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The behavior of chemical species as they migrate through heterogeneous porous media is considered. The
so-called “anomalous” transport patterns frequently measured in these materials are quantified in the framework
of a continuous time random walk (CTRW) formalism. The physical basis for application of the CTRW is
discussed, and new solutions for the first passage time distribution are presented to cover the entire range of
transport behaviors. Application of these solutions to analysis of experimental data is also discussed.

1. Introduction
The importance of studying chemical transport in geological

formations is well recognized in the context of contaminant
migration in groundwater systems, oil and gas flow in petroleum
reservoirs, and assessment of radioactive and toxic industrial
wastes that might escape from underground repositories. The
challenge in modeling these systems lies in the fact that natural
heterogeneities have irregular morphologies and exist over many
length scales; these heterogeneities control both the hydraulic
and the chemical properties of the formation. Moreover, because
of the difficulty in measuring these properties in the subsurface,
only limited data, often of low reliability, are available.

There exist a variety of modeling approaches that attempt to
predict the spatial and temporal migration of chemical speciess
either conservative or reactivesin geological formations. Most
of these approaches are based on various deterministic1 and
stochastic2 forms of the so-called advection-dispersion equation
(ADE). Laboratory and field-scale application of this equation
is based on the assumption that dispersion (plume spreading)
behaves macroscopically as a Fickian diffusive process, with
the macrodispersivity being assumed constant in space and time.
However, laboratory, field, and Monte Carlo analyses have
demonstrated that dispersivity is not constant and is in fact
dependent on the time and/or length scale of measurement. This
finding, often called the “scale effect”, is what we denote
“anomalous transport”. In fact, given its ubiquity, such transport
should be considered the norm.

In this paper we discuss a method, based on a continuous
time random walk (CTRW) formalism, that is inherently suited
to characterizing and quantifying anomalous transport. This
formalism was first used by Scher and Lax3,4 to calculate
impurity conduction in semiconductors and by Montroll and
Scher5 and Scher and Montroll6 in conjunction with studies of
amorphous semiconductors. They considered charge carriers
moving through or being trapped by random sites in solids. In
the framework of porous and fractured geological formations,
the CTRW theory has already been applied by Berkowitz and
Scher7 and by Berkowitz et al.8 to quantify chemical transport.
These studies demonstrated the relevance and effectiveness of
the CTRW approach by analyzing numerical simulations and
laboratory and field measurements. We note that while our
emphasis here is on geological media, the CTRW approach is

generally applicable to modeling transport phenomena in any
heterogeneous material.

In section 2 we consider the physical behavior of conservative
chemical species migrating in heterogeneous porous materials,
starting from a basic, intuitive model of tracer advection. Section
3 presents some known results and interprets them in the context
of the present work. We expand theoretical developments for
some important classes of heterogeneity and discuss how the
theory can be compared to data from laboratory and field
experiments in section 4. We then return, in section 5, to
consideration of a general physical picture of chemical migration
over increasing length scales.

2. Physical Arguments for the CTRW Theory

We consider transport of a conservative chemical species
(tracer) migrating through a (fully or partially) water-saturated
geological formation. Heterogeneities in the formation may
consist of fractures and/or lenses of porous rocks with different
mineralogy (e.g., quartz, clay, carbonates). The physical picture
with which we start is very simple: under an applied external
pressure gradient, the velocity and flux distributions of the
carrier liquid (water) are determined by the structure of the
heterogeneities, as well as by the liquid properties. “Particles”
representing the chemical species move with the carrier liquid
through the medium via different paths having spatially changing
velocities. Different paths are traversed by different numbers
of particles.

This transport can in general be represented by a coupled
probability function that describes particle “transitions” over
given distances, in given directions, and in given times.3,7 By
coupling particle migration in space and time, such a function
naturally accounts for particle transitions that extend over short
and long distances, and over short and long times. Note that
the magnitudes of these transition times and distances are not
necessarily correlated. If, however, the medium is considered
as a “black box”, more phenomenological approaches that do
not explicitly use the natural characteristic lengths of the medium
can be applied. Thus, one can consider the distribution of
transition lengths for a fixed time interval, or the distribution
of times for a fixed transition length. In the present paper we
start with the latter approach and then show that it is, in fact,
mathematically equivalent to the general coupled description.

If one follows the movement of tracer particles in the medium,
one can divide the path of each particle into equidistant
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“displacements” (or “transitions”) in the mean flow direction,
and determine the distribution of times for a transition. We
denote byψ(t)dt the probability that a particle entering a
displacement interval at time zero will just reach the end of it
in the time interval [t, t + dt). For meaningful determination of
ψ(t) dt, some kind of averaging must be applied: the medium
(which is assumed to be a stationary, heterogeneous one) is
divided into a large number of intervals and/or a sufficient
number of tracer particles is introduced and/or a sufficient
number of realizations of the medium is used. In mildly
heterogeneous media, the displacement time density function
ψ(t) will decrease rapidly for large times, and its first and second
moments will exist. We note that the time measure of “short”
and “long” can be compared to, for example, the arrival time
of half of the tracer particles at a measurement plane (outlet),
denotedtr. By the central limit theorem, the existence of the
first two moments ofψ(t) guarantees that the arrival time
distribution (hereafter referred to as the first passage time
distribution, or FPTD) will be Gaussian. However, in highly
heterogeneous media of finite size, situations can arise wherein
the second and even the first moments are effectively infinite
(i.e., not small compared totr2 and tr). This gives rise to
anomalous transport.

The hallmark of anomalous transport lies in the asymptotic
(long time) behavior ofψ(t). In general, only two simple
asymptotic forms ofψ(t) can exist: exponential or algebraic
decay. Adoption of an exponential form, however, necessarily
leads to Gaussian transport. Thus, when considering non-
Gaussian transport behaviors, it is relevant to approximate the
long time behavior ofψ(t) asψ(t) ∼ t-1-â (see refs 5-7). While
any asymptotic decay behavior can be formulated as an algebraic
decay with a changingâ, it is reasonable to assume (as we
discuss below) thatâ changes only very slowly with the length
scale in highly heterogeneous systems.

Even in the simplest case of water and tracer flowing through
a tube or between parallel plates, anomalous (non-Gaussian)
transport (withâ ) 1) would arise if there were no diffusion
(mixing) among strata with different velocities. To illustrate this
point, consider a parabolic velocity profile, in a section of a
cylindrical tube of lengthL and radiusR. The velocity at any
radiusr within the tube isV(r) ) V0(1 - r2/R2), whereV0 is the
maximum velocity, so that 2r dr ) -R2 dV/V0. The number of
particles moving with the same velocity and thus arriving in
the same time is dN ) 2πr dr n, whereN0 ) πR2n is the total
number of particles. If by zero time we define the arrival time
of the fastest particles then the arrival time can be written ast
) L/V - L/V0, i.e., dV ) -L dt/(t + L/V0)2. Substitution of the
above expressions for 2r dr and dV into the expression for dN
yields dN ) LN0 dt/V0(t + L/V0)2 ∼ dt/t2 for large t, which
indicatesâ ) 1. Similar analysis for flow between parallel plates
gives the same result. Obviously, in reality such behavior can
be observed only for sufficiently largeV0 and/or for a sufficiently
short tube. Transport patterns in porous media are affected by
advection, at both large and small length scales, as well as by
diffusion on smaller scales. While diffusion effects cannot be
ignored, transport analogous to that in a tube (with no diffusion)
can occur on a much larger scale because the complex pore
space morphology in rock materials can lead to formation of
preferential flow paths with limited mixing. In general, the
interplay of mixing and spreading mechanisms at different scales
can lead to anomalous transport.

We consider now, more generally, the influence of the
exponentâ. It is clear thatâ > 0, since∫0

∞ψ(t) dt ) 1. For â
> 2 the first two moments ofψ(t) exist and thus the evolution

of a tracer plume will display Gaussian behavior. If 1< â < 2,
the second moment ofψ(t) is divergent, while forâ < 1 the
mean time for a displacement is also infinite. Distributions
having such an algebraic tail with 0< â < 2 are called Le´vy
distributions (see ref 10). These distributions are unique in that
the distribution of the sum of Le´vy variables (having the same
â) will have the same long tail. This property is analogous to
that of Gaussian distributions, wherein the sum of Gaussian
variables is also Gaussian.

Shlesinger9 has shown that forâ < 1, 〈l(t)〉 ∼ σ(t) ∼ tâ, where
〈l(t)〉 is the mean displacement of the particle plume, as a
function of time andσ(t) is its standard deviation. Since the
ratio σ(t)/〈l(t)〉 is constant in this case, the FPTD curves are
similar on different spatial scales. There is no relative narrowing
of the plume distribution with growing scale: this universality
property6 can explain the growth of dispersivity with scale (as
noted in the Introduction).

For 1 < â < 2 it was shown9 that 〈l(t)〉 ∼ t while σ(t) ∼
t(3-â)/2, henceσ(t)/〈l(t)〉 ∼ t(1-â)/2. In this case the mean transition
time is finite, so that the time distribution becomes narrower,
in relative terms, with growing length scales. There is no
universality but the relative narrowing of the FPTD curve is
slower than in the Gaussian case, forcing the effective disper-
sivity to grow. It is well-known that for a Gaussian distribution,
〈l(t)〉 ∼ t, σ(t) ∼ t1/2, andσ(t)/〈l(t)〉 ∼ t-1/2.

3. FPTD for â < 1

Anomalous transport for the caseâ < 1 was first investigated
by Montroll and Scher5 and by Scher and Montroll.6 The FPTD
function f(τ) for a pulse injection, whereτ is some nondimen-
sional time (to be discussed below), derived by Scher and
Montroll6, is

where l is the distance traversed by particles, in units of the
displacement (transition) length. It was also shown6 that

When using this solution, one assumes that tracer particles are
spread, initially, with constant density over the inlet face
(perpendicular to the flow direction) of the domain, or that the
domain is sufficiently long such that the effect of the initial
tracer distribution is negligible.

From eqs 1 and 2 it is clear that the cumulative FPTD curve
is a function ofτ/l1/â, where bothτ and l are nondimensional
variables. These variables must be defined in terms of variables
from field and/or laboratory measurements. Berkowitz et al.8

defineτ t Vjt/〈l〉 whereVj is some characteristic flow velocity
and〈l〉 is a single transition length. As mentioned above, forâ
< 1, the mean particle displacement〈l(t)〉 scales astâ and thus
the mean particle velocity will decrease with time or distance
astâ-1 ∼ 〈l(t)〉1-1/â. Since all cumulative FPTD curves reach a
half concentration breakthrough atτ/l1/â ≈ 1, Berkowitz et al.8

use a formula similar to

whereL is the distance from inlet to outlet. In their case,bâ )
1.

τf(τ) ) -
1

π
∑
n)0

∞ (-
l

τâ)n Γ(nâ + 1)

Γ(n + 1)
sin πân (1)

τf(τ) =
exp{-[(1 - â)/â](âl/τâ)1/(1-â)}

[2π(1 - â)(τâ/âl)1/(1-â)]1/2
,

l

τâ
. 1 (2)

tr =
〈l〉
Vj (bâ

L
〈l〉)1/â

(3)
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Whenâ < 1, there arises a question of how to define units
of time, since the mean time is infinite. By introducing the time
unit as〈l〉/Vj, some velocityVj is chosen. This velocity defines
the coefficient of the long time behavior ofψ[t(τ)] and thus
specifies the coefficientbâ in its Laplace transform (see ref 6
and also section 4). In this way,Vj can be chosen such thatbâ
) 1 but, in general,bâ will appear in (3). From (3) it follows
that if Vj is kept constant, and sincetr andL are constants for a
given experiment, then

for different choices of the single transition length〈l〉.
We observe that the quantityV〈l〉 t Vj/bâ

1/â ∼ 〈l〉1-1/â can be
interpreted as the mean particle velocity for a given distance
〈l〉, in agreement with the discussion above (see also discussion
regarding Figure 3, below). When a particular〈l〉 is chosen, then
τ is linearly proportional tot. The coefficient of proportionality
can be determined by translating the theoretical cumulative
FPTD curve along the (temporal)x-axis to fit the experimental
measurements.

4. FPTD for â > 1

4.1. Mathematical Development for 1< â < 2. Develop-
ment of the FPTD solution for 1< â < 2 is similar to that
given in Scher and Montroll6 for the case 0< â < 1. In the
present case, the leading terms of the Laplace transformψ*(u)
of the transition time density functionψ(t), which decreases as
t-1-â for t f ∞, can be written for smallu as

wherecâ is a positive coefficient and〈t〉 is a mean transition
time.

Using our definition ofψ(t), we show here briefly how the
FPTD at a distance ofl transitions from the inlet can be obtained.
This FPTD is the distribution of the sum ofl random variables
(times), each of which follows the probability density function
ψ(t). It is well-known that the distribution of the sum of random
variables is the convolution of their distributions. Thus, by the
properties of the Laplace transformL,

Here and in the remainder of the text, we suppress explicit
dependence of the FPTD on timet, sincet is not always written
explicitly in the right-hand sides of the equations but is implicit
through other variables.

Introducing the nondimensional timeτ t t/〈t〉 and the
nondimensional Laplace variables ) u〈t〉, we can write using
(5) the first passage time distribution as

wherebâ t câ/〈t〉â. For the two casesτ < l andτ > l, with ν
t |τ - l|, (7) can be rewritten as

whereg t lbâ and “+” corresponds toτ > l.

For eachn in (8), we have a term

where first we replaced the variableê t gsâ (which is allowed
since the negative part of the real axis is a branch cut) andcê
denotes a contour of integration in the complex plane. The
resulting integral is a known representation of theΓ function.
In the last step the two well-known relationsn! t Γ(n + 1)
andΓ(z) Γ(1 - z) ) π/sin πz were used. The resulting solution
can be evaluated numerically only for smallν. For largeν other
expansions are developed below.

Consider the caseτ . l. Then we define a small parameter
γ t g/νâ, and if r t sν then

In the limit of 1 , τ , l the method of steepest descent can
be applied as follows: we defineh t (l - τ)/g1/â. For smallτ,
h ∼ l1-1/â f ∞ as l f ∞ so h is large. The first passage time
distribution can be written as (see (7))

which is close in form to the expression in Scher and Montroll,6

for which the steepest descent method was used. Using this
method, we obtain

As developed above, forτ nearl the following can be used:

〈l〉â-1bâ ) const (4)

ψ*(u) ≈ 1 - 〈t〉u + câu
â ≈ e-〈t〉u+câuâ

(5)

FPTD) L-1{[ψ*(u)] l} (6)

FPTD) 1
2πi〈t〉∫c-i∞

c+i∞
ds es(τ-l)+lbâsâ

(7)

FPTD)
1

2πi〈t〉
∫c-i∞

c+i∞
ds egsâ ∑

n)0

∞ ((sν)n

n!
(8)

In t
νn

2πi〈t〉n!
∫c-i∞

c+i∞
ds egsâ

sn

) νn

2πi〈t〉n!âg(n+1)/â∫cê
ê(n+1-â)/âeê dê

) νn

〈t〉n!âg(n+1)/â

1

Γ(1 - n + 1
â )

) νn

πâ〈t〉g(n+1)/â

Γ(n + 1
â )

Γ(n + 1)
sin

π(n + 1)
â

(9)

FPTD) 1
2πiν〈t〉∫c-i∞

c+i∞
dr er+γrâ

)
1

2πiν〈t〉
∫c-i∞

c+i∞
dr ∑

n)0

∞ (γrâ)n

n!

)
1

ν〈t〉
∑
n)0

∞ γn

Γ(n + 1)Γ(-ân)

)
-1

πν〈t〉
∑
n)0

∞

γn
Γ(ân + 1)

Γ(n + 1)
sin πân (10)

FPTD) 1

2πi〈t〉âg1/â∫cê
ê(1-â)/âeê-hê1/â

dê (11)

FPTD)
(hâ)(2-â)/[2(â-1)]

g1/â〈t〉(2πâ(â - 1))1/2
exp{-(â - 1)(hâ)â/(â-1)}

(12)

FPTD)
1

πâ〈t〉g1/â
∑
n)0

∞

(-h)n

Γ(n + 1

â )
Γ(n + 1)

sin
π(n + 1)

â
(13)
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and forτ . l

Some cumulative FPTD’s based on the above solutions are
shown in Figures 1 and 2. The solutions (12)-(14) for the ranges
τ , l, τ ≈ l, andτ . l, respectively, are combined to yield
these curves. We see that while the curves withâ > 1 are
distributed aroundτ/l ) 1, the curves withâ < 1 start at longer
times for smaller values ofâ and approachτ/l ) 1 whenâ is
close to 1. To explain this behavior, recall thatl ) L/〈l〉, where
L is the domain length and〈l〉 is a single displacement length.
In the case 1< â < 2, we haveτ t t/〈t〉, and since〈l〉 ) V〈t〉,
whereV is the mean tracer velocity, equal to the mean carrier
velocity, it follows thatτ/l ) tV/L, independent of〈l〉. For â <
1 we obtainτ/l ) tV〈l〉/L, whereV〈l〉 is the effective tracer velocity
at distance〈l〉. If considered for the same times and domain
length, the curves presented in Figures 1 and 2 apply to the
caseV〈l〉 ) V; i.e., the effective tracer velocities (forâ < 1) for
the distance〈l〉 are equal to the mean carrier velocity for the
cases 1< â < 2. Recalling that forâ < 1 the mean particle
velocity decreases with distance (see discussion in section 3),
it therefore follows that the effective tracer velocity (forâ <

1) for the distanceL will be less thanV. Note also that the
decrease is faster for smallerâ (section 3). This feature explains
why curves withâ < 1 begin rising later.

Comparing Figures 1 and 2, we note that curves withâ > 1
become more compact for longer distances, which is similar to
Gaussian behavior. In contrast, curves withâ < 1 spread even
more. This is because of universality and because the effective
velocity of the tracer decreases even further for longer distances.
Also we mention here that Gaussian FPTD curves will be
symmetrically distributed with respect to the lineτ/l ) 1, while
curves withâ < 2 are asymmetric.

Figure 3 presents cumulative FPTD distributions for the case
VL ) V, whereVL is the effective tracer velocity for the full
domain length. In this case, a direct comparison of the curves
is possible, and several interesting features can be noted.
Significantly, the tail of late particle arrival times lengthens as
â decreases. In contrast, however, the other sections of the FPTD
curves, i.e., the early and “bulk” arrival times, do not follow a
consistent progression with decreasingâ.

4.2. Comparison of FPTD Curves to Data.Now we
consider the question of fitting theoretical curves to experimental
measurements, for a known value ofâ in the range 1< â < 2.
The mean (tracer and carrier) velocityV is assumed known from
the measurements. Note that the family of curves having the
same â, but with other free parameters being variable, is
analogous to a Gaussian distribution form. Fitting of these curves
to measurements requires determination of one parameter,
denoted below asA; fitting of this parameter is similar, in some
sense, to determining the dispersion coefficient of a Gaussian
distribution. First, using (13), which is the exact solution, we
calculate the cumulative FPTD:

where, as defined above,g ) lbâ and dt ) 〈t〉 dτ ) -〈t〉g1/â dh.
We see that the cumulative FPTD for given time, velocity, and
domain length depends only on the limits of the integral. Also,

Figure 1. Cumulative first passage time distributions forl ) 100,bâ

) 1 and different values ofâ (labeled near the corresponding curves).
The two regimes 1< â < 2 andâ < 1 are shown by solid and broken
curves, respectively.

Figure 2. Cumulative first passage time distributions forl ) 1000,bâ

) 1 and different values ofâ (labeled near the corresponding curves).
The two regimes 1< â < 2 andâ < 1 are shown by solid and broken
curves, respectively.

Figure 3. Cumulative first passage time distributions forVL ) V and
different values ofâ (labeled near the corresponding curves). For the
1 < â < 2 cases,bâ ) 1 andl ) 100 . The two regimes 1< â < 2 and
â < 1 are shown by solid and broken curves, respectively.

FPTDtot(t) t ∫0

t
FPTD(t′) dt′

) ∫(L/〈l〉)1-1/â(1/bâ
1/â)(1-Vt/L)

(L/〈l〉)1-1/â(1/bâ
1/â) dh

πâ
∑
n)0

∞

(-h)n ×

Γ(n + 1

â )
Γ(n + 1)

sin
π(n + 1)

â
(15)

FPTD)
1

π〈t〉g1/âh
∑
n)0

∞

(-h)-nâ
Γ(ân + 1)

Γ(n + 1)
sin πân (14)
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the result cannot depend on our choice of〈l〉. The only possible
conclusion then is that the integral limits are independent of
〈l〉, i.e., (cf. (4)),

From the definition ofh,

whereA is the unknown constant to be determined. We know
that whent ) L/V, h ) 0 and from (13)

The left-hand side of (18) can be determined directly from the
experimental data. Then the value ofA is known and, by using
(17) together with (12)-(14), the theoretical curves can be fit
to the measurements.

It is important to stress here that because of the similarity of
the curve shapes for differentâ (see Figures 1-3), and because
â is not usually known a priori, determination of a “true”â
requires at least two sets of FPTD measurements at different
distances from the source. Thenâ can be estimated from the
rate of relative narrowing of the distribution with length. Also,
with two sets of measurements, it is possible to determine
whether there is a decrease in tracer velocity; in such a case,
we must haveâ < 1. Moreover, from the rate of the decrease,
â can be estimated.

4.3. FPTD for â > 2. We now demonstrate that whenâ >
2, Gaussian behavior arises, in accordance with the central limit
theorem. Indeed, in this case the leading terms ofψ*(u) for small
u (i.e., for long times) will beψ*(u) ≈ 1 - 〈t〉u + 〈t2〉u2/2.
Comparing this expansion to (5), we see that to obtain the FPTD
we can setâ ) 2 in the formulas (12)-(14). Recalling thatg
) lbâ and l ) L/〈l〉, and that in this casebâ ) 〈t2〉/(2〈t〉2), (12)
will transform into

and (13) will give the same result:

while eq 14 is identically zero (i.e., no long tail).
The solutions (19) and (20) represent Gaussian behavior. We

note here that the FPTD curves cannot be compared directly to
concentration distributions over space: integration of a con-

centration distribution overspacegives unity, while integration
over time of an FPTD gives unity.

Finally, from the scaling relation (16), and withâ ) 2, it
follows that

or

where now〈l〉 is any distance where the FPTD is measured and
〈t2〉 is the second moment of this FPTD distribution. At longer
distances the relative time spread〈t2〉/〈t〉2 decreases as 1/〈l〉. We
mention that the ratio〈t2〉/〈t〉 is constant, independent of our
choice of〈l〉, as must also follow from (19) and (20). This is
analogous to the behavior of the spatial moments with time.

5. Evolution of â and the Character of ψ

If in a real medium a single transition lengthλ (measured in
the same units asl) can be defined naturally (say, by a
characteristic correlation length or fracture segment length), then
the ratioλ/l will influence â. Note thatλ does not enter the
equations in an explicit manner. Rather, we treat the domain
under the assumption thatλ/l is small enough to allow for the
averaging mentioned in section 2 to actually occur. For strong
heterogeneity, even with relatively small correlation, this
averaging may not be sufficient to permit full mixing. If the
ratio λ/l is not sufficiently small and the experimental FPTD
curves do not vary smoothly, then the large scale heterogeneities
must be treated deterministically.

In fact, â is a function of the length scale (or time needed to
traverse this length scale). The CTRW theory development
presented here can be applied whenâ is constant or slowly
varying over a number of orders of magnitude in length or time.
Geological systems can encounter heterogeneities on different
hierarchical scales, and the characteristic length of the largest
scale heterogeneity is likely to influenceâ the most. We note
also that for statistically self-similar media, which appears to
be the case in at least some geological formations (up to a certain
length scale), it can be expected thatâ will remain constant.
On the other hand, if no largerλ appears due to new heteroge-
neity scales, then for a large enough domain, full averaging will
take place and the Gaussian distribution will characterize the
tracer plume; i.e.,â will increase through the threshold of 2.

We observe forâ < 1 (see section 3) that the mean particle
velocity is a decreasing function of the distance traversed by
particles. The following simple physical arguments explain this
phenomenon. Considering a step injection, faster flow paths will
initially be filled faster by particles, i.e., a higher proportion of
particles, compared to the carrier liquid, will have higher
velocities. In other words, the average particle velocity is higher
than that of the carrier liquid. Over time, mixing occurs, and
the average particle velocity will decrease. For a pulse injection,
if there is a large number of low velocity regions, fast-moving
particles may reach the slower flow regions before the slow-
moving particles reach the faster flow regions; again, over time,
the average particle velocity will decrease.

Particles “sample” the existing velocity field as they migrate
through the flow domain. Faster flow regions are sampled more
quickly. As the domain size increases, there is more time for
particles to sample lower velocity regions. As the number of
still lower velocity regions becomes small, the plume velocity

bâ>2 t
〈t2〉
2〈t〉2

) const
〈l〉

(21)

〈t2〉 ∼ 〈l〉 (22)

〈l〉â -1bâ ) const (16)

h ) L - Vt

〈l〉1-1/â(Lbâ)
1/â

t
L - Vt

A
(17)

FPTD|h)0 )
V Γ(1/â) sin

π
â

πâ〈l〉1-1/â(Lbâ)
1/â

t
V Γ(1/â) sin

π
â

πâA
(18)

FPTD) 1

g1/2〈t〉2xπ
exp{-

(l - τ)2

4g }
) x V〈t〉

2πL〈t2〉
exp{-

(L - Vt)2

2LV〈t2〉/〈t〉} (19)

FPTD)
1

2π〈t〉xlbâ

∑
m)0

∞

h2m
Γ(m + 1/2)

Γ(2m + 1)
sin

π(2m + 1)

2

)
1

2π〈t〉xlbâ

∑
m)0

∞

(-h2)m
(2m - 1)!!xπ

2m(2m)!

) x V〈t〉
2πL〈t2〉

exp{-
(L - Vt)2

2LV〈t2〉/〈t〉} (20)
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becomes constant. In terms ofψ(t), a small number of regions
with low velocity means thatψ(t) will decrease rapidly at long
times. In other words, as the distance traveled by particles grows,
â increases; when it reaches unity, the mean particle velocity
becomes constant and should equal the mean velocity of the
carrier liquid. Thus, stating thatâ increases simply means that
with growing domain size, the relevant regions ofψ(t) change.

We note, parenthetically, that the long-time expansions of
ψ*(u) for the special cases ofâ ) 1 andâ ) 2 can be found in
ref 9. Here, we do not develop FPTD solutions for these two
cases because the probability of encountering these exact values
in real geological systems is essentially negligible.

We return now to consider the physical picture of particle
transitions discussed in section 2. In accordance with the
properties of Le´vy distributions (see section 2), it can be seen
from (1) thatf(τ) ∼ τ-1-â asτ f ∞; i.e., the tail drops in exactly
the same way as the density functionψ(t) for single displace-
ments. A similar long-time behavior is found in the case 1< â
< 2: we see from (14) that the leading term forτ f ∞ is FPTD
∼ h-1-â ∼ τ-1-â, as expected.

Thus, this result justifies our choice to work withψ(t), rather
than with an explicitly coupled space-time density function
(as discussed in section 2). We emphasize that in the range of
a constantâ, and since the FPTD is in essence the transition
time density for a displacement interval of lengthL, theoretical
predictions using the CTRW are not a function of the prescribed
single displacement length. Moreover, modeling particle move-
ment by considering coupled transition time distributions for
different distances will not affect the predictions. Further aspects
of the relationships between coupled and uncoupled formulations
of the transition probability functions are currently under
investigation.

6. Summary and Conclusions

In this work the physical basis of CTRW theory and its
relevance to modeling transport in heterogeneous geological

formations was discussed. In view of the different heterogeneity
scales, it seems natural to apply this approach. The CTRW
considers transport phenomena on “small” scales, where global
averaging cannot be applied (although in terms of geological
formations, “small” can be of the order of hundreds of meters,
or more). While typical homogenization methods are generally
applicable only for mildly heterogeneous systems, the CTRW
is especially powerful for strongly heterogeneous media.

We present new theoretical results for the FPTD in the
important case 1< â < 2, whereâ is the central parameter of
CTRW theory, and show that forâ > 2 the Gaussian distribution
is recovered. As a consequence, the entire possible range ofâ
values and transport behaviors is discussed. Finally, a method
to compare the theoretical FPTD solutions to experimental
measurements is described.
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ADDITIONS AND CORRECTIONS

2000, Volume 104B

G. Margolin and B. Berkowitz*: Application of Continuous
Time Random Walks to Transport in Porous Media

Following are two corrections to the paper. The analysis,
results, and conclusions remain unchanged.

1. Section 4.3 should read as follows.
4.3. The FPTD for â > 2. We now demonstrate that when

â > 2, Gaussian behavior arises, in accordance with the central
limit theorem. Indeed, in this case the leading terms ofψ*(u)
for smallu (i.e., for long times) areψ*(u) ≈ 1 - 〈t〉u + 〈t2〉u2/2
≈ exp{-〈t〉u + σt

2u2/2}, whereσt
2 ≡ 〈t2〉 - 〈t〉2. Comparing

this expansion to (5), we see that to obtain the FPTD we can
set â ) 2 in the formulas (12)-(14). Recalling thatg ) lbâ
and l ) L /〈l〉, and that in this casebâ ) σt

2/(2〈t〉2), (12) will
transform into

and (13) will give the same result:

while eq 14 is identically zero (i.e., no long tail).

The solutions (19) and (20) represent Gaussian behavior. We
note here that the FPTD curves cannot be compared directly to
concentration distributions over space: integration of a con-
centration distribution overspacegives unity, while integration
over time of an FPTD gives unity.

Finally, from the scaling relation (16), and withâ ) 2, it
follows that

or

where now〈l〉 is any distance where the FPTD is measured and
σt

2 is the variance of this FPTD distribution. At longer distances
the relative time spreadσt

2/〈t〉2 decreases as 1/〈l〉. We mention
that the ratioσt

2/〈t〉 is constant, independent of our choice of
〈l〉, as must also follow from (19) and (20). This is analogous
to the behavior of the spatial moments with time.

2. There is a misprint in eq 10. The correct version is
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FPTD) 1

g1/2〈t〉2xπ
exp{-

(l - τ)2

4g }
) x V〈t〉

2πLσt
2

exp{-
(L - Vt)2

2LVσt
2/〈t〉} (19)

FPTD)
1

2π〈t〉xlbâ

∑
m)0

∞

h2m
Γ(m + 1/2)

Γ(2m + 1)
sin

π(2m + 1)

2

)
1

2π〈t〉xlbâ

∑
m)0

∞

(-h2)m
(2m - 1)!!xπ

2m(2m)!

) x V〈t〉
2πLσt

2
exp{-

(L - Vt)2

2LVσt
2/〈t〉} (20)

bâ>2 ≡ σt
2

2〈t〉2
) const

〈l〉
(21)

σt
2∼〈l〉 (22)

FPTD) 1
2πiν〈t〉∫c-i∞

c+i∞
dr er+γr â

)
1

2πiν〈t〉
∫c-i∞

c+i∞
er dr ∑

n)0

∞ (γrâ)n

n!

)
1

ν〈t〉
∑
n)0

∞ γn

Γ(n + 1)Γ(-ân)

) -
1

πν〈t〉 ∑
n)0

∞

γn Γ(ân + 1)

Γ(n + 1)
sin πân
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