Land-atmosphere interactions inferred from CO₂/COS measurements Dan Yakir¹, Max Berkelhammer², ¹Earth & Planetary Sciences, Weizmann Institute of Science, Israel ²Earth & Environmental Sciences. University of Illinois, Chicago John Miller³, Huilin Chen⁴ NOAA-GMD, Boulder³, CIREES, UC Boulder⁴ ## Global COS Budget (Gg S a⁻¹; Kettle et al., 2002; Montzka et al., 2007; Berry et al., 2013) ## Stratosphere COS →SO2 OH uptake (82-110) ### Perspective from the background atmosphere: Exiting new technological advances (Quantum cascade, mid IR lasers...) ## Changes in ratio of COS to CO₂ uptake across scales $$LRU = \frac{A^{\cos}}{A_{co2}} \frac{[CO2]_a}{[COS]_a}$$ $$GPP = F^{\cos} \frac{[CO2_a]}{[COS_a]} \stackrel{1}{\bullet} \frac{1}{LRU}$$ GPP/NEE = 1.9 to 2.2 #### **LETTERS** PUBLISHED ONLINE: 17 FEBRUARY 2013 | DOI: 10.1038/NGE01730 ## Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux David Asaf¹, Eyal Rotenberg¹, Fyodor Tatarinov¹, Uri Dicken¹, Stephen A. Montzka² and Dan Yakir¹* ## A coupled model of the global cycles of carbonyl sulfide and CO₂: A possible new window on the carbon cycle Berry et al., 2013 ### **Global Biogeochemical Cycles** #### **RESEARCH ARTICLE** 10.1002/2013GB004644 #### **Key Points:** Carbonyl sulfide can be measured in situ using a laser absorption Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide M. Berkelhammer^{1,2}, D. Asaf³, C. Still⁴, S. Montzka⁵, D. Noone¹, M. Gupta⁶, R. Provencal⁶, H. Chen^{7,8}, and D. Yakir³ 12/2/2015 iLEAPS2014-Naning ## Perspective from the Planetary Boundary Layer (PBL) Ceilometer, two consecutive days Wind Lidar: Mauder & Eder, unpublished 12/2/2015 iLEAPS2014-Naning # Perspective from canopy air measurements: Diurnal surface concentration measurements 12/2/2015 ## Linking events in the surface layer to the PBL $$\frac{dC_{cos}}{dt} = k(C_{cos-trop} - C_{cos-surface}) + (F_{cos-soil} + F_{cos-leaf})$$ $$\frac{dC_{co2}}{dt} = k(C_{co2-trop} - C_{co2-surface}) + (F_{co2-soil} + F_{co2-leaf})$$ Equations for both CO_2 and COS with measured NEE and surface C_s solved for k and C_{trop} 12/2/2015 iLEAPS2014-Naning 11 ### **Conclusions** - COS is a useful tracer of CO₂ exchange with the terrestrial ecosystems and will add a powerful tool to a very limited arsenal.. - There is no alternative "observational" means to estimate GPP on global scale (new sun fluorescence is also developing) - Incorporating the use of several tracers controlled by different processes (such as COS and CO_2) provide additional insights (such as interactions of surface with the PBL) - Developing means to link surface measurements to detect changes in the PBL are important to obtain full perspective of biosphere-atmosphere exchange ## Thank you