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Spatial behavior of anomalous transport
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We present a general derivation of one-dimensional spatial concentration distributions for anomalous trans-
port regimes. Such transport can be captured in the framework of a continuous time random walk with a broad
transition time distribution. This general theory includes a Fokker-Planck equation as a particular limiting case.
All of the concentration profiles, as well as the associated temporal first passage time distributions, can be
written in terms of a single special function~that belongs to the class of Fox functions!. In addition, we
consider the first two moments of the spatial concentration distributions, and determine not only their scaling
behavior with time but also the coefficients and correction terms.
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I. INTRODUCTION

The well-known continuous time random walk~CTRW!
framework, initially proposed by Montroll and Weiss@1#,
Scher and Lax@2#, Montroll and Scher@3#, and Scher and
Montroll @4#, is inherently suited to characterizing and qua
tifying anomalous~non-Fickian! transport. Such transpor
cannot be described by classical Gaussian models.
CTRW framework one assumes that a moving parti
~tracer! undergoes random transitions in space according
in general, a coupled space-time probability density funct
~PDF!. Here, as elsewhere@4,5#, we concentrate on a wid
transition time PDFc(t), with an asymptotic algebraic ta
for long times:c(t);t212b with constantb.0. The case
b.2 leads to Gaussian transport while the intervals 0,b
,1 and 1,b,2 lead to different anomalous transport r
gimes @5,6#. In the discussion below, we shall refer to th
temporal formulation of the governing PDF as ‘‘standar
CTRW, in contrast to Le´vy flight formulations~which arise
for wide transition length distributions; it is argued in@7# that
Lévy flight formulations are inadequate in some physical
plications, e.g., groundwater hydrology!, or a mixed case of
wide distributions in both space and time. In analogy to
commonly used derivation of a Fokker-Planck equation fr
a master equation, Berkowitzet al. @7# consider a genera
CTRW and obtain a Fokker-Planck equation as a partic
case.

A physical picture of particle transport, emphasizing te
poral aspects at small length scales, has been applied
cessfully to laboratory and field experimental data, as wel
to numerical simulations of particle transport in geologic
media@8–12#. To date, known results of CTRW provide tem
poral distributions@i.e., so-called first passage time distrib
tions ~FPTDs!# for all possible values ofb @4,5# and spatial
concentration distributions for some specific waiting tim
PDFs and values ofb5 1

2 and 3
2 @3#. McLean and Ausman

@13# developed simple empirical formulas for spatial conce
trations, for 0,b,1. These authors used approximatio
~so-called no backflow, see Sec. II! similar to what we
present here, but neglected the steepest descent asym
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formula derived in@4#. This formula enables one to approx
mate an exact solution for large values of the argument~see
also Appendix A!. Thus the accuracy of the McLean an
Ausman@13# empirical formulas could not be checked rigo
ously and was assumed to be reasonable. Moreover, with
development of fast computers there is today no reason
to use the exact solutions developed here.

Spatial profiles have also been obtained for 0,b,1 us-
ing a fractional derivatives approach~e.g., @14#!. The frac-
tional derivatives formalism is mathematically equivalent
generalized random walks, if one focuses on algebraic lo
tailed transition time and distance distributions~e.g.,@7#!. We
observe that an unfortunate, ‘‘propagating error’’ appears
many papers dealing with CTRW and fractional derivativ
it is often suggested that the case 1,b,2 is already in the
domain of attraction of the central limit theorem~see@14–
17# and references therein! and thus need not be considere
separately. As we show in Sec. II, this is only true in the ca
of no spatial bias, i.e., for symmetric random walks. In ge
eral, the infinite second temporal moment ofc(t) when 1
,b,2 leads to a transport behavior that is different fro
the Gaussian solution distributions and their temporal evo
tion.

Multidimensional aspects of CTRW are analyzed
@16,18#. As we show in Sec. III B, the conclusion of@16#
regarding the peak position at the origin is inexact.

In this paper we develop one-dimensional~1D! spatial
concentration distributions~SCDs! for all possible values of
b, which follow from ‘‘standard’’ CTRW. We show their in-
terconnection and present all the distributions, includ
FPTDs, in terms of one special function. We note here t
the SCD is a residence-averaged concentration while
FPTD is a flux-averaged concentration~in the case of no
backflow!. Spatial profile concentrations assuming no ba
flow are developed in Sec. III, while SCDs with backflow a
discussed in Sec. IV. One of the major characteristics of
tracer transport is the apparent~or effective! dispersivity and
its behavior in the course of time. We present and deve
the ‘‘standard’’ CTRW-based predictions of this quantity
Sec. V.

II. NON-GAUSSIAN BEHAVIOR FOR 1 ËbË2

In this section we show that non-Gaussian propaga
arise in cases where 1,b,2 if there is a bias (l̄ Þ0)
©2002 The American Physical Society01-1
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GENNADY MARGOLIN AND BRIAN BERKOWITZ PHYSICAL REVIEW E 65 031101
present, i.e., we show that the first momentt̄ of c(t) being
finite is not sufficient to have Gaussian behavior. The corr
~up to the leading term! behavior of the standard deviation o
the propagators l(t) was first calculated by Shlesinger@6#,
showing that, for 1.b.2, s l(t); l̄ t (32b)/2 grows faster than
t1/2. However, this result remained unnoticed later; here
present an argument given in one such paper@15# and show
its error. First, we note that it is reasonable to assume th
two similar values ofb are used to describe the same tra
port process, with one value slightly smaller than 1 and
other value slightly larger than 1, the resulting behavior,
cluding the scaling of the spatial moments with time, sho
be similar. Since for 0,b,1, the scaling iss l(t);tb, the
exponent oft should be close to 1 for bothb↗1 andb↘1;
in contrast, for a Gaussian we havet1/2.

We reproduce two paragraphs from Shlesingeret al. @15#;
p. 500, replacing some original notation by ours:

‘‘An important random variable representing the rando
walk is the sumSN , where

SN5X11¯1XN , ~1!

and theXi are identically distributed random variables ea
with mean l̄ and variances

l̄

2
. If the variance is finite then

the central limit theorem can be invoked to obtain the Gau
ian probability density, say in one dimension,

f ~x!5 lim
N→`

Prob@x,SN /AN,x1dx#

5~2ps
l̄

2
!21/2exp~2x2/2s

l̄

2
!. ~2!

We have setl̄ 50 and will do so for the rest of the analys
because one can define a new variableY5X2 l̄ that has a
zero mean. Also we will only discuss one-dimensional ca
here.

One may further introduce a probability densityc(t) gov-
erning the time between the eventsXi , and study the sum
SN(t) , where

SN~ t !5X11¯1XN~ t !. ~3!

The random variableN(t) represents the number of even
that have occurred in the time interval@0, t#. If c(t) has a
finite first momentt̄ ands

l̄

2
,`, then again the central limi

theorem can be used to show that@6#

f ~x,t !5 lim
t→`

Prob@x,SN~ t ! /At,x1dx#

5~4pDt !21/2exp~2x2/4Dt ! ~4!

whereD5s
l̄

2
/2t̄ . ’’

The problem with this argument is that if one conside
Eq. ~3! with l̄ Þ0, one recognizes that there are two differe
mechanisms of dispersion: one is due to the positives l̄ and
the other is due to the uncertainty in determining the num
of transitionsN for a given timet, becauseN(t) is not a
deterministic~single-valued! function. Even ifs l̄ 50 @lead-
03110
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ing toD50 and ad function in Eq.~4!#, thenSN(t)5 l̄ N(t) is
not deterministic and will display some spreading depend
on c(t). Of course, forl̄ 50 no such problem arises and on
indeed recovers Eq.~4! but for l̄ Þ0 the ‘‘correction’’ to the
Gaussian is the leading term. The calculations for the spa
moments in the case 1,b,2 for the decoupled space-tim
single transition function are given in Appendix B. It can b
seen there that even for the case of a finite second temp
moment ofc(t), when indeed the Gaussian is approach
asymptotically, there are two distinct contributions to t
variances l

2(t) of the propagator—one comes from the d
tribution of single transition lengths and the other from t
distribution of single transition times. We thus conclude th
the case 1,b,2 with l̄ Þ0 does not lead to a Gaussia
distribution and constitutes another anomalous regime ly
between the self-similar case of 0,b,1 and the Gaussian
(b.2). In other words, in the presence of a bias, in the c
b,2 the contribution to the dispersion coming froms l̄ .0
is of secondary importance for long times. Furthermore,
formulaSN(t)5 l̄ N(t) is correct for anyc(t), including those
with 0,b,1, as long ass l̄ 50; when we determine the
SCDs for a no-backflow approximation~see below! we ac-
tually calculate the distribution ofl̄ N(t), i.e., FSCD (L
[SN(t) ;t).

III. SPATIAL CONCENTRATION DISTRIBUTIONS
WITHOUT BACKFLOW

A. Derivation of SCD

When tracer enters a medium, and is subject to a 1D fl
field ~i.e., transport is under the influence of a potential g
dient!, it spreads initially in all directions, but then event
ally migrates along the preferred flow direction~decreasing
potential!. After some time, most of the tracer will be dis
placed forward of the starting point, i.e., at this time, there
effectively no backflow. The same is obviously true for a
position in the medium: most of the particles found at so
position will advance after some time in the forward dire
tion.

When neglecting backflow, it is in fact quite straightfo
ward to obtain a SCD of a tracer at a given time. For the c
b,1, neglecting backflow is a good approximation for su
ficiently long times: the first and centered second spatial m
ments both scale with time astb ~e.g.,@6#!, which means that
there is, on average, no back movement because the for
advection compensates for the backward spread. The ex
of the backflow is defined by paths having velocities opp
site to the mean flow direction. It is natural to expect the
paths to have limited length~otherwise, there must be
‘‘macroscopic’’ gradient opposite to the mean flow dire
tion!, which defines a backflow distance. We observe a
that molecular diffusion is of limited extent in the presen
of the gradient. This condition is easily checked in an expe
ment: if the backflow distance from the input point is sm
compared to the forward tracer extent, then the no-backfl
approximation is appropriate.

For the case 1,b,2, the no-backflow assumption i
even simpler to justify. Here, the mean displacement sc
1-2
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SPATIAL BEHAVIOR OF ANOMALOUS TRANSPORT PHYSICAL REVIEW E65 031101
as t while the standard deviation scales ast (32b)/2. With
increasing time, the advection forward will overcome t
backward spread, as in the Gaussian case.

We emphasize that the derivations and notation in
section are similar to those in@5#; the reader is referred ther
for more detailed explanations. We define^l& as a~single!
transition distance. Then in the interpretation ofc(t) given
in @5#, and in the no-backflow approximation, we have th
the mean single transition distancel̄ 5^ l & since no transi-
tions back are allowed.

In the no-backflow approximation, there are two ways
derive the SCD of the propagator. First, in a direct approa
we note that the spatial profile is a residence-weighted m
distribution. It is well known that the waiting time before th
next transition takes place is given~in Laplace space! as „1
2c* (u)…/u wherec(t) is a single transition time distribu
tion and the asterisk denotes Laplace transform with varia
u. Thus the spatial concentration distribution as a function
distance from the origin~number of transitionsl! is given by

LFSCD~ l ;t !5@c* ~u!# l
12c* ~u!

u
, ~5!

whereLFSCD denotes the Laplace transform ofFSCD. Using
the usual long-time approximation ofc(t) in the two differ-
ent cases 0,b,1 and 1,b,2 leads to the desired solu
tions, given below.

A second approach, which yields~obviously! the same
result, is to use conservation of mass. For anyl>0 andt
>0

(
j 50

l

FSCD~ j ;t!1E
0

t

FFPTD~t8; l !dt8[1.

Defining the cumulative FPTD~CFPTD! as FCFPTD(t; l )
[*0

tFFPTD(t8; l )dt8 it follows that FSCD( l ;t)5
2(]/] l )FCFPTD(t; l ).

In the case 0,b,1,

c* ~u!'12cbub'e2cbub
, ~6!

for smallu ~see@5#; cb is a constant!, and the result of using
either of the two approaches is

lF SCD~ l !52
1

p (
n51

` S 2
g

tbD n G~bn!

G~n!
sinpbn ~7!

and, asymptotically,

lF SCD~ l !.
S bg

tb D 1/ @2~12b!#

expH 2
12b

b S bg

tb D 1/~12b!J
bA2p~12b!

,

g

tb @1 , ~8!
03110
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where t̄[ l̄ / v̄, t[t/ t̄ , g[ lbb, l̄ , bb, l̄ [cb / t̄ b, and l[L/ l̄ ,
where v̄ is some fixed characteristic velocity~for example,
the carrier fluid velocity!, L is the distance from the inpu
position, andt is time elapsed~see@5#!. Note that the first
temporal moment ofc(t) is infinite andt̄ is defined through
the ~arbitrary! choice ofv̄. One can use these connections
the dimensional variables measured in or fitted to exp
ments, for data analysis. Further, it can be seen that

x[
g

tb 5
B

v̄b

L

tb 5S L

tvL
D b

,

wherevL is the effective tracer velocity at the distanceL, and
we used the relationvL5 v̄bb,L

21/b . Also B[bb,LLb21 is a
constant of motion independent ofL ~for a fixed v̄!; one can
see thatC[B/ v̄b is independent of the choice ofv̄ ~chang-
ing v̄, while keepingvL constant, will changebb,L and thus
B, exactly to makeC invariant! ~see@5,11#!. To relateC to
the mean travel distance^ l (t)& we note that Eq.~B3! yields,
using the above definitions,^ l (t)&5tb/@CG(b11)#.

Similar results are obtained for 1,b,2. In this case@5#,

c* ~u!' 12 t̄ u1cbub'e2 t̄ u1cbub
~9!

and the result is

FSCD5
1

pbg1/b Ft2 l

b l
11G (

n51

`

~2h!n21
G~n/b!

G~n!
sin

pn

b
,

~10!

where h[( l 2t)/g1/b. There are two approximations: a
h↗`,

FSCD'F 1

l 2t
2

1

b l
G expH 2~b21!S h

b
D b/~b21!J

A2p~b21!

b
S b

h
D b/~b21!

, ~11!

while ash↘2`

FSCD'
1

p F 1

l 2t
2

1

b l G (n51

`

~2h!2nb
G~bn11!

G~n11!
sinpbn.

~12!

We use the definitionst[t/ t̄ , l[L/ l̄ , w[ l̄ / t̄ , and g
[ lbb, l̄ to transform to dimensional variables. Here, ho
ever, t̄ is the ~finite! first moment ofc(t).

For b.2, we find that

FSCDub.25
e2h2/4

4Apg
S 11

t

l D5 l̄
e2h2/4

4ApBL
S 11

wt

L D
since hereg5BL/ l̄ 2. Note that l̄ should be dropped from
the last expression to obtain the PDF form of the SCD.

We observe that for 1,b,2 there is also a possibility to
obtain a different, converging asymptotic expression wh
h↘2`, instead of the diverging asymptotic series presen
1-3
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above. Then the FPTD approximation for this case can
obtained also from considering mass conservation. From
~5!

FSCD'
1

2p i ECs

dseste2 ls1gsb
e2bbsb21

, ~13!

and for large (t2 l )↗` ~i.e., h↘2`!,

FSCD'
1

2p i ECs

dsexp@~t2 l !s2bb sb21#

5
1

2p i ~t2 l ! ECz

dz ez2hzb21

5
12b

p~t2 l ! (
n51

`

hn
G~nb2n!

G~n!
sinpbn, ~14!

where z[s(t2 l ), h[bb /(t2 l )b21 and Cs and Cz are
corresponding complex-plane contours~see, e.g., @5#!.
This series is convergent and for large enou
time h becomes small. The leading term (n51) is
@21/(t2 l )b#@bbG(b)/p#sinpb and is identical to the lead
ing term of Eq.~12!.

B. Unified expressions for SCD and FPTD

The solutions derived above are similar to the FPTD
lutions ~see, e.g.,@5#!. Below we present the SCD and FPT
solutions in the form of probability density functions. W
stress that corresponding SCD and FPTD solutions are
pressed in terms of the same function~but with different
arguments!. The no-backflow approximation for the SC
~which is a residence average in contrast to the flux avera
FPTD! in the case of 0,b,1, denotedFSCD01, can be writ-
ten as

FSCD01~L !5
1

R
f S L

R
;b D , ~15!

where R[tb/C.^ l (t)&G(b11), ^ l (t)& is the mean dis-
placement andC is the constant of motion defined precedi
Eq. ~10!. The corresponding cumulative SCD~CSCD! for a d
pulse of tracer is

FCSCD01~L !5 f cS L

R
;b D . ~16!

The functionsf and f c are defined in Appendix A. Only
non-negativex are possible and thus Eq.~A4! is relevant.
The FPTDs are also expressed in Appendix A through
function f (x;n), with x5(tmean,eff/t)

b, where tmean,eff is the
effective mean time, or a shift factor along the temporal a
to be defined when transforming the solution to dimensio
time. Thus, for any fixed lengthL and timet, we have that
x[(tmean,eff/t)

b[CL/tb so thattmean,eff5(CL)1/b.
One can see that there is an essentially exponential~actu-

ally, a stretched exponential! decrease in the concentratio
distribution for long distances. This is the result of the a
03110
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sumed normal spatial behavior of single transitions, i.e.,
narrow spatial distribution of a single transition distanc
when all spatial moments are finite, as in a Gaussian.
chose above ad-function distribution, allowing single transi
tions only in one direction and of equal length. It is al
easily found using Eqs.~A1! and/or~A2! that the peak of the
distribution is at the origin forb, 1

2 and starts moving for
b. 1

2 . Finally, we remark looking at Eqs.~15! and~A1!, that
the amount of tracer at the input point decreases with time
t2b.

The no-backflow approximation for the SCD in the ca
of 1,b,2 yields

FSCD12~L !5
E

bA
f S h;

1

b D , ~17!

whereh[(L2R)/A, R[wt, A[(LB)1/b, B[Lb21bb,L is
a constant of motion independent ofL, and E[(tw
2L)/(bL)11[12hA/(bL). The corresponding CSCD is

FCSCD12~L !5
1

b
f cS h;

1

b D . ~18!

Note that because (E/A)dL5dh, from Eq. ~A4! we have
that

E
wt

`

FSCD12~L !dL5
1

b
.

Since*0
`FSCD12(L)dL51, the relation~A5! appears. In this

case, for any positive time,h is defined from minus to plus
infinity, for L>0. Givenb, B, andR, the spatial profile can
be plotted as a function ofL. It should be noted that in orde
for the plume distribution at time zero to resemble ad pulse,
we require thatL0!L for all lengthsL of interest, where
L0[B1/(b21). This can be seen by looking ath as t50.
Finally, at the injection point,

FSCD12~L50!5
b21

G~22b! S L0

R D b 1

L0

decreases with time ast2b, as in the case 0,b,1.
Figure 1 presents the temporal evolution of SCDs for s

eral values ofb. It can be seen that for smallerb more
particles stay close to the origin, while asb increases a back
ward ~‘‘heavy’’ ! tail appears. This tail becomes less distin
as b approaches the value of 2. Such profiles of the SC
have been observed in studies of chemical transport in g
logical formations@19#.

We note here parenthetically that graphs of the spa
profile ~15! are similar to the Poisson-like distribution

P~L !5
mL/R1e2m

NR1G~11L/R1!
, ~19!

in the caseb< 1
2 . By equating the two expressions atL50,

we can chooseR15R/N and m5 ln G(12b), whereN is a
normalization factor depending onm and growing to 1 asm
increases. Atb5 1

2 when the slope of Eq.~15! at the origin is
zero, m'0.572 365; this value is very close to the valu
1-4
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FIG. 1. Temporal evolution of spatial concentration distributions for different values ofb. Here,R[tb/C>^ l (t)& G(b11) for 0,b
,1 andR[wt for b.1, wheret is time,C andL0 are constants of motion,^ l (t)& is the mean displacement,G is the gamma function and
w is the ~asymptotic! velocity of the tracer~in the caseb.1!. ~a! b50.4, ~b! b50.8, ~c! b51.2, ~d! b51.7.
th

ry
a

an
is

no
r

n

rm
m5e2gE'0.561 459~gE being Euler gamma!, for a zero
slope of Eq.~19!. This similarity breaks down forb. 1

2 .
Note, however, that both the Poisson distribution and
SCD derived here tend to the Gaussian distribution asm and
b grow. The reason why Eq.~19! is similar to Eq.~15! for
b< 1

2 might be that the transition probabilities are ve
small, while forb. 1

2 they increase. It can be shown, using
lognormal transition time PDF@12#, that the value ofb5 1

2 is
identified with reaching a time equal to the mean single tr
sition time; this fact also explains why the peak of the d
tribution advances forb. 1

2 , while for b, 1
2 it remains at the

origin.

IV. DERIVATION OF SCD WITH BACKFLOW

We now consider the SCD solutions when backflow is
neglected. Such solutions are of particular value for ea
~relatively! times and/or SCD’s near the particle inlet.

If there is a probabilityp to the forward transition andq
for the backward transition~obviously,p>q! then the non-
dimensional displacementl[L/^ l & of the particle from the
origin aftern transitions is given by the binomial distributio
03110
e

-
-

t
ly

Pl~ l ;n!5S n

n2 l

2
D p~n1 l !/2q~n2 l !/2.

Also, if we want to consider backflow, the Laplace transfo
of the probabilityP of makingn transitions in timet is given
by Eq. ~5!

LP~n;t!5@c* ~u!#n
12c* ~u!

u
, ~20!

wheret[t/ t̄ is a nondimensional time~as in Sec. III! and by
c(t) we mean a single transition PDF over a distance^l&.
Now l̄ 5(p2q)^ l &. Thus

FSCD~ l ;t!5 (
n5u l u

`

Pl~ l ;n!P~n;t!. ~21!

The Laplace transform of this expression is
1-5
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LFSCD~ l ;t!5
12c*

s S p

qD l/2

(
n5u l u

` S n

n2 l

2
D @c* Apq#n

5
12c*

s S p

qD ll2

xu l u
2F1S 11u l u

2
,
21u l u

2
;1

1u l u;4x2D , ~22!

where c* [c* (u), s[ t̄ u is the nondimensional Laplac
variable,x[c* Apq and 2F1 is a hypergeometric function

Formula ~15.1.14! of @20# gives 2F1(a, 1
2 1a;2a;z)

522a21(12z)21/2@11A12z#122a, so that in our case the
spatial profile for the positive forward displacementl can be
obtained by calculating

FSCD~ l .0;t!5L21
12c*

sy S 2pc*

11y D l

, ~23!

wherey5A124pq(c* )2.
The same formula can be obtained using@3#. Formula

~37! of @3# reads

LFSCD~ l ;t !5
12c* ~u!

u
G@ l ,c* ~u!#, ~24!

while formula ~12! of @3# is

G~ l ,z!5
1

N (
s51

N
e2p isl/N

12l~k!z
,

wherek[2ps/N, l(k)5( l p( l )e2 ikl . In our case,p(21)
5q, p(1)5p, and all other probabilities are zero. Usin
relations in Appendix C of@3# to calculateG, one obtains

G~ l ,z!→
F12A124pqz2

2zq G l

A124pqz2

in the limit N→`, so that

G@ l ,c* ~u!#→ 1

y H 12y

2qc* J l

5
1

y H 12y2

2qc* ~11y!J l

5
1

y H 2pc*

11y J l

and from Eq.~24! we again recover Eq.~23!.
It can be seen from Eq.~22! also that for anyl .0 it

follows that

FSCD~ l ;t!/FSCD~2 l ,t!5~p/q! l ,

wherep[p^ l & andq[q^ l & are the probabilities for transition
of length ^l&. Thus, we can write

S p^ l &

q^ l &
D l

5S pn^ l &

qn^ l &
D l/n

,

which can be brought into the form
03110
pn^ l &5
1

11S 1

p^ l &
21D n.

For example, if we start atp^ l &50.6 thenp8^ l &'0.962 and
p16̂ l &'0.998.

Consider the case 0,b,1. Using a first-order smalls
expansion in powers ofsb, for bsb!1 it is well known that
c* .12bsb ~cf. Sec. III!. Thus (c* )2.122bsb and

y.mF11
8pqbsb

m2 G1/2

,

whereb[bb,^ l & andm[A124pq[2p21 for p>1/2. Here
two cases arise:

~a! 8pqbsb/m2@1 so that y.A8pqbsb/2.A2bsb/2

~since in this casep'q!. Since bsb!1 we ignore it
compared to A2bsb/2@bsb, and so obtain 1/(11y)
'exp@2A2bsb/2#. Then Eq.~23! becomes

FSCD~ l .0;t!. 1
2 L21$A2bsb/221 exp@2 lA2bsb/2#%.

~25!

This is exactly the form of the no-backflow case, withb/2
, 1

2 standing forb in the expression that can be obtain
trivially by substituting Eq.~6! into Eq. ~5!. From there it is
known that the peak of the distribution will in this case st
at the origin. The factor of12 in front of the formula appears
because here the forward part is identical to the backw
one and is one-half of the total. Note that settingb51 in Eq.
~25! leads to a regular diffusionlike transport in this appro
mation ~with zero slope at the origin!. Thus, at relatively
short times, transport will be diffusionlike dominated an
anomalous, i.e., the diffusion is a particular case of
CTRW approach used. As time advances the transition to
next case will occur and 8pqbsb/m2'1 can be used to de
termine this transition time.

~b! 8pqbsb/m2!1 so thaty.m(114pqbsb/m2). This
is correct for anyp.q as t→` and will be considered fur-
ther below. We obtain 1/y.exp(2lsb)/m, where l
[4pqb/m2 and 1/(11y).exp(2nsb)/(11m), where n
[4pqb/@m(11m)#. Upon substitution into Eq.~23!

FSCD~ l .0;t!'
b

~p2q!v
L21$vsb21e2 lvsb

%,

wherev[b1n1l/ l[b(112q/(p2q)14pq/@(p2q)2l #)
is a function ofl. The last inverse Laplace transform is a
ready known from the no-backflow approximation@see Sec.
II, Eqs. ~5! and ~6!#.

For 1,b,2 a similar analysis yieldsc* '12s1bsb

for s!1 andbsb,s, (c* )2'122s12bsb and

y'mS 11
8pqs~12bsb21!

m2 D 1/2

.

Again two cases arise:
~a! 8pqs(12bsb21)/m2@1 so that
1-6
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y'&s1/2S 12
bsb21

2 D'&s1/2

~here we also assumedbsb21!1, this is always true when
the small-s expansionc* '12s1bsb is valid!. This case is
identical to the case~a! for 0,b,1, if one substitutes there
b5b51 @see Eq.~25!#.

~b! @8pqs(12bsb21#/m2!1 so that

y'mS 11
4pqs~12bsb21!

m2 D .

We obtain

1

y
.

exp@2ls~12sb21!#

m
,

wherel[4pq/m2 and

1

11y
.

exp@2ns~12bsb21!#

11m
,

where n[4pq/@m(11m)#. Substituting these expression
into Eq. ~23! gives

FSCD~ l .0;t!'
1

p2q
L21$~12bsb21!

3exp@2 lvs@12bsb21##%

'
1

p2q
L21H 12c*

s
~c* ! lvJ

where

lv[ l 1n l 1l[ l 1
2ql

p2q
1

4pq

~p2q!2 .

The last transform is already known from the no-backfl
approximation@see Sec. III, Eqs.~5! and ~9!#.

We now return to Eq.~21! and look at it from a different
point of view. First note that in the casel @1, which is of
interest here, the binomial distribution converges to a Gau
ian and since

S n
kD pkqn2k→ 1

A2pnpq
expS 2

~k2np!2

2npq D
asn→`, with k[(n1 l )/2, it follows that

Pl~ l ;n!'
1

A8pnpq
expS 2

@ l 2n~p2q!#2

8npq D .

Transforming to dimensional variables and usingl̄ 5^ l &(p

2q), l 2̄5^ l &2, s
l̄

2
[ l 2̄2 l̄ 254pq^ l &2, l 5L/^ l &, and Pldl

5PLdL yields
03110
s-

PL~L;n!5
1

A2pns
l̄

2
expS ~L2n l̄ !2

2ns l̄
2 D . ~26!

The expression~21! can be rewritten in the form

FSCD~L;t!'E
0

`

dn PL~L;n!P~n;t!, ~27!

which together with Eqs.~20! and ~26!, and for 0,b,1 is
identical to formulas~37!–~39! in @14#; these latter formulas
follow from one of the Galilei variant transport models di
cussed therein. We note that ifn in Eq. ~27! is considered to
be some parameter, not necessarily the number of transit
then Eq. ~27! may represent a general expression for
spatial profile concentration, with a coupled space-time tr
sition function. Some particular cases include using Eq.~26!
or a more general expression for a Levy flight, ord functions
of different arguments in place ofP(n,t) and/orPL(L;n).
As many of the fractional derivative equations considered
the literature admit solution by the separation of variab
method~see, e.g.,@14,17#! then Eq.~27! will be a general
solution of such equations withn being related to eigenval
ues of the problem.

V. SPATIAL MOMENTS

We consider now the first and second spatial moment
an evolving particle plume, as a functions of traveling tim
~cf. @6#; also our Appendix B!. Using the definitions
of velocity v(t)[d^ l (t)&/dt and dispersion D(t)
[ 1

2 $ds2(t)/dt%, where^ l (t)& denotes the mean travel dis
tance ands2(t) is the variance of the particle plume, th
quantityD/v can be calculated. In the biased Brownian m
tion picture this quantityD/v will be approximately equal
~neglecting molecular diffusion! to the dispersivity constan
and is thus called apparent~or effective! dispersivity. For 0
,b,1 the result for the leading term is~see Appendix B!

D

v
.^ l ~ t !&F2G2~b11!

G~2b11!
21G , ~28!

i.e., the apparent dispersivity grows linearly with the me
particle displacement. The proportionality coefficient~in the
square brackets! decreases from 1 forb50 to 0 forb51. In
some cases, the full expression~containing an additiona
term! might be needed, as discussed in Appendix B.

For 1,b,2 the leading term is~see Appendix B!

D

v
.

B~b21!

G~32b!
^ l ~ t !&22b, ~29!

i.e., in this case the dispersivity also grows with the me
displacement, but sublinearly. As usual, forb.2 we substi-
tute b52 @5# and find that the dispersivityD/v.B
5bb.2,LL5const. We stress here that the correction term
given in Appendix B, may be critically important particularl
asb↘1.
1-7
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VI. CONCLUDING REMARKS

A physically based approach for describing transport p
nomena in heterogeneous media exists, which generaliz
random walk formalism. This CTRW approach includes t
Fokker-Planck equation as a specific case of a more gen
picture. The CTRW is relatively simple to treat, yet it pr
vides qualitative and quantitative explanation and predict
of experiments because the initial model concept captu
the main features of ‘‘anomalous’’ transport.

In this paper we presented a straightforward and e
derivation of spatial concentration distributions of a tracer
it travels through highly heterogeneous media. The temp
and spatial profiles are all written in terms of the same s
cial function. The first two spatial moments of the conce
tration distribution were also calculated. While here we d
cussed 1D solutions, multidimensional generalizations
conceptually similar.

We have focused on widetemporal distributions ~the
‘‘standard’’ CTRW, which also might be called ‘‘Le´vy flights
in time’’ !, but note that the mathematics remain similar if w
assume widespatial and normal~narrow! temporal distribu-
tions ~i.e., the usual Le´vy flights!. In this case~in the pres-
ence of spatial bias! the spatial and temporal concentratio
formulas presented in this paper must be interchanged.

The interested reader is invited to download the compu
codes performing spatial and temporal distribution calcu
tions developed and described here from the web: ht
www.weizmann.ac.il/ESER/People/Brian/CTRW. This we
site also includes other solutions. We note also t
generalized FPTDs and SCDs have been developed fo
case 0.5,b,1 @12#.
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APPENDIX A: FUNCTIONS f „x; n… AND f c„x; n…

It is convenient to represent the spatial profile distrib
tions and also the FPTD distributions derived and presen
in @5,11# for all values of 0,b,2, bÞ1 in terms of the
following functions. By definition,

f ~x;n![
1

p (
n51

`

~2x!n21
G~nn!

G~n!
sinpnn ~A1!

and it has the two approximations. Asx↗1`,

f ~x;n!.
~nx!~2n21!/@2~12n!# expH 2S 1

n
21D ~nx!1/~12n!J

A2p~12n!
,

~A2!

and asx↘2`,
03110
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f ~x;n!.
1

pn2x (
n51

`

~2x!2n/n
G~n/n!

G~n!
sin

pn

n
. ~A3!

At n5 1
2 Eq. ~A2! becomes exact, while Eq.~A3! will be

zero. This last series~A3! is, in general, diverging in the
interval 0,n,1 and defines an asymptotic series. The fun
tion f is considered here only in this interval and is norm
ized:

E
0

`

f ~x;n!dx51 ~A4!

and

E
2`

`

n f ~x;n!dx51. ~A5!

Similarly,

f c~x;n![E
x

`

f ~x8;n!dx8

[11
1

p (
n51

`

~2x!n
G~nn!

G~n11!
sinpnn. ~A6!

As x↗1`,

f c~x;n!.
expH 2S 1

n
21D ~nx!1/~12n!J

A2p~12n!~nx!1/~12n!
~A7!

and asx↘2`,

f c~x;n!'
1

n F11
1

p (
n51

`

~2x!2n/n
G~n/n!

G~n11!
sin

pn

n G .

~A8!

Numerical evaluations of these functions~e.g., to produce
Fig. 1! were performed by programming the above formu
in the C language.

We note thatf can be written in terms of the Fox function
~see, e.g.,@14,21#! as follows:

f ~x;n![
1

n2x
H1,1

1,0Fx1/nU ~0,1!

~0,1/n!G[ 1

nx
H1,1

1,0FxU~0,n!

~0,1! G
[

1

n
H1,1

1,0FxU~2n,n!

~21,1! G[H1,1
1,0FxU~12n,n!

~0,1! G .
We also note that the following form of Eq.~A2! can be
helpful: definingy25@1/n21#(nx)1/(12n) leads to

f @y~x!#dy.
2

A2np
e2y2

dy,

which is similar to the definition of the error function

erf~z!5
2

Ap
E

0

z

e2y2
dy.
1-8
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In terms of these two functions, the FPTD and CFPT
solutions as functions of experimental time are written
0,b,1 as

FFPTD01~ t !5
bx

t
f ~x;b! ~A9!

and

FCFPTD01~ t !5 f c~x;b!, ~A10!

wherex[CL/tb[(tmean eff/t)
b, and for 1,b,2 similarly

FFPTD12~ t !5
w

bA
f S h;

1

b D5
1

btmeanbb,L
1/b f S h;

1

b D ,

~A11!

and

FCFPTD12~ t !5
1

b
f cS h;

1

b D , ~A12!

whereh[(12t/tmean)/bb,L
1/b . As noted in@11#, bb,L should

be small enough (bb,L
1/(12b)@1) for these formulas to apply

This condition is required because, strictly speaki
FFPTD12(t) is normalized to 1 for2`,t,`, which is an
artifact, but for sufficiently smallbb,L , the integral from2`
to 0 is negligible.

The expressions for the spatial profiles were given in S
III.

APPENDIX B: DERIVATION OF THE APPARENT
DISPERSIVITY

The mean displacement and the variance of the prop
tor can be calculated from formulas~5! and ~10! in
Shlesinger@6#,

^ l ~ t !&5 l̄ L21
c* ~u!

u@12c* ~u!#
, ~B1!

s l
2~ t !5 l 2 ^ l ~ t !&

l̄
12 l̄ 2L21

@c* ~u!#2

u@12c* ~u!#2
2^ l ~ t !&2,

~B2!

where l̄ and l 2̄ are first and second moments of a sing
transition length, disregarding the time needed. In the cas
no backflow, obviouslyl̄ [^ l &. We thus need to determine

L21
c* ~u!

u@12c* ~u!#
[L21f * ~u!

and

L21
@c* ~u!#2

u@12c* ~u!#2 [L21g* ~u!.

It is important to stress that although the leading ter
found below do not depend on the exact expression
03110
r

,

c.

a-

of

s
f

c* (u), but only on its asymptotic form, the correction term
do depend on it and one must be careful to take this i
account. This point was neglected in@6#.

First consider the case 0,b,1. As the functionc* (u)
5e2cbub

'12cbub is used in the SCD and FPTD calcula
tions, we also use it here. We denotex[2cbub and we are
interested in the small-x properties of the moments. Thus,

c* ~u!511x1
x2

2
1

x3

6
1O~x4!,

12c* ~u!52x2
x2

2
2

x3

6
1O~x4!,

@c* ~u!#25e2x5112x12x21
4x3

3
1O~x4!,

@12c* ~u!#2511@c* ~u!#222c* ~u!5x2@11x1O~x2!#,

1

12c* ~u!
5

1

2x F12
x

2
1O~x2!G ,

1

@12c* ~u!#2 5
1

x2 (
j 50

`

@2x1O~x2!# j5
1

x2 @12x1O~x2!#.

Substituting these expressions into the above formulas fof *
andg* yields

f * ~u!5

11
x

2
1O~x2!

2xu
'

12
cbub

2

cbub11

and

g* ~u!5
11x1O~x2!

ux2 '
12cbub

cb
2u2b11 .

„In @6# effectively c* (u)[12cbub was used, which led to
similar expressions forf * andg* but with the coefficient of
the second term in the numerators twice larger.…

After taking the inverse Laplace transform, we obtain

^ l ~ t !&' l̄ S tb

cbG~b11!
2

1

2D ~B3!

and

s l
2~ t !'

l̄ 2t2b

cb
2 F 2

G~2b11!
2

1

G2~b11!G1
tb~ l 2̄2 l̄ 2!

cbG~b11!

'S ^ l ~ t !&1
l̄

2
D 2F2G2~b11!

G~2b11!
21G1~ l 22 l̄ 2!S ^ l ~ t !&1

l̄

2
D .

~B4!

We use the natural assumption of the applicability of t
derivations,̂ l (t)&@ l̄ to arrive at
1-9
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s l
2~ t !

^ l ~ t !&2
'F2G2~b11!

G~2b11!
21G1

l 2

l̄ ^ l ~ t !&

1
2 l̄

^ l ~ t !&
S G2~b11!

G~2b11!
21D . ~B5!

In the casel 2̄@ l̄ 2 the last term can be dropped.
Now consider 1,b,2. We denoteg[cb / t̄ and «[b

21. We could consider

c* ~u![e2 t̄ u1g t̄ ub
512 t̄ u1g t̄ ub1

t̄ 2u2

2
1O~ub11!,

but instead we consider the somewhat more general exp
sion c* (u)512 t̄ u1g t̄ ub1h t̄ u21O(ub11) with h to be
specified later. It follows that 12c* (u)5 t̄ u@12gu«2hu
1O(ub)#,

1

12c* ~u!
5

(
j 50

`

@gu«1hu1O~ub!# j

t̄ u

5

(
j 50

`

g j (
r 50

j S j

r
D S h

g
D r

ur 1«~ j 2r !@11O~u«!# r

t̄ u
.

Since j >r and we are looking only for terms up tou in the
numerator~higher order terms will give corrections decrea
ing with time! then only r 50 is relevant, plus the casej
5r 51, and O(u«) can be dropped. We define a positiv
integer numberm[@1/«# @i.e., m«<1 and (m11)«.1#.
We obtain

1

12c* ~u!
5

(
j 50

m

~gu«! j1hu1o~u!

t̄ u
,

f * ~u!'(
j 50

m
g j

t̄
u« j 221S h

t̄
21D u21.

Taking the inverse Laplace transform,

f ~ t !'(
j 50

m
g j t12« j

t̄G~22« j !
1S h

t̄
21D .

Again, considering terms up tou in the numerator,
03110
s-

-

1

„12c* ~u!…2
5

F (
j 50

m

~gu«! j1huG2

1o~u!

t̄ 2u2

5

(
i 50

m

(
j 50

m

g i 1 ju«~ i 1 j !12hu1o~u!

t̄ 2u2

5

(
j 50

m

~ j 11!~gu«! j12hu1o~u!

t̄ 2u2

so that

g* ~u!5(
j 50

m
~ j 11!g j

t̄ 2
u« j 231

2~h2 t̄ !

t̄ 2
u221o~u22!

and

g~ t !'(
j 50

m
~ j 11!g j t22« j

t̄ 2G~32« j !
1

2~h2 t̄ !

t̄ 2
t.

Now we calculatef 2(t) and the lowest power of interest ist,

f 2~ t !5 (
n50

m
g nt22«n

t̄ 2
(
i 50

n
1

G~22« i !G@22«~n2 i !#

12S h

t̄
21D t

t̄
1o~ t !.

These preliminary calculations lead to

s l
2~ t !5

l̄ 2

t̄ 2
(
j 50

m

g j t22« jF 2~ j 11!

G~32« j !

2 (
n50

j
1

G~22«n!G„22«~ j 2n!…
G

1
t

t̄
F l 21S 2h

t̄
22D l̄ 2G . ~B6!

Note that the term withj 50 is zero. To guarantee the pos
tiveness of this expression in all possible cases~including

g50 and l 2̄5 l̄ 2! we require that 2h/ t̄ 22>21, which
meansh> t̄ /2 ~so one might conclude that this property w
be fulfilled for any function with the asymptotic expansio
used above!. In the particular case of an exponential form
c* (u) proposed above,h5 t̄ /2 and from here on we use thi
value. Note that using the truncated expansion forc* (u)
~equivalent to choosingh50! leads to a physically wrong
last correction term. Asb↘1 ~«↘0, gives ad pulse!, all the
1-10
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coefficients of different powers oft greater than 1@in Eq.
~B6!# go to zero, i.e., the dispersivity approaches zero~for no
backflow!, as is physically correct.

Consider finallyb.2 ~thus, effectively, useb52!. In
this case the second temporal moment ofc(t) exists and we

must havet 2̄/25(g1h) t̄ @this follows from the small-u ex-
pansion ofc* (u)#. Thusg5s t̄

2/2t̄ , alsom51, so that

s l
2~ t !'S l̄ 2

s
t̄

2

t̄ 2
1s

l̄

2D t

t̄
,

where we denoteds x̄
2[x2̄2 x̄2.

Calculating the apparent dispersivity leads to

D[
1

2

ds l
2~ t !

dt
.

l̄ 2t

2 t̄ 2
(
j 50

m

~22« j !g j t2« jF 2~ j 11!

G~32« j !

2 (
k50

j
1

G~22«k!G@22«~ j 2k!#
G1

s
l̄

2

2 t̄
, ~B7!

v[
d^ l ~ t !&

dt
'

l̄

t̄
S 11(

j 51

m
g j t2« j

G~12« j !
D . ~B8!

We see that for« not very close to zero the velocity reach
its limiting value ofw[ l̄ / t̄ fast enough~trivial substitution
shows thatgt2«[bbt2«, which already should be a sma
number for the validity of the above approximations!. For
the first two terms
B

es

y

r,

03110
1

v
5

t̄

l̄
S 12

gt2«

G~12«!
D 1O~ t22«! ,

and for«,0.5,

D

v
'

l̄ g

t̄
t12«H «

G~22«!
1gt2«S 112«

G~222«!
1

«221

G2~22«!
D J ,

while for «50.5,

D

v
'

l̄ g

t̄
A t

p
1

l̄ g2

t̄
S 22

3

2p
D 1

s
l̄

2

2 l̄
,

and for«.0.5,

D

v
'

l̄ g«t12«

t̄G~22«!
1

s l̄
2

2 l̄
.

Consideringb'1, we note that the above expressions
s l(t) ~both for 0,b,1 and for 1,b,2! cannot be used
simply with b51. Inserting b51 would lead toc* (u)
5e2c1u, so thatc(t) is a d function, rather than a function
c(t);t22 ast→`. Unfortunately, to the best of our knowl
edge, no CTRW solutions exist forb51, wherec* (u)'1
1u ln u2c1u.
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