3942 J. Phys. Chem. B000,104,3942-3947

Application of Continuous Time Random Walks to Transport in Porous Media'

Gennady Margolin and Brian Berkowitz*

Department of Enronmental Sciences and Energy Research, Weizmann Institute of Science,
Rehaot 76100, Israel

Receied: October 19, 1999; In Final Form: January 10, 2000

The behavior of chemical species as they migrate through heterogeneous porous media is considered. The
so-called “anomalous” transport patterns frequently measured in these materials are quantified in the framework
of a continuous time random walk (CTRW) formalism. The physical basis for application of the CTRW is
discussed, and new solutions for the first passage time distribution are presented to cover the entire range of
transport behaviors. Application of these solutions to analysis of experimental data is also discussed.

1. Introduction generally applicable to modeling transport phenomena in any
The importance of studying chemical transport in geological heterogeneous material.
formations is well recognized in the context of contaminant  In section 2 we consider the physical behavior of conservative
migration in groundwater systems, oil and gas flow in petroleum chemical species migrating in heterogeneous porous materials,
reservoirs, and assessment of radioactive and toxic industrialstarting from a basic, intuitive model of tracer advection. Section
wastes that might escape from underground repositories. The3 presents some known results and interprets them in the context
challenge in modeling these systems lies in the fact that naturalof the present work. We expand theoretical developments for
heterogeneities have irregular morphologies and exist over manysome important classes of heterogeneity and discuss how the
length scales; these heterogeneities control both the hydraulictheory can be compared to data from laboratory and field
and the chemical properties of the formation. Moreover, becauseexperiments in section 4. We then return, in section 5, to
of the difficulty in measuring these properties in the subsurface, consideration of a general physical picture of chemical migration
only limited data, often of low reliability, are available. over increasing length scales.
There exist a variety of modeling approaches that attempt to
predict the spatial and temporal migration of chemical species 2. Physical Arguments for the CTRW Theory
either conservative or reactivén geological formations. Most
of these approaches are based on various deterministit
stochasti¢forms of the so-called advection-dispersion equation . . AL .
(ADE). Laboratory and field-scale application of this equation geological formation. Heterogeneities in the formation may

is based on the assumption that dispersion (plume spreading)co.nS'StlOf fractures antd/orllensesbof potrous_lfﬁckshwn_h dllff_ertent
behaves macroscopically as a Fickian diffusive process, with mineralogy (€.g., quartz, clay, carbonates). The physical picture

the macrodispersivity being assumed constant in space and tim \.N'th which we start is very simple: under an applied external

However, laboratory, field, and Monte Carlo analyses have pressure gradient, the velocity and flux distributions of the

demonstrated that dispersivity is not constant and is in fact carrier liquid (water) are determined by the structure of the

dependent on the time and/or length scale of measurement. Th@eteroger}eities, as We.” as by the liquid prqperties. “P_artic_:les_”
finding, often called the “scale effect”, is what we denote representing the chemical species move with the carrier liquid

“anomalous transport”. In fact, given its ubiquity, such transport thrlo ugth theDmf(fadmn: V|at(rj]|fferen'; paths hzvkl)ngosl'?fatla”)t/ changlng
should be considered the norm. \é?p?glrtliif;s ifferent paths are traversed by different numbers

In this paper we discuss a method, based on a continuous Thi . b db led
time random walk (CTRW) formalism, that is inherently suited Is transport can in general be represented by a couple
probability function that describes particle “transitions” over

to characterizing and quantifying anomalous transport. This F. . S . : oo .
9 q fying P given distances, in given directions, and in given timégy

formalism was first used by Scher and Bdxto calculate _ : VR : .
d coupling particle migration in space and time, such a function

impurity conduction in semiconductors and by Montroll an . -
Schef and Scher and Montrdlin conjunction with studies of naturally accounts for particle transitions that extend over short
nd long distances, and over short and long times. Note that

amorphous semiconductors. They considered charge carriers . o .
moving through or being trapped by random sites in solids. In the magnitudes of these transition times and distances are not
the framework of porous and fractured geological formations, neces:zlarn)k/ gorrﬂelated. If,hhowever, lthg mledlum IS t::ons;}dergd
the CTRW theory has already been applied by Berkowitz and as a “black box", more phenomenological approaches that do
Schef and by Berkowitz et af.to quantify chemical transport. not explicitly use the natural characterlstlp lengths O.f thg mgdlum
These studies demonstrated the relevance and effectiveness i t_u_e applied. Thus, one can pon3|der the dls_trlb_uno_n of
the CTRW approach by analyzing numerical simulations and transition Iengt_hs for a fl)_((_ad time interval, or the distribution
laboratory and field measurements. We note that while our of times for a fixed transition length. In the present paper we

emphasis here is on geological media, the CTRW approach jsStart with Fhe latter gpproach and then show that it is, n f?Ct’
mathematically equivalent to the general coupled description.

T Part of the special issue “Harvey Scher Festschrift’. If one foIIQV\_/s the movement of tracer pafticleg in the m_eqlium,
* Corresponding author. one can divide the path of each particle into equidistant

We consider transport of a conservative chemical species
(tracer) migrating through a (fully or partially) water-saturated
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Transport in Porous Media

“displacements” (or “transitions”) in the mean flow direction,
and determine the distribution of times for a transition. We
denote bywy(t)dt the probability that a particle entering a
displacement interval at time zero will just reach the end of it
in the time interval{, t + dt). For meaningful determination of
(t) dt, some kind of averaging must be applied: the medium
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of a tracer plume will display Gaussian behavior. K13 < 2,

the second moment af(t) is divergent, while for < 1 the
mean time for a displacement is also infinite. Distributions
having such an algebraic tail with® g < 2 are called Ley
distributions (see ref 10). These distributions are unique in that
the distribution of the sum of 1wy variables (having the same

(which is assumed to be a stationary, heterogeneous one) ig3) will have the same long tail. This property is analogous to
divided into a large number of intervals and/or a sufficient that of Gaussian distributions, wherein the sum of Gaussian
number of tracer particles is introduced and/or a sufficient variables is also Gaussian.

number of realizations of the medium is used. In mildly Shlesingethas shown that fg8 < 1, O{t) O~ o(t) ~ t¥, where
heterogeneous media, the displacement time density function[(t)CJis the mean displacement of the particle plume, as a
(t) will decrease rapidly for large times, and its first and second function of time ando(t) is its standard deviation. Since the
moments will exist. We note that the time measure of “short” ratio o(t)/d(t)dis constant in this case, the FPTD curves are
and “long” can be compared to, for example, the arrival time similar on different spatial scales. There is no relative narrowing

of half of the tracer particles at a measurement plane (outlet),
denotedt,. By the central limit theorem, the existence of the
first two moments ofy(t) guarantees that the arrival time
distribution (hereafter referred to as the first passage time
distribution, or FPTD) will be Gaussian. However, in highly

of the plume distribution with growing scale: this universality
property can explain the growth of dispersivity with scale (as
noted in the Introduction).

For 1 < 8 < 2 it was showh that [(t)00~ t while o(t) ~
tG=A12, henceo(t)/0t) I~ tA=A)12, In this case the mean transition

heterogeneous media of finite size, situations can arise whereirtime is finite, so that the time distribution becomes narrower,

the second and even the first moments are effectively infinite
(i.e., not small compared tt? andt;). This gives rise to
anomalous transport.

The hallmark of anomalous transport lies in the asymptotic
(long time) behavior ofy(t). In general, only two simple
asymptotic forms ofy(t) can exist: exponential or algebraic
decay. Adoption of an exponential form, however, necessarily
leads to Gaussian transport. Thus, when considering non-

in relative terms, with growing length scales. There is no
universality but the relative narrowing of the FPTD curve is
slower than in the Gaussian case, forcing the effective disper-
sivity to grow. It is well-known that for a Gaussian distribution,
Ot O~ t, o(t) ~ tY2, ando(t)/O(t) O~ t~12

3.FPTDfor g < 1
Anomalous transport for the cage< 1 was first investigated

Gaussian transport behaviors, it is relevant to approximate theby Montroll and Schérand by Scher and MontrdliThe FPTD

long time behavior of(t) asy(t) ~ t=2F (see refs 57). While

functionf(z) for a pulse injection, where is some nondimen-

any asymptotic decay behavior can be formulated as an algebraigional time (to be discussed below), derived by Scher and

decay with a changing, it is reasonable to assume (as we
discuss below) that changes only very slowly with the length
scale in highly heterogeneous systems.

Even in the simplest case of water and tracer flowing through

a tube or between parallel plates, anomalous (non-Gaussian)

transport (withg = 1) would arise if there were no diffusion
(mixing) among strata with different velocities. To illustrate this
point, consider a parabolic velocity profile, in a section of a
cylindrical tube of length. and radiusR. The velocity at any
radiusr within the tube isy(r) = vo(1 — r4R?), whereuvy is the
maximum velocity, so thatr2dr = —R? dv/vo. The number of
particles moving with the same velocity and thus arriving in
the same time is = 2zr dr n, whereNy = 7R?n is the total
number of particles. If by zero time we define the arrival time
of the fastest particles then the arrival time can be writteh as
= L/v — Llvg, i.e., & = —L dt/(t + L/vg)2 Substitution of the
above expressions for 2Ir and d into the expression ford
yields dN = LNo dt/vo(t + L/vg)? ~ dt/t? for large t, which
indicates? = 1. Similar analysis for flow between parallel plates
gives the same result. Obviously, in reality such behavior can
be observed only for sufficiently largg and/or for a sufficiently

short tube. Transport patterns in porous media are affected by
advection, at both large and small length scales, as well as by

diffusion on smaller scales. While diffusion effects cannot be
ignored, transport analogous to that in a tube (with no diffusion)

can occur on a much larger scale because the complex POT& ~if co

space morphology in rock materials can lead to formation of
preferential flow paths with limited mixing. In general, the
interplay of mixing and spreading mechanisms at different scales
can lead to anomalous transport.

We consider now, more generally, the influence of the
exponents. It is clear thatf > 0, since/Jy(t) dt = 1. Forf
> 2 the first two moments of(t) exist and thus the evolution

Montroll8, is
nT(nB + 1)

——sinafn
I'(n+1)

=

wherel is the distance traversed by particles, in units of the
displacement (transition) length. It was also shéwrat

_ e[ — pypIpI Py 1
[Zn(l _ ﬂ)(_[ﬁ/ﬁl)ll(l—ﬂ)]llz

7f(z) 1)

7

When using this solution, one assumes that tracer particles are
spread, initially, with constant density over the inlet face
(perpendicular to the flow direction) of the domain, or that the
domain is sufficiently long such that the effect of the initial
tracer distribution is negligible.

From egs 1 and 2 it is clear that the cumulative FPTD curve
is a function oft/IY#, where bothr and| are nondimensional
variables. These variables must be defined in terms of variables
from field and/or laboratory measurements. Berkowitz €t al.
definer = wt/ll0wherev is some characteristic flow velocity
and[Iis a single transition length. As mentioned above,for
< 1, the mean particle displacemelit) Cscales a$’ and thus
the mean particle velocity will decrease with time or distance
ast?~1 ~ [(t)3-1%. Since all cumulative FPTD curves reach a
ncentration breakthrough @t ~ 1, Berkowitz et af

use a formula similar to
l 1B
Sto)
v\ Pl

whereL is the distance from inlet to outlet. In their cabg,=
1.

®3)

t =
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Whenp < 1, there arises a question of how to define units
of time, since the mean time is infinite. By introducing the time
unit as(IlZv, some velocityr is chosen. This velocity defines
the coefficient of the long time behavior of[t(z)] and thus
specifies the coefficiertts in its Laplace transform (see ref 6
and also section 4). In this way,can be chosen such thiag
= 1 but, in generalbg will appear in (3). From (3) it follows
that if 7 is kept constant, and sin¢eandL are constants for a
given experiment, then

(b, = const (4)
for different choices of the single transition lengihl

We observe that the quantity= o/bj” ~ 03~ can be
interpreted as the mean particle velocity for a given distance

Margolin and Berkowitz

For eachn in (8), we have a term
/. M ds
C—loo

n
14

I
" 27idm!

R

V[
2siftm! g™ P s ¢k

_ V" 1
[ﬂm!ﬁg(”+1)/ﬁ F(l _n+ 1)
B
Fn+1
V" ( p ) . m(n+1)

9)

 apig™ P T(n+ 1) B

]} in agreement with the discussion above (see also discussion

regarding Figure 3, below). When a particuliis chosen, then

T is linearly proportional td. The coefficient of proportionality
can be determined by translating the theoretical cumulative
FPTD curve along the (temporaaxis to fit the experimental
measurements.

4. FPTD for g > 1

4.1. Mathematical Development for 1< f# < 2. Develop-
ment of the FPTD solution for x g < 2 is similar to that
given in Scher and Montrdlifor the case 0< 8 < 1. In the
present case, the leading terms of the Laplace transfoim)
of the transition time density functiop(t), which decreases as
t=1-f for t — o0, can be written for smalli as

YH(u) ~ 1 — [HI+ e ~ g oy (5)
wherec; is a positive coefficient andlis a mean transition
time.

Using our definition ofy(t), we show here briefly how the
FPTD at a distance oftransitions from the inlet can be obtained.
This FPTD is the distribution of the sum bfandom variables
(times), each of which follows the probability density function
Y(t). Itis well-known that the distribution of the sum of random
variables is the convolution of their distributions. Thus, by the
properties of the Laplace transforim

FPTD=L {[y*(u]} (6)
Here and in the remainder of the text, we suppress explicit
dependence of the FPTD on timesincet is not always written
explicitly in the right-hand sides of the equations but is implicit
through other variables.

Introducing the nondimensional time = t/0and the

nondimensional Laplace variabde= ull] we can write using
(5) the first passage time distribution as

1 petio | sr—l)ytbs
FPTD=—"—7—/ . e Q4 7
2y cie (")
wherebg = c[,»/[ﬂlfl. For the two cases < | andt > |, with v
= |t — I|, (7) can be rewritten as
1 joo i (:l:sv)n
FPTD=—— mf 7 s e 20 8)
2 < & nl

whereg = Ibg and “+” corresponds ta > .

where first we replaced the variabfe= g&’ (which is allowed
since the negative part of the real axis is a branch cut)cand
denotes a contour of integration in the complex plane. The
resulting integral is a known representation of théunction.
In the last step the two well-known relations = I'(n + 1)
andI'(z2) I'(1 — 2 = a/sinwz were used. The resulting solution
can be evaluated numerically only for smalFor largev other
expansions are developed below.

Consider the case> |. Then we define a small parameter
y =gh¥, and ifr = sy then

1
27ivi

c+ico

FPTD= re

C—ico

= (yrf)"

C+Ioo
Ty
=

y"
v[ﬂ = ['(n + 1)['(—/n)

anv[ﬂ n!

-1 T'(pn+1)
m/[ﬂDZo I'(n+1) sinzn

In the limit of 1 < 7 < | the method of steepest descent can
be applied as follows: we defire= (I — 7)/g*¥. For smallz,
h ~ 1" — « as| — » soh is large. The first passage time
distribution can be written as (see (7))

S(l ﬁ/ﬁe-f hgt/h de
il wgllﬂf

which is close in form to the expression in Scher and Mon¢roll,
for which the steepest descent method was used. Using this
method, we obtain

(2)(2*/3)/ [2(5-1)]

(10)

FPTD= (11)

FPTD= p[ - (ﬁ)ﬂ v 1)}

llﬁmmzﬂﬂ(ﬁ l))l/Z

(12)
As developed above, farnearl the following can be used:
(n + 1)
1 il | B - a(n+1)
FPTD=—— % (—h sin
B = '(n+1) p

(13)
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Figure 3. Cumulative first passage time distributions fer= » and

Figure 1. Cumulative first passage time distributions for 100, bg
=1 and different values @ (labeled near the corresponding curves).
The two regimes ¥k < 2 andg < 1 are shown by solid and broken
curves, respectively.

different values of3 (labeled near the corresponding curves). For the
1 < < 2caseshy=1and =100 . The two regimes ¥ < 2 and
B < 1 are shown by solid and broken curves, respectively.

— 1) for the distance. will be less thanv. Note also that the
""" decrease is faster for smaljgsection 3). This feature explains
why curves withg < 1 begin rising later.

Comparing Figures 1 and 2, we note that curves With 1
become more compact for longer distances, which is similar to
Gaussian behavior. In contrast, curves wfitke 1 spread even
more. This is because of universality and because the effective
velocity of the tracer decreases even further for longer distances.
Also we mention here that Gaussian FPTD curves will be
symmetrically distributed with respect to the link= 1, while
curves withg < 2 are asymmetric.

Figure 3 presents cumulative FPTD distributions for the case
v = v, whereu_ is the effective tracer velocity for the full
domain length. In this case, a direct comparison of the curves
is possible, and several interesting features can be noted.
Significantly, the tail of late particle arrival times lengthens as
p decreases. In contrast, however, the other sections of the FPTD
curves, i.e., the early and “bulk” arrival times, do not follow a
consistent progression with decreasjhg

4.2. Comparison of FPTD Curves to Data.Now we
consider the question of fitting theoretical curves to experimental
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Cumulative FPTD
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L . s S s B

0.5

0.0
0.1

100.0

(L= 1000)

Figure 2. Cumulative first passage time distributions fer 1000,b;s
=1 and different values ¢ (labeled near the corresponding curves).
The two regimes ¥k < 2 andf < 1 are shown by solid and broken
curves, respectively.

and forz > | measurements, for a known valuefin the range 1< g < 2.
- 1) The mean (tracer and carrier) velocitys assumed known from
FPTD= sinzfn (14) the measurements. Note that the family of curves having the

same 3, but with other free parameters being variable, is
analogous to a Gaussian distribution form. Fitting of these curves
to measurements requires determination of one parameter,
denoted below a&; fitting of this parameter is similar, in some
sense, to determining the dispersion coefficient of a Gaussian
distribution. First, using (13), which is the exact solution, we
calculate the cumulative FPTD:

= 20 _py ™
g h = I'(n+1)

Some cumulative FPTD’s based on the above solutions are
shown in Figures 1 and 2. The solutions (2®)4) for the ranges
< |, ~ |, andt > |, respectively, are combined to yield
these curves. We see that while the curves vtk 1 are
distributed around/l = 1, the curves witlf < 1 start at longer
times for smaller values ¢ and approach/l = 1 whenpg is
close to 1. To explain this behavior, recall that L/0IC] where
L is the domain length andClis a single displacement length.
In the case 1< < 2, we haver = t/[) and sincdlll= v[i0)
wherev is the mean tracer velocity, equal to the mean carrier
velocity, it follows thatt/l = tv/L, independent ofll] For § <

FPTD, () = [,FPTDY) dt

_ pwmpwawyy 90 E )"
- f(l_/mglfllﬂ(llb%/ﬁ)(l—ym_) B X
,ZO:

1 we obtaint/l = tugdl, wherevgris the effective tracer velocity n+1

at distancellll If considered for the same times and domain B a(n+ 1)
length, the curves presented in Figures 1 and 2 apply to the sin (15)
casevgn= v; i.€., the effective tracer velocities (fér< 1) for I'(n+1) B

the distancdlllare equal to the mean carrier velocity for the

cases 1< f < 2. Recalling that fop3 < 1 the mean particle  where, as defined abovg= Ibs and d = [fdr = —[g'¥ dh.
velocity decreases with distance (see discussion in section 3),We see that the cumulative FPTD for given time, velocity, and
it therefore follows that the effective tracer velocity (for< domain length depends only on the limits of the integral. Also,
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the result cannot depend on our choicellaf The only possible centration distribution ovespacegives unity, while integration
conclusion then is that the integral limits are independent of overtime of an FPTD gives unity.

dli.e., (cf. (4)), Finally, from the scaling relation (16), and with= 2, it
follows that
1 b, = const (16)
From the definition ot b,.,= @= const (21)
’ P72 omd 0O
_ L—ot _L—ut
h= mﬁ—ll/f(l_b )1/ﬁ - A 17 or
B
whereA is the unknown constant to be determined. We know Ao~ 00 (22)
that whent = L/v, h = 0 and from (13) . .
where nowlis any distance where the FPTD is measured and
T(1/8) sin T8 sin [fP0is the second moment of this FPTD distribution. At longer
_ v I(1p) smﬂ v (1/8) smﬁ distances the relative time sprei@i/i3 decreases asilll We
FPTDn— = ﬂﬁmlj—llﬁ(l_b )l/ﬁ = 7PA (18) mention that the rati¢®[f0is constant, independent of our
B choice ofll[] as must also follow from (19) and (20). This is

The left-hand side of (18) can be determined directly from the analogous to the behavior of the spatial moments with time.

experimental data. Then the valueffs known and, by using
(17) together with (123(14), the theoretical curves can be fit
to the measurements. If in a real medium a single transition lengtimeasured in

It is important to stress here that because of the similarity of the same units a$) can be defined naturally (say, by a
the curve shapes for differefit(see Figures43), and because  characteristic correlation length or fracture segment length), then
S is not usually known a priori, determination of a “trug” the ratio A/l will influence . Note thatd does not enter the
requires at least two sets of FPTD measurements at differentequations in an explicit manner. Rather, we treat the domain
distances from the source. Th@ncan be estimated from the under the assumption thatl is small enough to allow for the
rate of relative narrowing of the distribution with length. Also, averaging mentioned in section 2 to actually occur. For strong
with two sets of measurements, it is possible to determine heterogeneity, even with relatively small correlation, this
whether there is a decrease in tracer velocity; in such a caseaveraging may not be sufficient to permit full mixing. If the
we must haves < 1. Moreover, from the rate of the decrease, ratio A/l is not sufficiently small and the experimental FPTD

5. Evolution of # and the Character of y

J can be estimated. curves do not vary smoothly, then the large scale heterogeneities
4.3. FPTD for # > 2. We now demonstrate that whe¢n> must be treated deterministically.
2, Gaussian behavior arises, in accordance with the central limit In fact, 5 is a function of the length scale (or time needed to
theorem. Indeed, in this case the leading termg*¢fi) for small traverse this length scale). The CTRW theory development
u (i.e., for long times) will bey*(u) ~ 1 — W + [PL2. presented here can be applied wheis constant or slowly
Comparing this expansion to (5), we see that to obtain the FPTD varying over a number of orders of magnitude in length or time.
we can sef = 2 in the formulas (12)(14). Recalling thag Geological systems can encounter heterogeneities on different
= Ibg andl = L/0I] and that in this casks = [PIA(2[E), (12) hierarchical scales, and the characteristic length of the largest
will transform into scale heterogeneity is likely to influen@ethe most. We note
also that for statistically self-similar media, which appears to
_ 1 (- r)2 be the case in at least some geological formations (up to a certain
FPTD= gl/zm[2 Jr 2 4g length scale), it can be expected tifatvill remain constant.

On the other hand, if no largérappears due to new heteroge-
N ﬁ[ (L— yt)zlz} neity scales, then for a large enough domain, full averaging will
= expy—————— (19) take place and the Gaussian distribution will characterize the
27L 0 2LoE tracer plume; i.e.f will increase through the threshold of 2.
We observe foff < 1 (see section 3) that the mean particle
velocity is a decreasing function of the distance traversed by

particles. The following simple physical arguments explain this
phenomenon. Considering a step injection, faster flow paths will

and (13) will give the same result:

- rm+%Y,)  z@2m+1)

FPTD oI, r(2m+ 1) s 2 initiqlly be filled faster by particle;, i.e.., a_highgr proportic_)n of
B particles, compared to the carrier liquid, will have higher
velocities. In other words, the average particle velocity is higher
1 e, @m- 1)-'!ﬁ than that of the carrier liquid. Over time, mixing occurs, and
- Z(_h m the average particle velocity will decrease. For a pulse injection,
27 Ibﬁ = 27(2m)! if there is a large number of low velocity regions, fast-moving
5 particles may reach the slower flow regions before the slow-
_ vl oxl — (L—w) 20 moving particles reach the faster flow regions; again, over time,
o 2L R0 oL R (20) the average particle velocity will decrease.
Particles “sample” the existing velocity field as they migrate
while eq 14 is identically zero (i.e., no long tail). through the flow domain. Faster flow regions are sampled more

The solutions (19) and (20) represent Gaussian behavior. Wequickly. As the domain size increases, there is more time for
note here that the FPTD curves cannot be compared directly toparticles to sample lower velocity regions. As the number of
concentration distributions over space: integration of a con- still lower velocity regions becomes small, the plume velocity
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becomes constant. In terms9(t), a small number of regions  formations was discussed. In view of the different heterogeneity
with low velocity means thag(t) will decrease rapidly at long  scales, it seems natural to apply this approach. The CTRW
times. In other words, as the distance traveled by particles grows,considers transport phenomena on “small” scales, where global
p increases; when it reaches unity, the mean particle velocity averaging cannot be applied (although in terms of geological
becomes constant and should equal the mean velocity of theformations, “small” can be of the order of hundreds of meters,
carrier liquid. Thus, stating thgt increases simply means that or more). While typical homogenization methods are generally

with growing domain size, the relevant regionsydf) change. applicable only for mildly heterogeneous systems, the CTRW
We note, parenthetically, that the long-time expansions of is especially powerful for strongly heterogeneous media.
" (u) for the special cases gf= 1 andj = 2 can be found in We present new theoretical results for the FPTD in the

ref 9. Here, we do not develop FPTD solutions for these two important case ¥k < 2, wheref is the central parameter of

cases because the probability of encountering these exact value€TRW theory, and show that f@r> 2 the Gaussian distribution

in real geological systems is essentially negligible. is recovered. As a consequence, the entire possible range of
We return now to consider the physical picture of particle values and transport behaviors is discussed. Finally, a method

transitions discussed in section 2. In accordance with the to compare the theoretical FPTD solutions to experimental

properties of Lgy distributions (see section 2), it can be seen measurements is described.

from (1) thatf(r) ~ t717# ast — o; i.e., the tail drops in exactly

the same way as the density functi for single displace-

ments. A simﬁar long-time b)e!havioﬁgl)‘ound ingthe caze B . Ackn(_)wledgment. We _thank Haryey Sche_r for many l.JserI

< 2: we see from (14) that the leading term for~ « is FPTD discussions and fpr a grltlcal reading of this manuscript. We
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ADDITIONS AND CORRECTIONS

2000, Volume 104B The solutions (19) and (20) represent Gaussian behavior. We
) ) o ) note here that the FPTD curves cannot be compared directly to
G. Margolin and B. Berkowitz*: ~ Application of Continuous  concentration distributions over space: integration of a con-

Time Random Walks to Transport in Porous Media centration distribution ovespacegives unity, while integration
Following are two corrections to the paper. The analysis, OVertimeof an FPTD gives unity.
results, and conclusions remain unchanged. Finally, from the scaling relation (16), and with= 2, it
follows that

1. Section 4.3 should read as follows.
4.3. The FPTD for # > 2. We now demonstrate that when

B > 2, Gaussian behavior arises, in accordance with the central otz _ const
limit theorem. Indeed, in this case the leading termsytfu) by, = e ] (21)
for smallu (i.e., for long times) arey*(u) ~ 1 — [ + [02/2 2l

~ exp{ —0 + 02u%2}, whereg? = {P0— [{A. Comparing

this expansion to (5), we see that to obtain the FPTD we can Of

setf = 2 in the formulas (12)(14). Recalling thag = Ibg

and| = L/0C] and that in this casks = o¢?/(2[3), (12) will 02~ (22)
transform into

where nowis any distance where the FPTD is measured and

_ 1 (I —7)? o is the variance of this FPTD distribution. At longer distances
FPTD= N S 4g the relative time spread?/[{3 decreases asl] We mention

that the ratioo?/[@0is constant, independent of our choice of
0 (L— ut)2 (] as must also follow from (19) and (20). This is analogous

= [ —/—exg - —-—~L (19) to the behavior of the spatial moments with time.

27L0? 2Lvo I 2. There is a misprint in eq 10. The correct version is
and (13) will give the same result: FPTD= L cJf'mdr e’+7”ﬂ
2mivild cie

o I'(m+1/2) #=(2m+1)

FPTD=——— ZO h2m sin— L poving o o (rrf)"
r'2m+1 = .
ZnEﬂq/F (2m+1) rivrd== ¥ 2
L5 pylem D RSN

ZnEﬂW 2"(2m)! V0% T(n + 1)T(—pn)

1 & I(n+1) .
v (L ut)? 20) = — m/EﬂDZ) " sinzfn
27Lo? 2Lvo = T+
10.1021/jp002470l
while eq 14 is identically zero (i.e., no long tail). Published on Web 08/22/2000
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