Energy optimization and the design of photosynthesis

Ron Milo
Dept. Systems Biology, Harvard
Dept. Plant Sciences, Weizmann Institute, Israel
Total number of taste buds: 10,000
Weight of skin: 4.1 Kg
Average time between blinks: 2.8 Sec
Cell divisions in a life-time: 10^17
Abundance of p53: ~160000
Average brain weight: ~1350g
Eye blink duration: .1-.4 seconds
Diameter of erythrocytes: 7.5μm

Cells in an adult male: 1031
Generation time: 4 days
Number of genes: 20621
Eggs laid during lifetime: 300
Size of Genome: 100291840bp
Life span: 2-3 weeks
Run speed at 20°C: .129mm/sec
Cells in hatched larvae: 556

Median cell (n) vol: 42 micron^3
Number of ribosomes: 200,000
Nucleus volume: 7% of cell
mRNA out of total RNA: 5%
mRNA in cell: 15,000
Nuclear/Cell volume ratio: 0.07
Cell diameter: 5μm
RNA to DNA ratio: 50

ATP to make one cell: 55 billion
Volume occupied by RNA: 6 Percent
Number of tRNA/cell: 200,000
Speed: 50 micron/sec
Ribosomes: ~3000
Proteins: 3.6x10^6
Translation rate: 20aa/sec
Volume occupied by water: 70%
How long does it take a protein to diffuse from one end of prochlorococcus to the other?

A) ~100 microsec

B) ~10 msec

C) ~1 sec

D) ~1 minute
How many mRNA are in a prochlorococcus cell?

A) ~1,000

B) ~10,000

C) ~100,000

D) ~1,000,000
How much does a post-doc make per year?

A) $4,000
B) $40,000
C) $400,000
D) $4,000,000
At what rate does a chlorophyll pigment absorbs a photon under full sun illumination?

A) Every picosecond
B) Every nanosecond
B) Every microsecond
D) Every second
Systems biology requires a new tool

- In systems biology we try to go from a *qualitative* to a *quantitative* understanding of biology

- But where would the numbers come from?

- Currently searching the literature for numbers is *very* time-consuming and frustrating
BioNumbers – the database of useful biological numbers

- bioNumbers will enable you to find any useful biological number in a minute with full reference
- a collaborative community (wiki) effort
- Volumes, Concentrations, absolute numbers, rates, fluxes and much more
- All entries contain a reference to data source.
- Users can contribute, edit and comment
- Currently over 1500 properties at www.bionumbers.org
Welcome to BioNumbers

BioNumbers is a collaborative community effort to establish a database of useful biological numbers. Search for a value you need for your research or out of curiosity. Enter BioNumbers that you want to keep track of and help others on the way. As an easily searchable and permanent database, BioNumbers is superior to napkins, post-its, and notebooks. Your colleagues will benefit from your numbers and you from theirs.

The BioNumbers database contains 1437 numbers, and it's growing every day!
We welcome all suggestions to improving BioNumbers. Please send suggestions to bioNumbers@gmail.com.

Best wishes,
Ron Milo, Paul Jorgensen, Michael Springe & Griffin Weber
Departments of Systems Biology & Information Technology
Harvard Medical School

Below are 10 random bioNumbers. Click a row for more details

<table>
<thead>
<tr>
<th>ID</th>
<th>Property</th>
<th>Organism</th>
<th>Value</th>
<th>Range</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>100005</td>
<td>Kc values of UDPG phosphorolysis in E. coli</td>
<td>E. coli</td>
<td>21.00</td>
<td>1</td>
<td>min</td>
</tr>
<tr>
<td>100017</td>
<td>Leukocyte pool size</td>
<td>Human</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100029</td>
<td>ATP demand for urea synthesis in hepatocyte cell as percent of total consumption</td>
<td>Human</td>
<td>2.92</td>
<td>~46</td>
<td>umol/g</td>
</tr>
<tr>
<td>100079</td>
<td>Radius of aorta</td>
<td>Human</td>
<td>1.6</td>
<td>1.5</td>
<td>cm</td>
</tr>
<tr>
<td>100026</td>
<td>Average MW of single DNA</td>
<td>E. coli</td>
<td>3.0 x 10^7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100238</td>
<td>Leaf area index</td>
<td>Monocots</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100368</td>
<td>Beef production efficiency</td>
<td>Beef cattle</td>
<td>Unspecified</td>
<td>0</td>
<td>5-10</td>
</tr>
<tr>
<td>100311</td>
<td>Nuclear/cell DNA weight</td>
<td>African clawed frog Xenopus laevis</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100727</td>
<td>Human body total energy usage in 2005</td>
<td>Human</td>
<td>6.1 x 10^7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101042</td>
<td>Kc values of F1,6-bisphosphoglucone B in Spinach leaf</td>
<td>Spinach</td>
<td>1.7400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most Popular BioNumbers Most Recent BioNumbers Random BioNumbers
Searching: ribosome

More details on BioNumbers can be found at http://sparvweb-war.org/wiki/BioNumbers.

Search

<table>
<thead>
<tr>
<th>Find Terms: ribosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g., ribosomes, p62, transcription</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organism: (all)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(all)</td>
</tr>
</tbody>
</table>

- [search](#) [reset](#)

Click a row for more details.

<table>
<thead>
<tr>
<th>ID</th>
<th>Property</th>
<th>Organism</th>
<th>Value</th>
<th>Range</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>196</td>
<td>Availabe ribosomes</td>
<td>Bacteria Escherichia coli</td>
<td>500</td>
<td>nM</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Average distance between ribosomes on mRNA</td>
<td>Bacteria Escherichia coli</td>
<td>80</td>
<td>41-79</td>
<td>nucleotides</td>
</tr>
<tr>
<td>127</td>
<td>Diameter of ribosome</td>
<td>Bacteria Escherichia coli</td>
<td>20</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>343</td>
<td>Elongation rate of ribosomes in Xenopus laevis stage VI oocytes</td>
<td>African clawed frog Xenopus laevis</td>
<td>3</td>
<td>nucleotide/s</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>MW of ribosome</td>
<td>Bacteria Escherichia coli</td>
<td>2700</td>
<td>kDalton</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Number of protein types to make ribosome</td>
<td>Bacteria Escherichia coli</td>
<td>55</td>
<td>Unitless</td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>Number of ribosomes</td>
<td>Budding yeast Saccharomyces cerevisiae</td>
<td>200000</td>
<td>Unitless</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Number of ribosomes/cell</td>
<td>Bacteria Escherichia coli</td>
<td>160000</td>
<td>Unitless</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Number rRNA types to make ribosome</td>
<td>Bacteria Escherichia coli</td>
<td>3</td>
<td>Unitless</td>
<td></td>
</tr>
<tr>
<td>273</td>
<td>Percent of total transcription devoted to ribosomal RNA</td>
<td>Yeast</td>
<td>60</td>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Ribosome + RNAi → Ribosome-RNAi-1</td>
<td>Bacteria Escherichia coli</td>
<td>100</td>
<td>bp/sec</td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>Ribosome diameter</td>
<td>Generic</td>
<td>30</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>483</td>
<td>Ribosome volume</td>
<td>Generic</td>
<td>1.4±5</td>
<td>um³</td>
<td></td>
</tr>
<tr>
<td>396</td>
<td>Ribosomes</td>
<td>African clawed frog Xenopus laevis</td>
<td>10±11</td>
<td>ribosomes</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Volume occupied by ribosomes</td>
<td>Bacteria Escherichia coli</td>
<td>0</td>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Volume of ribosome</td>
<td>Bacteria Escherichia coli</td>
<td>4.2±6</td>
<td>um³</td>
<td></td>
</tr>
</tbody>
</table>
What do you need to do?

- Use, enjoy and tell others: www.bioNumbers.org
- Add bioNumbers as you read papers - QuickSubmit.
- Tell us what would make you use bioNumbers
Why are biological systems built the way they are?

- In biology we usually ask (and answer) questions about:
 - **what** are the processes? **how** are they functioning?
 - **who** are the molecular players? **when** and **where** are they expressed?
Optimality analysis helps to sharpen our understanding

• Chemotaxis, gene expression, metabolic networks and fluxes, age of reproductive maturity, number of eggs in a clutch, foraging strategy etc. (http://openwetware.org/wiki/Optimality_In_Biology)

• “Optimization models help us to test our insight into the biological constraints that influence the outcome of evolution. They serve to improve our understanding about adaptations, rather than to demonstrate that natural selection produces optimal solutions. “ (Parker & Maynard-Smith, Nature 1990)
Why is photosynthesis built the way it is? What limits productivity?

• What is the maximal possible productivity?
• Is the limit reached? If not, what limits it and can it be overcome? (nutrients & water, light variability, competition)
• Relevant to biodiversity, biofuels, agriculture
Photosynthesis is the primary biological process on earth

- Converts solar energy into utilizable chemical energy

\[6\text{CO}_2 + 12\text{H}_2\text{O} + 48\text{hv} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 + 6\text{H}_2\text{O} \]

- Responsible for removal of \(~300\) billion tons of \text{CO}_2 from the atmosphere yearly (humans emit \(~30\) billion tons from fossil fuels)
Reminder - Turning radiation energy into chemical energy
An intricate machinery to store redox potential and perform photochemistry

Conserved in all green plants, algae and cyanobacteria

Lodish et al.
Why does photosynthesis happen at 680-700nm?
Photosynthesis is an ideal model system for optimality analysis

• Photosynthesis has unique advantages as model system:
 – Input (sun’s spectrum) well defined
 – Alternative possible realizations are clear (other wavelengths of operation)
 – Biophysical properties well understood
Basic physics of photon harvesting

- Reaction center is a band gap → energy difference.
- Photons with less energy than the band gap are not absorbed ("wasted").
- Photons with more energy are absorbed but only the band gap energy is chemically utilized.

Absorbed photons $\lambda \leq 700\text{nm}$

Heat loss

First excited state

Band gap 700nm ~ 1.8eV

Last occupied state

Harvested
The sun’s spectrum at sea level is the input for calculating the efficiency.

- The physics of photon harvesting implies a tradeoff:
 - Longer wavelength → More photons, less energy per photon
 - Shorter wavelength → Less photons, more energy per photon
How efficient is the photosystem in utilizing the sun’s energy?

- The photosystem utilizes about 37% percent of the sun’s energy.
- Can one do any better at a different wavelength?

\[\eta_{\text{light}} = \frac{\int_{\lambda=0}^{700\text{nm}} I_{\text{sun}}(\lambda)E(\lambda = 700\text{nm})d\lambda}{\int_{\lambda=0}^{\infty} I_{\text{sun}}(\lambda)E(\lambda)d\lambda} = 0.37 \]
Efficiency as a function of the reaction center wavelength

- Maximum in the near IR (~1100nm)
Thermo-kinetic cost - energy “wasted” in charge separation, stabilizing against back reactions and insuring reaction rate

All steps are “downhill” – need to “waste” energy

Lodish et.al.
Extensive measurements indicate how much energy is wasted

Energy invested:
- \(E(\text{eV}) = \frac{hc}{\lambda} \rightarrow (1240/680)+(1240/700) = \sim 3.6 \text{ eV} \)

Energy Harvested:
- Redox potential storage:
 - \(\text{H}_2\text{O} \rightarrow \frac{1}{2} \text{O}_2 \ E_m=0.82\text{V}; \text{NADP}^+ \rightarrow \text{NADPH} \ E_m=-0.32\text{V} \rightarrow 1.14 \text{ eV} \)
- ATP formation:
 - 3 \(H^+ \) pumped, \(\sim 4 \) protons drive \(\text{ADP} \rightarrow \text{ATP} \), \(\Delta G = -50 \text{ KJ/Mole} \rightarrow 0.37 \text{ eV} \)
- In total **1.5 eV** gained (from two photons)

\(\rightarrow \) Thermo-kinetic cost \(C_{\text{TK}}=(3.6-1.5)/2=1.05 \text{ eV} \) per photon

I assume this is an inescapable thermo-kinetic cost
Efficiency calculation taking into account the thermo-kinetic cost

\[\eta(\lambda = \lambda_{RC}) = \frac{\int_{\lambda=0}^{\lambda_{RC}} I_{sun}(\lambda)(E(\lambda_{RC}) - C_{TK}) d\lambda}{\int_{\lambda=0}^{\infty} I_{sun}(\lambda)E(\lambda) d\lambda} \]
Efficiency of photosystem accounting for charge separation cost

- Broad maximum in the range 684-716nm

Assuming that 1.05eV is a constant thermo-kinetic cost necessary for performing the photochemistry

R. Milo, Manuscript in preparation
Suggestion: Wavelength utilized in PSI/II reaction centers maximizes sun energy harvesting given constraints
Alternative formulation

• We are testing our understanding of what shaped photosynthesis band gap energy

• Possible hypothesis:
 – Not optimized for energy
 – Energy optimized, no constraints
 – Energy optimized, constant thermo-kinetic cost constraint
 – Energy optimized, variable thermo-kinetic cost constraint
 – Energy optimized, constant energy harvested constraint
Arising questions

• Analysis for photosynthetic bacteria with other photosystems (purple bacteria, green sulfur bacteria, heliobacteria).
• Effect of water column
• What if the sensitivity if thermo-kinetic cost is not constant?
• Does energy from photosynthesis ever limits growth?
Summary

• Wavelength utilized in PSI/II reaction centers maximizes sun energy harvesting given constraints

• Energy output was a selection force in shaping the photosynthetic wavelength parameter.

• Future challenges:
 – Investigate the constancy of the thermo-kinetic cost
 – Analyze a framework that incorporates carbon fixation
SOM figures
Examples of things to optimize for

• Reproductive success / Fecundity: The expected number of surviving offspring produced by an individual over a generation time
 – Maximum energy utilization
 – Minimal energy expenditure
 – Accuracy/minimal error rate
 – Robustness
 – Maximal sensitivity
 – Minimal cross talk
Acknowledgements

- Marc Kirschner
- Michael Brenner
- Mike Springer
- Eran Bouchbinder
Some bacteria have different absorption wavelengths → different electron donors - prediction suggests different charge separation cost
Fig. S1: **SQ or detailed balance limit thermodynamic cost as a function of wavelength.** The associated cost in units of eV. [PSOptimalitySQ1.m]
Effect of effective value of thermodynamic cost on optimal wavelength of the reaction center.
Fig. S2: Effect of effective value of thermodynamic cost on optimal wavelength of the reaction center. Assuming [PSOptimalityThermo2.m]
Fig. S3: Effect of thermodynamic cost dependence on wavelength on optimal wavelength of the reaction center. Assuming [PSOptimalityCostslop4.m]
Fig.S4: The sun’s spectrum at sea level for a colder sun as it was 3 billion years ago is the input for calculating the efficiency of photosynthesis. The physics of photon harvesting implies a tradeoff where a shorter wavelength for the band gap energy will harvest more photons but with less energy per photon. Whereas, longer wavelength will imply that less photons will be harvested but more energy will be gained per photon.[PSOptimalityBB3]
Fig.S5: **Geometrical interpretation of optimality condition.** The condition for maximal harvesting of the sun’s spectrum can be understood geometrically. The x axis represents the energy of the band gap in the reaction center and the y axis is the cumulative number of photons with energy larger than the given energy. The area of a rectangle within the curve is proportional to the overall energy harvested. An optimal wavelength for the reaction center is an energy value where the corresponding rectangle will have the largest area (red rectangle). Inclusion of the thermodynamic cost is equivalent to a shifting of the reference point for the area (black dotted vertical line). In this case the optimal energy value has the corresponding green rectangle. [PSOptimalityGeo2.m]
Fig. S6: Efficiency of photosystem accounting for charge separation cost and assuming a colder sun. Assuming that 1.05 eV is a constant cost necessary for running the energy transformation and that the sun’s output is 30% lower than it is today. Maximum efficiency is achieved at 716 nm. [PSOptimalityBBCColderSun2]
Fig. S7a: Transmittance as a function of wavelength for pure water. [PSOptimalityWaterEffectBatch1]
Fig. S7b: Effect of water absorption on solar spectrum.
[PSOptimalityWaterEffectBatch1]
Fig. S7c: **Effect of water column on harvesting efficiency.**

[PSOptimalityWaterEffectBatch2]
Fig. S8: **SQ or detailed balance limit on efficiency**

[PSOptimalitySQ4.m]
load sunSpectrum1

lambda=data(:,1);
I_lambda=data(:,2);

numberPhotons=I_lambda.*lambda;
thermodynamicCost=1.2;

% loop through the range of bandgap wavelengths
for lambdaIndex=1:length(lambda),
 % calculate how many photons are absorbed
 photonsHarvested=sum(numberPhotons(1:lambdaIndex));

 % calculate energy per photon in eV
 energyPerPhoton=1280/lambda(lambdaIndex);

 % total energy harvested after deducting the thermodynamic cost
 energyHarvested(lambdaIndex)=photonsHarvested*(energyPerPhoton-thermodynamicCost);
end;

% total energy in the sun spectrum input
totalEnergy=1280*sum(I_lambda);

% Overall efficiency as a function of band gap wavelength
efficiencyVect=100*energyHarvested/totalEnergy;
Is there a downstream process that can be made better?

- Low efficiency under full solar flux because too many pigments per reaction center
- More photons absorbed than excited electrons can be processed
- Extra excitation energy is quenched by several mechanisms.
- Decreases overall efficiency at the whole culture level
- Not the selective force in natural settings where water column attenuates light and other organisms compete.
Experimental optimization of yield in the green algae Chlamydomonas

- Melis lab in Berkeley is experimenting with decreasing the antenna size by insertional mutagenesis.
- Efficiency was increased about 5 fold!
Reverse engineering photosynthesis regulation – main uncertainties

- For promoter library we will not be able to see regulation at the post-transcriptional level. Homologous recombination to achieve protein fusions can be performed in PCC6883.
- All strains sequenced, varying levels of annotation.
- Ability to detect reporters over high background of pigments
- Extent of regulation performed post transcriptionally that will be missed in a promoter library
- Functionality of fusion proteins in a fusion library
Purple, green-sulfur and helio bacteria use different wavelengths

- 790nm, 840nm and 870nm
- Account for less than 20% of world primary productivity
- Knowledge is more limited in estimating the thermo-kinetic cost
- From what I could gather not at the predicted maximum
- Possible explanations:
 - This analysis is not valid
 - Our knowledge is partial
 - There are other constraints
Does energy from photosynthesis ever limits growth?

- Often there is an over abundance of solar energy flux (photo-inhibition)
- Can become limiting from effects of season, time of day, competition, shading etc.
- Arantz, Delucia & Jordan (Ecology 2000, JEB 2000) find that a mutant (atrazine resistance in *Amaranthus hybridus*) that lowers the photosynthetic rate by 20-30% leads to a reduced fitness by about 40%.
Effect of water column on harvesting efficiency
Effect of thermodynamic cost dependence on wavelength on optimal wavelength of the reaction center.
If you think environmental questions are the biggest challenge for 21st century science

What biological system would you most be interested in understanding?