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[1] The low-order even gravity harmonics J2, J4, and J6 are
well constrained for Jupiter and Saturn from spacecraft
encounters over the past few decades. These gravity
harmonics are dominated by the oblate shape and radial
density distribution of these gaseous planets. In the lack of
any north–south asymmetry, odd gravity harmonics will be
zero. However, the winds on these planets are not
hemispherically symmetric, and therefore can contribute to
the odd gravity harmonics through dynamical variations to
the density field. Here it is shown that even relatively
shallow winds (reaching ~ 40 bars) can cause considerable
odd gravity harmonics that can be detectable by NASA’s
Juno and Cassini missions to Jupiter and Saturn. Moreover,
these measurements will have better sensitivity to the odd
harmonics than to the high-order even harmonics, which
have been previously proposed as a proxy for deep winds.
Determining the odd gravity harmonics will therefore help
constrain the depth of the jets on these planets, and may
provide valuable information about the planet’s core and
structure. Citation: Kaspi, Y. (2013), Inferring the depth of the
zonal jets on Jupiter and Saturn from odd gravity harmonics,
Geophys. Res. Lett., 40, doi: 10.1029/2012GL053873.

1. Introduction

[2] Jupiter and Saturn are large gas planets with no solid
surface down to perhaps a small core [Guillot, 2005]. Be-
cause of their rapid rotation, their shape is distorted from
perfect sphericity resulting in large gravity harmonics. To
date, only the first three even zonal gravity harmonics J2,
J4, and J6 have been accurately measured [Jacobson, 2003;
Jacobson et al., 2006], putting strong constraints on the inte-
rior mass distribution of these planets [e.g., Guillot and
Morel, 1995]. In 2016, NASA’s Juno mission will arrive at
Jupiter equipped to perform high precision measurements
of the gravity field with sensitivity at least up to J12 [Bolton,
2005]. These measurements should be able to provide strong
constraints on the depth to which atmospheric circulation
penetrates on these planets [Hubbard, 1999; Kaspi et al.,
2010]. Coincidentally at the same time, NASA’s Cassini mis-
sion will conclude its decade-long survey of the Saturnian
system (the last part of the mission is coined the Cassini

Solstice mission), with proximal orbits of Saturn obtaining
the same type of data for Saturn, before the spacecraft ter-
minates its operation by descending into Saturn’s interior.
[3] At the visible cloud level, the atmospheric dynamics

on these planets are dominated by strong east-west (zonal)
jet streams [Vasavada and Showman, 2005]. It is currently
unknown how deep these jets extend, and the only available
data are from the Galileo entry probe to Jupiter that found
160m s�1 winds extending down at least to 22 bars at the
entry point of the probe [Atkinson et al., 1996]. For the
Jupiter case, if strong winds extend to depths of more than
1000 km (~5000 bars), then they should have a significant
effect on the high gravity harmonics [Hubbard, 1999;
Kaspi et al., 2010]. This is caused because the dynamical
density variations that are in balance with the winds, perturb
the mass distribution on the planets, and affect the gravity
spectrum. For the lower harmonics, this perturbation has a
much smaller effect on the harmonics than that caused by
the oblateness and compressibility of the planet. However,
as first noted by Hubbard [1999], beyond degree 10, the
dynamical perturbations will dominate the gravity spectrum.
[4] Because Jupiter and Saturn are gaseous, aside from

the cloud-level winds, there is no apparent asymmetry
between the northern and southern hemisphere. Therefore,
the gravitational harmonics resulting from the shape and
vertical structure of the planets have identically zero odd
harmonics. However, the observed cloud level wind struc-
ture does have hemispherical differences (Figure 1), and
therefore, the contribution to the odd gravity harmonics
due to wind should be nonzero. Unlike the even harmonics
that have a contribution from both the solid-body density
distribution and the dynamics, the odd harmonics are
caused therefore purely due to dynamics. Thus, any odd
signal detected will be a sign of a dynamical contribution
to the gravity signal. This paper attempts to estimate how
large these odd harmonics can be, and investigate whether
they can be measured by Juno and Cassini.

2. The Gravity Signal of Internal Dynamics

[5] The interior density distribution of the planet deter-
mines the zonal gravity harmonics which can be defined as

Jn ¼ � 1

Man

Z
Pnrr nd3r; (1)

where M is the planetary mass, a is the mean radius, Pn is
the n-th Legendre polynomial, and r is the local density
[Hubbard, 1984]. The density can be divided into a solid-
body component er r; θð Þ and a dynamical component r0(r,θ)
arising from the fluid motion relative to the static rotating
planet (r is radius and θ is latitude), so thatr ¼ erþ r0. Thus,
in the lack of any flow, r0 vanishes, and Jn reduces to the
harmonics arising from only the shape and radial density
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distribution of the planet [Zharkov and Trubitsyn, 1978;
Hubbard, 2012]. If the planet would have been completely
spherical the radial profile of density alone will have no
projection on Pn for n> 1 in equation 1, and all the harmo-
nics will vanish. However, the oblateness of Jupiter and
Saturn, given as the difference between polar and equatorial
radius, is 6.5% and 9.8%, respectively [Seidelmann et al.,
2007], and therefore, they have considerable zonal harmo-
nics. Since the mean density distribution is hemispherically
symmetric, and thus, there are no differences between er in
the northern and southern hemisphere, the odd harmonics

(n= 3, 5, 7 . . .) resulting from the solid-body vanish due to
Pn being an asymmetric function around the equator.
[6] Estimating the dynamical part of the density requires

knowledge of the zonal velocity structure. Since the planet is
rapidly rotating, Coriolis accelerations are dominant over the
inertial accelerations (small Rossby number), and therefore,
surfaces of constant angular momentum per unit mass will
be nearly parallel to the axis of rotation [Kaspi et al., 2009;
Schneider and Liu, 2009]. This results in no interior flow
crossing surfaces of constant angular momentum, thus to lead-
ing order the fluid motion can be only along cylinders parallel
to the axis of rotation. If the fluid have been completely
barotropic, this would result in a Taylor–Proudman state
[Taylor, 1923; Pedlosky, 1987], where the cloud-level zonal
winds extend at a constant velocity into the interior along the
direction of the spin axis [Busse, 1976]. However, since the
convectively driven interior can have baroclinic latitudinal
entropy gradients resulting in thermal wind shear [Kaspi,
2008;Kaspi et al., 2009], and due to Ohmic dissipation caused
by the magnetic field [Liu et al., 2008], a decay in wind veloc-
ity is expected at some depth. Thus, the zonal wind profile can
take the general form

u r; θð Þ ¼ u0e
� a�r

Hð Þ; (2)

where u0(r,θ) are the observed cloud-level zonal winds
extended constantly along the direction of the axis of
rotation, and H is an e-folding decay depth of the cloud-level
winds. The depthH is a free parameter, intended to parameter-
ize the wind shear along the direction of angular momentum
contours, and varying it systematically allows therefore
investigating the dependence of the gravity harmonics on the
vertical extent of the winds. Thus, the larger H is, the deeper
the winds extend into the interior. Previous studies inferring
dynamically induced gravity harmonics [e.g., Hubbard,
1999; Kaspi et al., 2010; Liu et al., 2013], have used only
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Figure 1. The difference between the northern and southern
hemisphere cloud-level zonal wind (m s�1) as function of
latitude for Jupiter (left) and Saturn (right). The total cloud-
level zonal wind is shown in Figure 2a.
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Figure 2. (a) The cloud-level zonal wind (m s�1) on Jupiter [Porco et al., 2003] and Saturn [Sanchez-Lavega et al., 2000].
(b) The cloud-level zonal wind (m s�1) as function of latitude and pressure extended along the direction of the spin axis with
a decay depth of H= 1000 km. The color scale is logarithmic to allow resolving the high latitude jets. (c) The corresponding
dynamical density anomaly, r0, (kgm�3), derived from equation 3, and set to have a zero mean.
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hemispherically symmetric forms of such winds around
the equator; however, since here we are interested in the asym-
metric components of the gravity harmonics resulting from
north–south wind asymmetries this assumption is relaxed. To
avoid discontinuities across the equatorial plane, we limit the
values ofH to values whereH≪a, and use smoothed functions
around the equator. It is possible to construct more sophisticated
velocity profiles (e.g., H values that vary with latitude);
however, the purpose of this analysis is to point that measurable
odd gravity harmonics can exist due to atmospheric dynamics,
and therefore, exploring a broader range of models is left for a
forthcoming study. Figure 2b shows such a wind structure for
a case with H=1000km for both Jupiter and Saturn (note that
color scale is logarithmic). The winds at 1 bar match the
observed winds (Figure 2a) and are extended into the interior
(equation 2). In this Cartesian projection, deep winds become
tilted equatorward because of the alignment in the direction of
the spin axis.
[7] Since the dynamics are in the regime of small Rossby

numbers, the flow to leading order is in geostrophic balance,
and therefore, the thermal wind balance must hold so that

2Ω�rð Þ eru½ � ¼ rr0 � g0; (3)

where Ω is the planetary rotation rate, u(r) is the full 3D veloc-
ity, and g0(r) is the mean gravity vector [Pedlosky, 1987;
Kaspi et al., 2009]. Here the thermal wind balance is written
in a general form without making any assumptions on the
depth of the circulation [Kaspi et al., 2009]. Thus, given the
mean state density er from interior models [e.g., Guillot and
Morel, 1995; Helled et al., 2009], the mean gravity g0 (which
is calculated by integrating er ), and the zonal velocity from
equation 2, the dynamical density gradient can be calculated,
and will depend only on the decay parameter H. We can to a
good approximation use spherical geometry for the dynamical
part of the density because the dynamics are a perturbation to
the mean hydrostatic state, and thus, for the dynamics, the
planet’s deviation from spherical geometry is a second order
effect. Thus, for the purpose of this calculation, we treat the
static part of the density as only a function of radius er ¼er rð Þ. Since in spherical geometry er rð Þ has no projection on
the Legendre Polynomials in equation 1, the static gravity har-
monics, which are dominated by the oblate shape of the planet,
must be calculated by other methods [e.g., Zharkov and
Trubitsyn, 1978; Kong et al., 2012; Hubbard, 2012].
[8] For the dynamical part of the density, equation 3 can

be integrated in spherical coordinates at every vertical level
to determine the dynamical density up to an integration
constant. Thus, integrating equation 3 for the whole planet
allows determining r0(r,θ) up to a nonunique function of the
radius, r00(r). However, this function, which physically repre-
sents a perturbation to the horizontal-mean radial density
profile due to dynamics, will not contribute to the gravity
harmonics since it is only a function of radius and therefore
has no projection on the Legendre polynomials in equation 1.
Therefore, for the purpose of determining the dynamical grav-
ity harmonics, the choice of r00(r) does not affect our results.
One needs to consider though whether r00 would have had a
contribution to the harmonics in the oblate system (in a similar
manner toer). However, for small Rossby numbers, r00 is small
compared to the solid body radial density profile (r00 ≪ er,
[Pedlosky, 1987]) and cannot be larger than r0, and there-
fore, given the uncertainty in the profile of er itself [Guillot,

2005; Helled et al., 2009; Nettelmann et al., 2012], r00 will
be within the uncertainty range of er. Figure 2c shows the
resulting density perturbation balancing the velocity profile
in Figure 2b, with r00(r) chosen such that the density pertur-
bation has a zero mean. Then, using spherical coordinates, the
dynamically induced gravity harmonics due to the density
anomaly r0 are

ΔJn ¼ � 1

Man

Za

0

r0nþ2dr0
Z2p
0

df0
Z1

�1

Pn m0ð Þr0 r0;m0ð Þdm0; (4)

where f is longitude and m= cosθ. Figure 3 shows the gravity
spectrum resulting from both the static density field (squares),
and the dynamically induced gravity (circles) for cases of five
different decay scale heights for both Jupiter and Saturn.
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Figure 3. The static (squares) and dynamical (circles) gravity
spectrum for Jupiter (top) and Saturn (bottom). The dynamical
gravity harmonics (ΔJn) are shown for five different decay
depth values: H=100 km (red), H=300 km (purple),
H = 1000 km (orange), H = 3000 km (blue), and H = 10000
km (maroon). Filled (open) symbols indicate positive
(negative) zonal harmonics. Black plus signs show the
observed values of Jn. The static values [Hubbard, 1999,
and W. Hubbard, personal communication] have only even
components (odd harmonics are identically zero).
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[9] From an inertial reference frame, the dynamics on
Jupiter and Saturn are only small perturbation to the total
solid-body rotation of the planets. Therefore, the low order
harmonics due to solid-body rotation are orders of magnitude
larger than the dynamically induced gravity harmonics (com-
pare green squares to colored circles for n ≤ 8 in Figure 3).
Beyond n= 10, the gravity response due to dynamics is larger
than the solid-body response. Generally, the deeper the dy-
namics extend, the stronger the dynamically induced gravity
harmonics are, because more mass is involved in the flow.
Therefore, larger H values have a generally stronger gravity
response (Figure 3), though this relation is not monotonic be-
cause of the complex shape of the wind structure when pro-
jected in cylindrical symmetry (equation 2). Typically, the
dynamical harmonics on Saturn are larger than they are on
Jupiter because the winds are stronger and the planet is smal-
ler (equation 4). Nonetheless, since Saturn is also more oblate
than Jupiter, the static harmonics are also larger, and there-
fore, the ratio of dynamic to static harmonics remains
roughly similar to that of Jupiter. The calculations presented
here use the Voyager rotation period for Saturn (10.657
hours). The Cassini measurements have suggested an uncer-
tainty of about 10minutes in the exact rotation of Saturn
[Gurnett et al., 2007]. Therefore, all the calculations here
have been repeated for this range of rotation periods (vary-
ing Ω and correspondingly er [Helled et al., 2009] and the
zonal velocity in reference to the new rotating frame), but
the results for the odd harmonics do not vary considerably.
[10] In the rotating reference frame, there are strong

north–south symmetries in the wind patterns (Figure 2a),
and therefore, the first even harmonics are larger than the
odd harmonics (ΔJ2>ΔJ3 ). For larger n due to the more
complex shape of the Legendre polynomials, these differ-
ences diminish. On Jupiter, the largest asymmetry is due to
the strong eastward jet at 23�N and the strong westward jet
at 19�S (Figures 1 and 2a). On Saturn, the general pattern
is more hemispherically symmetric (Figure 2a), but since
the overall wind is stronger and the planet is smaller, Saturn
has a larger J3 and J5 when the winds are deep. Figure 4
shows the first three odd harmonics J3, J5, and J7 as function
of the decay depth H.

3. Implications for the Juno and Cassini Solstice
Missions

[11] One of the prime goals of the Juno mission is to deter-
mine the depth to which the cloud-level atmospheric circula-
tion extends on Jupiter. The Cassini proximal orbits should
be able to detect similar information for Saturn. It has been
assumed that this will require determining the high-order
even gravity harmonics at least up to J12 [Hubbard, 1999;
Kaspi et al., 2010; Liu et al., 2013]. However, this work
shows that this might be better done by measuring the odd
gravity harmonics J3, J5 and J7 due to several advantages
over measuring the even harmonics: first, based on the
dynamical thermal wind model presented here, the signal
from the low-order odd harmonics is typically larger than
the high-order even harmonics signal (Figure 3). Second,
since the solid-body contribution to the odd harmonics is
zero, there will be no need to separate out the dynamical
signal from the solid-body signal, or assume some known
model for the solid-body part of the harmonics. Any odd
harmonic signal will be purely dynamical. Third, lower
harmonics have less latitudinal variations and therefore
easier to detect both spatially and temporally. This is partic-
ularly important due to the fact that any close flying probe
can have only partial latitudinal coverage close to periapse
where the gravity signal is largest. This work therefore
proposes that detecting the gravity harmonics arising from
the north–south asymmetry in the wind structure can be a
superior way for detecting the depth of the zonal jets over
detecting the symmetric high-order gravity signal.
[12] The sensitivity for resolving gravity harmonics

diminishes with the order of the harmonics. Estimates for
the sensitivity of Juno [Finocchiaro and Iess, 2010] show
that J3 and J5 will be determined at a level better than
10�9, while the sensitivity to even harmonics of n > 10 will
be at the level of 2� 10�8 or larger. Based on the results
presented in Figure 4 for Jupiter, |J3|> 10�9 for H > 165 km
(~ 40 bars), and |J5|> 10�9 for H> 210 km (~75 bars) (ignor-
ing the jumps due to changes of sign). Therefore, bymeasuring
J3, winds extending to depths of 40 bars or more should be
detectable by Juno. Note that strong winds (160m s�1) at
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nearly this pressure (22 bar) were already measured directly by
the Galileo probe [Atkinson et al., 1996]. Alternatively,
focusing on the even harmonics, as has been suggested previ-
ously, would be sensitive only to winds which are deeper than
1000 km (~5000 bars). For the case of Cassini, the ratio of the
low-order odd harmonics to high-order even harmonics on
Saturn is similar to that of Jupiter, and therefore, focusing on
the odd harmonics for Saturn should be advantageous as well.
An alternative approach to gravity harmonics analysis for
detecting deep dynamics can be through direct detection of
the gravity on the spacecraft (see Figure 4 in Kaspi et al.,
2010). Then, in a similar way to the analysis presented here,
hemispherical differences in the wind profile produce gravity
anomalies which are greater than 1 mgal, and thus should be
detectable by a close flying probe.
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