scher and Lax, 1973a,b . In the context of geological materials, CTRW theory was
developed and applied to numerical studies of transport in random fracture networks
Ž .Berkowitz and Scher, 1997, 1998 , and to modeling tracer transport in laboratory flow

Ž .cells containing porous media Hatano and Hatano, 1998; Berkowitz et al., 2000 . We
Ž .have recently demonstrated Berkowitz and Scher, 2000 how the CTRW framework

accounts for a very wide range of non-Fickian and Fickian transport behaviors, and how
the ADE can be derived from it under specific, well-defined conditions.
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In this contribution, we demonstrate application of the CTRW approach on previ-
ously published measurements from a natural gradient tracer test, performed in a large,

Ž .isolated block of fractured till Sidle et al., 1998 . Field measurements of this nature are
rare, and the data set examined here is therefore rather unique. In Section 2, we provide
a brief summary of the geology, experiment set-up and the results of the hydraulic and
tracer tests. We then present aspects of the CTRW theory, and apply it to analyze the
tracer test data. These results are compared to those obtained from conventional
quantification approaches. In contrast to these other approaches, it is demonstrated that
the CTRW thoroughly accounts for the measurements. We further develop the CTRW
theory, using convolution techniques, to consider transport between different regions
containing distinct heterogeneity patterns. The paper concludes with a discussion of
applications of the CTRW theory, and its role in predicting non-Fickian modes of
contaminant migration.

2. Description of the field experiment

We consider a natural gradient tracer test in a fractured till. A detailed description of
Ž .the site and the tracer test can be found in Sidle et al. 1998 , while the geometry of the
Ž .fracture system is described in Klint and Fredericia 1995 . Here, we summarize the

important features in the context of our present analysis.
The study area is located in Ringe on the isle of Funen in Denmark, in an abandoned

creosote factory. The till is of glacial origin and is heavily fractured. The matrix
permeability of the till is low and therefore, water flow is attributed mainly to the
fractures. Superficially at least, one can divide the entire system into different horizontal
layers formed by the intersection of two main nearly vertical fracture systems. The
uppermost layer between ground level and 1.5 m, in addition to being fractured, is
heavily perturbed by wormholes. From 0.8 to 2.0-m depth, polygonal columns with a
diameter of between 0.4 and 0.5 m are formed by desiccation fractures. The spacing
between the major desiccation fractures increases rapidly below 2.4 m. The till contains
glaciotectonic fractures 1.5 m below ground level. Below 2.0 m, the glaciotectonic
fractures have a spacing between 0.3 and 0.4 m. However, as noted by Sidle et al.
Ž . Ž .1998 and Broholm et al. 2000 , it is important to emphasize that variation in the
hydraulic properties of these layers is unknown. In particular, lack of information on
fracture connectivity and on hydraulic properties of individual fractures, are major
sources of uncertainty in quantifying fluid flow and tracer transport. Fig. 1 shows the
experimental setup. A block of till was excavated, and three horizontal multiple-port
samplers were installed at depths of 2.5 and 4.0 m. Each sampler contained five
screened sections, but due to failures in the packers and crossflow between neighboring
sections, only 13 of the 30 samplers could be used. An infiltration basis was excavated
to a depth of 0.8 m and filled with gravel to a depth of 0.3 m below the natural ground
surface. The water level during infiltration was 0.4 m below ground surface. The
transport distances from the top of the infiltration basin to the sampling depth are 2.1
and 3.6 m, respectively. Hydraulic tests were performed to estimate for each sampler the
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Fig. 1. Schematic illustration of the experimental set-up, including the infiltration basin and the system of
Žhorizontal samplers. Also shown are the approximate locations of the two main vertical fracture systems from

.Sidle et al., 1998 .

hydraulic conductivities, the flow rates and the influence of the excavation of fracture
openings on the sampler. The overall hydraulic conductivities were higher for the 2.5-m

Ž y5 y1. Ž y6 y1.depth 5.81=10 ms than for the 4.0-m depth 8.00=10 ms . This can be
related to the generally increasing fracture spacing with depth.

The tracer test was initiated with infiltration of municipal water. After steady state
flow conditions were established, a solution of ;490 mg ly1 Cly was infiltrated for 7
days. During this 7-day period, water samples were collected at lognormal time
intervals.
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Breakthrough curves for the different sampling locations are shown in Fig. 2. There is
very significant temporal and spatial variability in and among the breakthrough curves.

ŽThe 50% arrival times for the relative concentration i.e., CrC s0.5, where C is the0 0
.inlet concentration ranged between 5.0 and 35.4 h in the upper section, and between

10.7 and 69.2 h in the lower section. In the time scale of the experiment, no curve
reaches the maximum input concentration, and most curves reach concentrations be-

Ž . Ž .tween 0.8 and 1.0 upper curves and 0.4 and 0.8 lower curves . All curves show strong
fluctuations in the concentration with time, with the concentration in some curves even
decreasing systematically at greater times. Some of the fluctuations in the curves appear
to be systematic, due to the experimental procedure. For example, nearly all curves show
a small decrease in concentration after 1 day. This result can be attributed to technical

Ž .problems in maintaining a constant inflow concentration Sidle et al., 1998 .

Ž . Ž .Fig. 2. Measured chloride breakthrough data for a seven screened samplers at the 2.5-m depth, and b six
Ž .screened samplers at the 4-m depth from Sidle et al., 1998 .
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The temporal fluctuations and the spatial variability of the breakthrough curves are
caused by the irregularity of the flow field. At the scale of single fractures, the flow field
is controlled by the geometry, the surface roughness of fracture walls, and the variability
in fracture aperture and contact areas; these features lead to channeled flow and to an
irregular velocity field on a small-scale. An overlying effect, on a larger scale, is a
function of the fracture connectivity. Tracer transport can of course also be affected by
diffusive interaction with the host rock matrix.

3. Modeling approaches

3.1. Basic conceptual pictures

The measured breakthrough curves shown in Fig. 2 were analyzed by Sidle et al.
Ž .1998 using two AclassicalB modeling approaches. They attempted to fit the measure-

Ž . Ž . Ž .ments with 1 an equivalent porous medium EPM model, using the one-dimensional
Ž .ADE, and 2 a DFM based on a parallel fracture conceptualization.

ŽThe EPM approach uses a one-dimensional solution of the ADE Ogata and Banks,
.1961 . By fitting the number of displaced pore volumes and the Peclet number to the

measurements, the pore water velocity u and the longitudinal dispersion D can be
determined. The values of water velocity and dispersivity estimated by Sidle et al.
Ž .1998 for the various breakthrough curves varied over more than one order of
magnitude. Significantly, the EPM approach was unable to capture the full evolution of

Ž .the measured breakthrough curves see Section 4 . The lack of homogeneity in the flow
domain, at least at the scale of the measurements, essentially invalidates the use of this
conceptualization.

Use of the DFM, on the other hand, assumes advective transport in the fractures, with
Ždiffusion into and within the host matrix. Then, the fracture network which in reality

appears to consist of two main intersecting fracture sets, with variable fracture spacing,
.as well as several smaller fracture sets connected on a smaller scale is conceptualized as

Ž .a set of parallel unconnected , planar fractures, with flow described by the cubic law.
Ž .With this approach, Sidle et al. 1998 determined reasonable combinations of the

fracture aperture 2b and the fracture spacing B which satisfied both the hydraulic and
the transport measurements. Notwithstanding the apparent flexibility in fitting such a
model to the data, it is significant that, like the EPM model, the DFM was unable to

Ž .capture the full evolution of the measured breakthrough curves see Section 4 . Also, the
estimated water velocity, fracture aperture, and fracture spacing values varied widely for
the various breakthrough curves.

Our analysis is motivated by the uniqueness of the field experiment, the high
resolution of the data set, the limitations of the EPM and DFM approaches to fit the
measured breakthrough curves, and indeed, the characteristic, non-Fickian nature of the

Ž .transport reflected in these breakthrough curves. We introduce Section 3.2 a different
approach to quantifying tracer transport — one which fully characterizes non-Fickian
transport — and demonstrate its application on these same measured breakthrough

Ž .curves Section 4 .
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( )3.2. CTRW theory and the first passage time distribution FPTD

The early and late arrival time behavior displayed in the breakthrough curves shown
in Fig. 2, and their asymmetry, are typical of non-Fickian transport. We have shown that
a modeling approach based on CTRW theory accounts very well for this type of
transport. Examples are tracer migration in numerical simulations in fracture networks
Ž .Berkowitz and Scher, 1997, 1998 , in a large-scale field experiment in a heterogeneous

Ž .aquifer Berkowitz and Scher, 1998 and in laboratory-scale heterogeneous porous
Ž .media Berkowitz et al., 2000 . The CTRW is based on a physical picture of contami-

nant motion, which is consistent with the geometric and hydraulic characterization of the
fractured till.

ŽThe formalism of the CTRW approach is well-documented Scher and Lax, 1973a,b;
.Scher and Montroll, 1975; Berkowitz and Scher, 1995, 1998, 2000 , therefore, we only

summarize the main ideas that are related directly to the following analysis.
Contaminant migration in a strongly varying velocity field can be envisioned as

particles executing a series of steps, or transitions, between locales where the velocity
changes. The transport is controlled by the coherence lengths of the velocity field and by
the scattering among different velocity values. The sporadic interaction of particles in
high and moderate velocity paths with low velocity regions often leads to non-Fickian
transport behaviors. Non-Fickian transport can arise if the encounter–range relationship
between particles and the velocities produces a wide spread of different sequences in the
flow paths of the migrating particles.

Ž .In a single realization of the medium, the contaminant motion outlined above can be
Ž .described by the Amaster equationB Oppenheim et al., 1977; Shlesinger, 1996

EC s,tŽ .
X X XsyC s,t w s,s q w s ,s C s ,t 1Ž . Ž . Ž . Ž . Ž .Ý Ý

X XEt s s

Ž . Ž X.where C s, t represents the particle concentration at point s and time t and w s, s is
X Ž .the local transition rate from s to s . The basic transport Eq. 1 is valid at any time and

Ž .one-, two- or three-dimensional space scale. The transition rates describe the effects of
Ž .the velocity field on the particle motion; in Eq. 1 there is no separation of these effects

into advective, diffusive and dispersive features. The transitions in the fracture system
include both those due to rough-walled large fractures and those due to fracture
intersections, as well as migration into and out of the host rock matrix. In relatively

Ž .homogeneous regions, the C s, t will be slowly varying over some length scale s and0
Ž . ŽEq. 1 in this region can be reduced to the familiar ADE equation Berkowitz and

.Scher, 2000 .
Ž . Ž .The ensemble average of Eq. 1 can be shown Klafter and Silbey, 1980 to be of the

form

EP s,tŽ . t tX X X X X X X X Xsy f s ys,ty t P s,t d t q f s ys,ty t P s ,t d tŽ . Ž . Ž . Ž .Ý ÝH H
X XEt 0 0s s

2Ž .
Ž . Ž .where P s, t is the normalized relative concentration. The ensemble-averaged transi-

Ž . Ž . Ž .tion rates c s, t defined below and f s, t are related through their Laplace
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˜ ˜ ˜ ˜Ž . Ž . Ž . Ž . w Žtransforms c s, u and f s, u where u is the Laplace variable , with f s, u s uc s,
˜.x w Ž .x Ž . Ž . Ž .u r 1-c u and c t sÝ c s, t . The form of Eq. 2 is a Ageneralized masters

Ž . Ž .equationB GME which, in contrast to Eq. 1 , is non-local in time. The transition rates
Ž X.are stationary i.e., depend only on the difference sys and time dependent.

Ž .It is straightforward to show Kenkre et al., 1973 , using the Laplace transform, that
the GME is equivalent to a CTRW

t X X X X XR s,t s c sys ,ty t R s ,t d t 3Ž . Ž . Ž . Ž .ÝH
X 0s

Ž .where R s, t is the probability per time for a walker to just arrive at site s at time t, and
Ž .c s, t is the probability rate for a displacement s with a difference of arrival times of t.

Ž . Ž . Ž .The correspondence between Eqs. 2 and 3 is detailed in Berkowitz and Scher 2000 .
The CTRW accounts naturally for the cumulative effects of a sequence of transitions.
The challenge is to map the important aspects of the particle motion in the fracture

Ž . Ž .system onto c s, t . The identification of c s, t lies at the heart of the CTRW
formulation.

Ž .As shown by Scher and Montroll 1975 , and discussed by, e.g., Berkowitz and Scher
Ž . Ž1998, 2000 , non-Fickian transport arises in cases where the large time behavior of c s,
. Ž . y1ybt is a power law, i.e., c s, t ™ t for large t, for 0-b-2. In fact, only two

Ž .simple asymptotic forms of c s, t can exist: exponential decay and power law decay. It
Žcan be shown that exponential decay leads to Fickian transport Margolin and Berkowitz,

.2000 . In the range 0-b-2, distinctly different transport behaviors can be identified
within the power law decay form. In the context of this CTRW formulation, it has been

Ž .shown Berkowitz and Scher, 1998 that AasymptoticB or Alarge timeB behavior occurs
quickly, after as few as 10 particle transitions. The relative shapes of the transport
curves, and the rate of advance of the peak, vary strongly as a function of b. For
0-b-1, transport is highly non-Fickian, and the concentration peak moves much
more slowly than the Fickian, with a longer forward advance of particles. For 1-b-2,
the mean particle plume moves with the average fluid velocity, but the tails remain

Ž .broader AheavierB than those of a Fickian distribution. For b)2, the transport
becomes Fickian.

Tracer test measurements often consist of breakthrough curves of tracer concentra-
tions as a function of time t, at selected distances from the tracer source. The
breakthrough usually refers to the plane of exiting particles, and the curve corresponds

Ž .therefore to an FPTD. The FPTD, denoted by F s, t , is defined as the probability per
Ž .time to reach site s at time t for the first time. The function F s, t can be determined

from the implicit relation

t X X XqR s,t sd d ty0 q F s,t R 0,ty t d t 4Ž . Ž . Ž . Ž . Ž .Hs ,0
0

Ž .where d is the Kronecker delta function and d ty t is the Dirac delta function,i , j 0

indicating that the contaminant is at the origin at ts0. To obtain a breakthrough curve,
² Ž .:we calculate the average of the particles F s, t over the exiting boundary of the flow

Ž . Ž .domain e.g., a plane for three-dimensional systems . We do this by solving Eq. 4 ,
Ž . Ž .following Montroll and Scher 1973 see also Berkowitz et al., 2000 , using Laplace



( )G. Kosakowski et al.rJournal of Contaminant Hydrology 47 2001 29–51 37

Ž ² Žtransforms noting that the convolution form produces an algebraic equation for F s,
.: Ž . .u in Laplace u -space to obtain

² : y1 bF s,t ' f L,t sLL exp ybu for 0-b-1 5� 4Ž . Ž . Ž . Ž .
Ž . ² :where t is a dimensionless time explained in Section 4.1 . We define b'Lr l as the

number of transitions needed for a particle to reach the exiting plane at distance L, with
² :l the mean displacement length for a single particle transition.

Ž .The exact solution of Eq. 5 is
`1 G j bq1Ž .j

t f t ;y yx sin p j b 6Ž . Ž . Ž . Ž .Ý
p G jq1Ž .js0

where xsbrt b.
Ž .Numerically, we can evaluate Eq. 6 only for small to moderate values of x, because

y1 Ž .of the j exponent. For large x the LL expression in Eq. 5 can be approximated
Ž .Scher and Montroll, 1975 by the following equation:

1 1
1 1ybŽ .2 by1 1yb

t f t ; b x exp y b x . 7Ž . Ž . Ž . Ž .ž /b(2p 1ybŽ .

Fig. 3 shows a range of cumulative FPTD curves
t

X XM L,t ' f L,t dt 8Ž . Ž . Ž .H
0

1r b Ž .vs. a dimensionless time, trb , for a range of b values. The integrand in Eq. 8 is
Ž . Ž . Ž .determined by combining Eqs. 6 and 7 . As discussed in Berkowitz et al. 2000 , the

Ž .Fig. 3. Semilog plots showing a range of cumulative FPTD curves, M L, t , vs. the dimensionless time
t r b1r b for b s0.3, 0.5, 0.7, 0.9.
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Ž .curves M L, t in Fig. 3 are those of the typically measured normalized, cumulative
concentration for step input functions. The parameters b and b are such that b controls

1r b Ž .the shape of the curve, while a change in b results in a shift of M L, t along the
x-axis in the plots of Fig. 3. Thus, b can be considered as a AdispersionB parameter.

We stress that the low velocity regime of particle transitions determines b. Although
transport of particles in fast AchannelsB controls the early arrival times, the bulk of the
transport behavior is influenced by particles that encounter low-velocity pathways
Ž .including relatively stagnant zones in fractures and in the host rock . The shape of the
curves steepens as b increases, although the front becomes steeper than Fickian and the
trailing tail is longer than Fickian. The solutions and plots of breakthrough curves for

Ž .1-b-2 are given by Margolin and Berkowitz 2000 .
Non-Fickian transport can exist even in uniformly heterogeneous media on a scale

Ž .much larger than the size of the heterogeneities e.g., Berkowitz et al., 2000 , so that
Ž .there is a very broad length or temporal scale over which b is constant. Clearly, if the

relative size of the heterogeneities is small at extremely large length scales — i.e., as b
Ž .the number of particle transitions between the inlet and measurement planes becomes
very large — the transport behavior becomes Fickian, with bG2. For this special case,
the CTRW formulation is identical to the ADE, with a scale-independent dispersion
coefficient. In particular, the dispersion coefficient is determined by the limiting form of

Ž .the Laplace transform of c s, t . Additional detailed discussion of the physical and
Ž .mathematical meaning of these parameters is given in Margolin and Berkowitz 2000

Ž .and Berkowitz and Scher 2000 .

4. Analysis of the tracer test data

4.1. Comparison of CTRW, EPM and DFM solutions with measurements

Ž .We analyze the measured data with two different approaches: 1 treating each
Ž .breakthrough curve individually and 2 analyzing flux-averaged breakthrough curves

for the upper and lower samplers. As noted in the equation development, the CTRW is a
fully three-dimensional formulation, and accounts for a flow field, in which contami-
nants are transported, that is not restricted to purely vertical flow. For comparison to the
experimental data, the FPTD solutions based on the CTRW are averaged over the inlet
and outlet boundary faces. Unlike the CTRW method, the forms of the EPM and DFM

Ž .models used by Sidle et al. 1998 are based essentially on one-dimensional solutions of
the flow and transport equations, in that they simplify the complex natural flow field to
parallel flow in vertical AcolumnsB. As such, while some correlation in transport
behavior can be expected between pairs of samplers in the upper and lower levels, each
breakthrough curve must be treated individually. In general, of course, flow in fracture
networks is three-dimensional and the flow is not necessarily predominantly downward
in a single AcolumnB.

Ž .The CTRW solution Eq. 5 is based on periodic boundary conditions which, in our
Ž .case, are the vertical boundaries. Periodic boundary conditions with mass conservation
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Fig. 4. Best-fit theoretical breakthrough curves based on the EPM, the DFM and the CTRW solutions. Points
Ž .indicate measured values, including seven samplers at the 2.5-m depth samplers A2–C5 , and five samplers at

Ž .the 4-m depth samplers D1–F5 .
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Ž .Fig. 4 continued .
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Ž .Fig. 4 continued .
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Ž .Fig. 4 continued .
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indeed exist in the field experiment in the sense that, statistically, all mass which leaves
the domain over one vertical boundary is matched, by mass entering the domain over
another vertical boundary.

Ž .As found by Sidle et al. 1998 , and as shown in Fig. 4, the EPM and DFM models
Ž .do not capture the full evolution both early and late arrival times of the tracer behavior

displayed in the measured breakthrough curves. Overall, the EPM solutions fit only the
early time data points, whereas the DFM solutions generally fit the late time data points.

Ž .Interestingly, the flow velocities estimated by Sidle et al. 1998 for the DFM are ;100
times greater than those estimated for the EPM. The fitted parameters for the EPM do
not appear to show any relation to the geometry of the fracture network or to the
geology. With regard to the DFM, there is insufficient information available to judge the
meaning of the fitted parameters. We remark also that the DFM, as applied by Sidle et

Ž . Žal. 1998 , does not account for dispersion caused by fracture wall geometry, fracture
.connectivity or other deviations from the parabolic velocity profile , so that contaminant

spreading is attributed only to matrix diffusion. Finally, we note that consideration of a
hybrid of these two approaches would require at least four parameters to fit the data
Ž .flow velocities, dispersivity, fracture apertures and fracture separations .

Fig. 4 also shows the fit of the CTRW curves to the experimental data. We fit each
Ž .experimental breakthrough curve using a separate value of b summarized in Table 1 .

In general, all data points were considered when fitting the curves. Exceptions were
made for breakthrough curve data from the samplers C4, D1, D4 and D5, for which only
earlier times were considered. These four samplers yielded tracer concentrations which
either stopped increasing, or even decreased, after about 3 days. Although no detailed
information is available, such behavior might be attributed to transient variation in the
hydraulic field, caused by clogging of fractures andror changes in the inflow conditions.

The curves fit quite convincingly the measured breakthrough curves over the entire
time range of the experiment. In particular, the early and late time behaviors are

Table 1
Values for best-fit breakthrough curves

Sampler b xshift

A2 0.7 0.414
A4 0.66 0.442
A5 0.67 0.475
B1 0.49 1.166
B5 0.63 0.222
C4 0.56 0.190
C5 0.61 0.203
D1 0.5 3.400
D4 0.54 0.424
D5 0.42 1.662
F4 0.39 1.914
F5 0.5 0.724
Flux weighted average of upper samplers 0.57 0.35
Flux weighted average of lower samplers 0.40 1.24

Samplers A2–C5 lie at the 2.5-m depth, while samplers D1–F5 lie at the 4-m depth.
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captured remarkably well. We emphasize that the characteristic information, which
distinguishes non-Fickian transport from Fickian transport — as embodied either
explicitly or implicitly, e.g., in the EPM and DFM models — in fact lies in the early and
late arrival times of the breakthrough curves.

ŽAs seen in Table 1, the b values that fit the breakthrough curves all of which are
.significantly smaller than unity lie in a relatively narrow range. In the context of this

field experiment, variation in b values is expected because of the discrete nature of the
fracture system. At least some of the fluid and tracer movement is restricted to poorly
connected fracture and discrete flow paths. Significantly, variations in the controlling
AdispersionB parameter b are clearly locally correlated to the physical characteristics of

Ž .the system. Smaller values of b are typical of more dispersive heterogeneous systems
Ž .recall Fig. 3 . Here, the values of b are in general higher for the upper samplers
Ž . Ž .bs0.49–0.7 than for the lower samplers bs0.39–0.54 . In particular, compare the

Ž .b values Table 1 for the pairs of samplers which have the same horizontal position but
Ž .different depths A4–D4, A5–D5, C4–F4, C5–F5; see Fig. 1 : b is consistently smaller

at the lower samplers. This indicates that as the tracer travels over longer distances, the
apparent degree of overall heterogeneity in the flow field increases. This result is
consistent with the geological mapping which indicates that fracturing becomes sparser

Ž .with depth see Section 2 , and our treatment of the system as a series of quasi-one-di-
Ž .mensional vertical columns. We examine this treatment further in Section 4.2.

Fig. 5 shows CTRW fits on averaged concentration data sets. The convolution curve
fit for the lower samplers will be discussed below in Section 4.2.1. We calculated the
concentration points by taking the weighted average of concentrations in all upper

Ž .samplers and all lower samplers for each time. We used the volumetric flow rate
towards each sampler as the individual weights, which were calculated from the mass

Žflux and the cross-sectional capture area for each sampler data from Table 1 of Sidle et
.al., 1998 . Some late time data points for the upper samplers were excluded from our

analysis, because the averages of these data points were based only on data from two
samplers.

The fits in Fig. 5 are also remarkably good. As for the single breakthrough curves,
Ž . Ž .the value for b is higher for the upper samplers 0.57 than for the lower samplers 0.4 .

Moreover, both values of b lie in the lower ranges of b found for the respective single
sets of curves.

As mentioned above, while b reflects the degree of heterogeneity, fitting of the
FPTD curves to the experimental data also involves estimation of a Ashift factorB x ,shift

Ž .which translates the FTPD curve along the time x axis. Clearly, both x and b mayshift

vary among the quasi-one-dimensional columns. To analyze the x , we apply ashift
Ž .procedure similar to Berkowitz et al. 2000 ; we translate the theoretical breakthrough

curve along the x-axis by multiplying the dimensionless quantity trb1r b by x .shift
² :We start with the definition of the dimensionless time t'Õtr l , where t is the

experiment time and Õ is a characteristic flow velocity for the particle transitions. The
value of Õ is larger than that of the average fluid velocity in the domain. We recall that

² :b'Lr l , where L is the distance between the inflow boundary and the measurement
² :plane and l is the mean displacement for a single transition. Comparing the time at

which CrC s0.5 on a breakthrough curve fit with a value of b , we denote by BX the0
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Fig. 5. Best-fit theoretical breakthrough curves based on the CTRW solutions. Triangles and circles indicate
the flux-weighted averages of the measured breakthrough data for the upper and lower samplers. For the lower
samplers, a fit based on the convolution of two CTRW solutions with different b is also shown.

1r b Ž .value of trb , at which CrC s0.5. Thus, the dimensional experiment time at0

which CrC s0.5 is0

X 1rb² :B l L
ts . 9Ž .ž /² :Õ l

Ž . XFrom Eq. 9 , we can easily extract x , because tsB x :shift shift

1rb² :l L
x s . 10Ž .shift ž /² :Õ l

Ž .Unlike the heterogeneous system studied by Berkowitz et al. 2000 , the mean size of
the low permeability heterogeneities in the field site is not particularly well-defined. In
principle, information on the relative sizes of the heterogeneities can be used to estimate
² : Ž . Ž .l . Then from Eqs. 9 or 10 , the characteristic velocity Õ can be estimated. In the
absence of well-defined estimates, we chose here simply to determine the value of the
shift factor that yielded the best fit to each measured breakthrough curve. It is important

² :to stress that there is some interplay, or flexibility, in the choice of Õ and l . Thus, we
verified that the shift factor values appearing in Table 1 are consistent with the actual

Ž .flow domain — for each of the shift factor values, we used Eq. 9 to estimate values of
² : ² :Õ and l . A sensitivity analysis showed that values of l can thus be estimated to lie
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in the range of 0.1–1.0 m; these values are entirely consistent with the expected scale of
heterogeneity evident at the field site.

Once a measured breakthrough curve is fitted and the values for b and x for ashift

fixed transport distance L are known, predictions for the breakthrough behavior at other
transport distances are possible. This application assumes, similar to the EPM and DFM
approaches, that the degree of heterogeneity is not changing over the length scale of our

Ž .transport problem. In this case only L is variable in Eq. 10 and the new x can beshift

calculated easily.

4.2. ConÕolution solutions using the CTRW model

We described in Section 3 how to calculate the spatial and temporal evolution of an
input function in the form of a d-pulse or a step function. In many experimental
systems, especially at the field scale, it can be difficult to realize these initial conditions
exactly. It is, however, straightforward to use convolution techniques to account for
other boundary conditions. Convolutions can also be used to account for transport

Ž . Ž .through different regions layers with different properties i.e., different b values .

4.2.1. ConÕolution theory
For the calculation of breakthrough curves for input functions of any form, we

Ž . Ž . Ž .convolute the input function F t with the function G t , where G t is the response
function for the medium, corresponding to the function for the FTPD of a pulse input.

Ž . Ž .The convolution of F t and G t is defined as

t
HsF t G t s F tyt G t dt . 11Ž . Ž . Ž . Ž . Ž .H

0

Fig. 6 shows schematically applications of the convolution relevant to experimental
conditions considered here. These cases illustrate convolutions of breakthrough curves

Ž . Ž .from F t , for a specific b , with another function G t having a different b. The
resulting convolutions in these two cases correspond to breakthrough curves arising for a
system where the tracer is transported through two layers with different b values.
Alternatively, these figures illustrate input functions for the typical cases of Anear-stepB

Ž .inputs, convoluted with G t having a specific b. Two special cases are not shown in
Ž . Ž . Ž .Fig. 6: if F t is an exact d-pulse, the convolution with G t simply reproduces G t ,
Ž . Ž .while if F t is an exact step function the convolution with G t yields a cumulative

breakthrough curve.

4.2.2. Two regions with different transport behaÕior
Ž .Sidle et al. 1998 discuss the apparent existence of two different layers in the field

site — a highly connected upper domain and a lower domain dominated by flow in
Žsingle fractures although, as already noted, the hydraulic properties of these layers are

.not known . In the CTRW framework, the value of b in the upper domain could be
expected to be higher than in the lower domain, because the transport may be more
AhomogeneousB. Thus, the breakthrough curve measured in the second layer can be
treated with the CTRW approach by using a convolution of two breakthrough curves
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Ž . Ž . Ž . Ž . Ž .Fig. 6. Schematic illustrations of convolutions of functions F t and G t , each having a different b , and the resulting breakthrough curves C t . Panels a and b
Ž .show respectively, input functions for the typical cases of Anear-d-pulseB and Anear-stepB inputs, convoluted with G t having a specific b.
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Table 2
Values for best-fit convoluted breakthrough curves

Sampler b xshift

D5 0.19 0.04
F4 0.32 0.7
F5 0.41 0.16
Flux weighted average of lower samplers 0.20 0.035

based on b values in the upper and lower layers, b and b . In other words, in the1 2

context of the field experiment discussed here, the breakthrough curve for the upper
sampler can be used as an input function for the lower sampler. Thus, we convolute the
known breakthrough curve for the upper sampler and with an unknown FPTD for the
lower sampler.

The b values and factors for shifting along the x-axis for the fits with two
convoluted curves are summarized in Table 2. In Figs. 5 and 7 we show fits of the
averaged data points for the lower samplers obtained by a convoluted breakthrough
curve with different b , b values, compared to a breakthrough curve with a single b.1 2

The lognormal time axis in Fig. 7 allows the more detailed analysis of the early arrival
times. The early time behavior of the convoluted curve is similar to the curve with

Fig. 7. Semilog plot of the flux-weighted averaged breakthrough data for the lower sampler. Also shown are
the best-fit CTRW solution and a fit based on the convolution of two CTRW solutions.
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Ž .greater b i.e., the curve has a steep slope , whereas the late time behavior is dominated
Ž .by the curve with lower b longer tailing . Of course, for the field experiment discussed

here, the uncertainty and lack of information make it difficult to distinguish between the
quality of the different fits. The fit with the convoluted breakthrough curve is remark-
ably good for the early times. For intermediate and greater times, the breakthrough curve
for a single b seems more appropriate. The low value of b for the lower region
corresponds to a lower fracture density. The transport in this lower region could be
dominated by a relatively small number of fractures intersecting the domain, and the
non-Fickian transport could be due to excursions through the rough wall topology of the
fractures. In any case, the two values of b relate well to the apparent hydraulic
differences between the regions.

5. Concluding remarks

Ž .The tracer breakthrough data presented by Sidle et al. 1998 display behavior that is
characteristic of non-Fickian transport. The conventional EPM and DFM models clearly
fail to describe and explain the measured breakthrough curves. Application of more
sophisticated multi-parameter or stochastic models is predicated on being able to
demonstrate that these models are physically based, valid over all relevant scales, and
effective without additional knowledge about the system.

We have analyzed this data set with a CTRW approach, which is based on a physical
picture of contaminant motion that is consistent with the geometric and hydraulic
characterization of the fractured formation. The limitations in the experimental set-up,
the uncertain knowledge of the hydraulic properties of the domain, and the low
resolution of the measurements permit study of the nature of the tracer transport, rather
than analysis of modeling approaches in a predictive framework. Additional experiments
are necessary to more fully examine the predictive capacity of the CTRW theory and
other approaches.

The entire shape of the FPTD solutions are characterized by the AdispersionB
parameter b. The value of b is controlled by the degree of heterogeneity of the
hydraulic conductivity field, which in turn essentially controls the velocity distribution;
it is straightforward to estimate b directly from the velocity distribution, if it is
available. Thus, b is a measurable, physically based parameter and replaces the standard
dispersion coefficient which relates only to the second moment of the plume. Sidle et al.
Ž . Ž .1998 and Klint and Fredericia 1995 found a decreasing fracture intensity and
connectivity with depth, which is reflected in the lower values of b at greater depth.

Fitting of the FPTD solutions to breakthrough measurements also requires knowledge
of the mean size of the local heterogeneities, in order to estimate the mean displacement

² :for a single transition, l . Only weak knowledge of the local heterogeneities is
² : Žavailable at the field site. However, our estimates of l and thus of the characteristic

.velocity Õ are entirely consistent with the available information. Alternatively, another
Ž .approach would be to estimate Õ based on the velocity distribution ; but this is

generally more difficult than measuring the geometry.
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The CTRW framework captures quantitatively a broad range of non-Fickian and
Fickian transport behaviors, and can be used in a predictive capacity. The solutions are
robust, and require a minimum number of fitting parameters. These parameters can be
estimated on the basis of one or more measured breakthrough curves, andror on the
basis of information on the distribution of the velocity field and the relative scale of
heterogeneity. Moreover, we have shown how convolution techniques can be used to
obtain solutions for breakthrough behavior of tracer that migrates through regions with
different dispersive properties and general input flow conditions. Generalization of these
ideas for application to large-scale aquifer systems is currently under development.
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