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ETH Solar Thermochemical Splitting of H,0 and CO, o=
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ETH Experimental Setup
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ETH Energy Conversion Efficiency RS

[heating value of fuel produced]
[solar energy input] + [energy for inert gas recycling]

Msolar-to-fuel =

B AH - _[ rfueldt
nSOIar-tO-fuel’ averege _[ I:)solardt + EinertI rinertdt

AH * 2 ¢ roxygen AHyye, = high heating value of the fuel
+E,

inert rinert

Truer = molar fuel production rate

T'lsolar-to-fuel, peak = P
solar

Toxygen = molar 0, release rate

Tmert = flow rate of inert gas

Einere = energy for separation of
inert gas from air (20 kjmol™1)

Pgo1ar = radiative power input




Solar Experimental Results
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CO,-Splitting RS
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ETH Reticulate Porous Ceramic EMPAQ
(RPC) s

 average pore diameter = 2.54 mm
« total porosity = 92%
« specific surface = 11 mm?

Effective heat/mass transport
properties:

thermal conductivity

heat transfer coefficient
permeability

extinction coefficient
scattering phase function

4

« J. Heat Transfer 132, 023305 , 2010.
« Materials, 5, 192-209, 2012.




Radiative properties of RPC RS
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ETH Fluid transport properties across RPC a1 H=

entry RPC exit

' Po
lp = Up
T=T .

ulr,y, z)

RN ERREE

free slip, ¢'n =0 no slip, T = T

« Int. J. Heat & Fluid Flow 29, 315-326, 2008.
« Materials 5, 192-209, 2012.

ETH Fluid transport properties across RPC o=

entry RPC exit

' Po
lp = Up
T=T .
ulr,y, z)
1
sf

free slip, ¢'n =0 no slip, T'=T.

RN ERREE

10°
_ U . f'ill.;i-[ + 1 e Re
Vp=——u,—-Fpu; o CFD
K
0 )
Vpd? P
e —C, —C, Re g
u =,
H Up =10
@
K =5.69-10° m?
F=519.02m™ 10
10’ 10’ 10°
« Int. J. Heat & Fluid Flow 29, 315-326, 2008. Re (-)

* Materials 5, 192-209, 2012.

11



Heat transfer transport across RPC RS

entry RPC exit

Po

. u(x,y,z)

Uy = Up

RN ERREE
=~
I
=

i
free slip, ¢'n =0 no slip, T = T
10°

& Pr=0.1, CFD
o Pr=0.5, CFD
o Pr=1, CFD &
* Pr=10, CFD

do + dyRe® Pr®

hy =— | )
ATy - Ay 0)/9/‘
Nu = 6.82 +0.19 Re®"® pro° 3

1
« Int. J. Heat & Fluid Flow 29, 315-326, 2008. Re (-)
* Materials 5, 192-209, 2012.

Nu (-)
=)

ETH Pore-scale modeling o=
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ETH CO, Capture from Air a e
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