Insights to the daily and seasonal variation in near surface water vapor in the Eastern Mediterranean

Dan Yakir, Leon Peters, Alon Angert, Joel Gat
Environmental Sciences & Energy Research
Objectives of COST Action SIBAE

Main objective: To integrate and coordinate research using stable isotopes as a critical tool in biosphere-atmosphere-Earth system science across scales and across disciplines in Europe
Introduction

Near surface water vapor isotopes are key elements for: ET & ecohydrology, atmospheric circulation, paleoclimate, d-excess, going beyond precip 18O links $\text{H}_2\text{O}/\text{CO}_2/\text{O}_2$ interactions.

Objectives:

Investigate the controls over the diurnal, seasonal and long-term variations in near surface vapor isotopes
Introduction

Resources

Moisture Isotopes in the Biosphere and Atmosphere

Background and Justification

The International Atomic Energy Agency (IAEA), in cooperation with the WMO, has long been operating the Global Network of Isotopes in Precipitation (GNIP), which has provided global data to understand and simulate the water cycle under present and past climates. Recently, the IAEA initiated efforts to improve the availability of isotope data on other water cycle components in an effort to supplement GNIP data and integrate isotope applications in hydrological cycle, carbon cycle, and climate research. The group for Moisture Isotopes in the Biosphere and Atmosphere (IAEA-MIBA) was constituted and includes a group of scientists with diverse research interests ranging from local ecosystems to global scales.

Initial Meetings and Protocol Development

The initial consultants' meetings held in November 2003 and May 2004 resulted in the development of the basic network design and sampling concepts. It was decided that for this network that regular sampling of the isotopic composition of water in plant leaves, stems, soil and atmospheric
Methodology

Sampling at two heights above ground (5 & 40 m)

A rapid method for the sampling of atmospheric water vapour for isotopic analysis
Results

Near surface atmospheric water vapor

Vapour Collections:

- **WIS Long-term sampling regime**: 1997 – Present, ~2-Weekly collections
- Is there a long-term trend...
The local scale:
Campus sampling (Weizman Inst.) consistent with rural sampling (Northern Negev). No “altitude” effect.
Correlation between Israel and the region:
Seasonal (r=0.8); inter-annual (r=0.7 to r=0.5)

=> the same controlling factors, synoptic scale, are responsible for the variability over Israel and adjacent areas. Measurements in a single location help understand variations over large regions.

Water-isotope NCAR GCM CAM2,
Jun-Eun Lee & Inez Fung.
Results

- Model is fine in predicting precipitation patterns (spatial, temporal, altitude trends).
- Model is wrong in capturing the seasonal cycle…

Water-isotope NCAR GCM CAM2, Jun-Eun Lee & Inez Fung.
Seasonal variations in the isotopic composition of near-surface water vapour in the eastern Mediterranean

By ALON ANGERT¹, JUNG-EUN LEE² and DAN YAKIR¹*, ¹Department of Environmental Sciences and Energy Research, The Weizmann Institute of Science, Rehovot 76100, Israel; ²Berkeley Atmospheric Sciences Center, University of California, Berkeley, CA 94720-4767, USA

Results

Our hypothesis: the vertical mixing is significantly influenced by subsidence and the PBL characteristic.

During summer, mixing between surface and free trop’ is inefficient…
Results

Is the long-term trend artifcat of diurnal cycle?
The “expected” diurnal cycle:
Results

No clear diurnal cycle
No day/night effect
No “altitude” effect

(16 diurnal campaigns
447 samples)
Results:

An underlying effect of humidity emerges in low humidity conditions.

Data when RH<60%
Dominated by dry days.
Climate change indicators in the Eastern Med

18O of cellulose is influenced by leaf water and in turn by atmospheric vapor.
Some indications for a drying trend exist…

Does this reflect change in circulation patterns?
Change in atmospheric Circulation? Atmospheric circulation: dry days from N. Africa, wetter days from the Balkan

“Dry day”; $\delta_v \sim -12$

“Wet day”; $\delta_v \sim -10$

Clear variations in the source and dynamics in the moisture levels. Is this reflected in observed variation in our δ_v values?

Heini Wernli and Stephan Pfahl, Mainz/ETH
Discussion

Effects of land surface processes: ET decline with increasing WUE, associated with CO2?

Water Use Efficiency (W):
Ratio of Carbon uptake / Water loss (T)
Derived from 13C in tree rings

Reduced T (“heavy” water) reduces δ_V

Transpiration (“heavy water”)
Photosynthesis Ca (~380 ppm)

C_i (~250 ppm)
Evaporating surfaces (H2O sat)
Chloroplast (CO2)
Seasonal cycle can only be explained by accounting for changes in vertical mixing.

Long-term trend cannot be explained by effects of diurnal cycle.

Relative humidity is linked to diurnal δ_V dynamics (apparent when $\text{RH} < 60\%$).

Drying trends could be associated with changes in circulation patterns (to more southerly; also effected by wind speed and q).

Long-term trend in δ_V is associated with increase in water use efficiency (CO2 effect?) that reflect reduced ET.

δ_V could become a useful indicator for regional change (climate, circulation patterns, etc.)