Distinguishing counts by position along the oligopeptide

We use the asterisk sign for a "wildcard" residue: For each protein sequence s and amino-acid A, let $f_{o}\left(A^{*}, s\right)$ be the number of times A is observed as the left (first) residue within a dipeptide, and let $f_{o}(* A, s)$ be the number of times A is observed as the right (second) residue within a dipeptide. $f_{o}\left(A^{*}, s\right)=f_{o}(* A, s)=f_{o}(A, s)$ unless s begins $\left(f_{o}(* A, s)=f_{o}(A, s) \square 1\right)$ or terminates $\left(f_{o}\left(A^{*}, s\right)=f_{o}(A, s) \square 1\right)$ with A. The quantities $f_{o}\left(A^{* *}, s\right), f_{o}\left(A^{*}, s\right), f_{o}(* * A, s), f_{o}\left(A B^{*}, s\right)$ and $f_{o}(* A B, s)$ are analogously defined. Equations (2) and (3) are defined also for oligopeptides with wildcards.

Dipeptide expectations

We rewrite Equation (4), taking into account edge effects:

$$
\begin{align*}
f_{e}(A B, s) & =\square_{\text {pair si]s[i+1]}} \operatorname{Prob}(s[i]=A, s[i+1]=B) \\
& =\left(N_{2}(s) \square 2\right) \square \frac{\# \text { possible mid } \square \text { sequence AB pairs }}{\# \text { possible mid } \square \text { sequence pairs }} \\
& +\frac{\# \text { possible leading AB pairs }}{\# \text { possible leading pairs }}+\frac{\# \text { possible trailing AB pairs }}{\# \text { possible trailing pairs }} \tag{4’}
\end{align*}
$$

For amino-acids A and B, such as neither A, nor B is the leading/trailing amino acid of the sequence s, we use formulae similar to Equations (5), (6):
\# possible mid \square sequence AA pairs $=f_{o}(A, s)\left(f_{o}(A, s) \square 1\right)$
\# possible leading AA pairs $=0$
\# possible trailing AA pairs $=0$
\# possible mid \square sequence $A B$ pairs $=f_{o}(A, s) f_{o}(B, s)$
\# possible leading $A B$ pairs $=0$
\# possible trailing $A B$ pairs $=0$
Otherwise, if A is the leading amino acid of the sequence s, but B is not the trailing one, we use formulae:
\# possible mid \square sequence $A B$ pairs $=\left(f_{o}(A, s) \square 1\right) f_{o}(B, s)$
\# possible leading $A B$ pairs $=f_{o}(B, s)$
\# possible trailing $A B$ pairs $=0$
Otherwise, if B is the trailing amino acid of the sequence s, but A is not the leading
one, we use formulae:
\# possible mid \square sequence $A B$ pairs $=f_{o}(A, s)\left(f_{o}(B, s) \square 1\right)$
\# possible leading $A B$ pairs $=0$
\# possible trailing $A B$ pairs $=f_{o}(A, s)$
Otherwise, if both A is the leading amino acid of the sequence s, and B is the trailing one, we use formulae:
\# possible mid \square sequence $A A$ pairs $=\left(f_{o}(A, s) \square 2\right)\left(f_{o}(A, s) \square 3\right)$
\# possible leading AA pairs $=f_{o}(A, s) \square 2$
\# possible trailing $A A$ pairs $=f_{o}(A, s) \square 2$
\# possible mid \square sequence $A B$ pairs $=\left(f_{o}(A, s) \square 1\right)\left(f_{o}(B, s) \square 1\right)$
\# possible leading $A B$ pairs $=f_{o}(B, s) \square 1$
\# possible trailing $A B$ pairs $=f_{o}(A, s) \square 1$
Equations (6^{\prime})...($6^{\prime \prime \prime \prime) ~ c a n ~ b e ~ s u m m a r i z e d ~ b y ~}$
\# possible mid \square sequence $A B$ pairs $=f_{o}(* A, s) f_{o}\left(B^{*}, s\right)$
\# possible leading $A B$ pairs $=\left(f_{o}(A, s) \square f_{o}(* A, s)\right) f_{o}\left(B^{*}, s\right)$
$\#$ possible trailing $A B$ pairs $=\left(f_{o}(B, s) \square f_{o}\left(B^{*}, s\right)\right) f_{o}(* A, s)$
The total number of pairs is obtained by summation over all A, B.

Expected tripeptide counts per-sequence

In the following sub-section, all formulae refer to a protein sequence s, which is omitted from notation.

For $A B C$ tripeptides, we rely on the number of right/left/mid-sequence runs (of length 1 or more) of an amino acid B :

$$
\begin{aligned}
& R_{L}(B)=f_{o}\left(* B^{*}\right) \square f_{o}\left(B B^{*}\right) \\
& R_{R}(B)=f_{o}\left(* B^{*}\right) \square f_{o}(* B B) \\
& R_{M}(B)=R_{L}(B)+R_{R}(B) \square R(B)
\end{aligned}
$$

$R_{L}(B), R_{R}(B), R_{M}(B)$ and $R(B)$ differ only if B is the leading/trailing residue. Denote the number of mid-sequence $B B$ occurances $f_{M}(B B)=f_{o}\left(B B^{*}\right)+f_{o}(* B B) \square f_{o}(B B)$.

Let $U_{M}(B)$ be the number of mid-sequence singleton B-s (B runs consisting of a single residue, which is not leading nor trailing). If $f_{o}\left({ }^{*} B^{*}\right)=1$, then also $U_{M}(B)=1$. Otherwise, $U_{M}(B)=f_{M}\left({ }^{*} B^{*}\right)-f_{M}(B B)$ is a random variable. Let $E\left(U_{M}(B)\right)$ be the expectation of this random variable. Let $U_{1}(B), U_{2}(B) \ldots, U_{R_{M}}(B)$ be the binary
random variables that are 1 if the respective run is a singleton.

$$
\begin{align*}
E\left(U_{M}(B)\right) & =\square_{\substack{i=1 \\
R_{M}(B)}}^{R_{M}(B)} E\left(U_{i}(B)\right) \\
& =\square_{\substack{i=1 \\
R_{M}(B)}}^{\operatorname{Prob}\left(U_{i}(B)=1\right)} \tag{7’}\\
& =\square_{i=1}^{\operatorname{Prob}\left(\text { the } i^{\text {th }} \text { run is a singleton }\right)} \\
& =R_{M}(B) \square \operatorname{Prob}(\text { a specific run is a singleton })
\end{align*}
$$

The process of choosing a random sequence that preserves the $f_{o}\left({ }^{*} B^{*}\right), f_{o}\left(B B^{*}\right)$, $f_{o}\left({ }^{*} B B\right)$ and $f_{M}(B B)$ counts involves partitioning the $f_{M}(B B)$ mid-sequence $B B$ dimers into the $R_{M}(B)$ runs.
The number of such partitions is

specific singleton run. The probability of a specific singleton run is therefore

$$
\begin{align*}
& \frac{R_{M}(B)+f_{M}(B B) \square 2}{R_{M}(B) \square 2} \tag{8’}\\
& R_{M}(B)+f_{M}(B B) \square 1 \\
& R_{M}(B) \square 1
\end{align*}=\frac{R_{M}(B) \square 1}{R_{M}(B)+f_{M}(B B) \square 1}=\frac{R_{M}(B) \square 1}{f_{M}(B) \square 1}
$$

For each residue B with $\left(f_{M}(B)>1\right)$ the expected number of singletons is therefore implied by equations (7^{\prime}) and (8^{\prime}):

$$
\begin{equation*}
E\left(U_{M}(B)\right)=\frac{R_{M}(B)\left(R_{M}(B) \square 1\right)}{f_{M}(B) \square 1} \tag{9'}
\end{equation*}
$$

Analogously to the distinction between homodipeptides and heterodipeptides, we now need to distinguish several cases, as follows:

1. For each heterotripeptide $A B C(A \neq B$ and $C \neq B)$ the expected count $f_{e}(A B C)$ is the product of $E\left(U_{M}(B)\right)$ by the estimated probability of C following a run of B 's and A preceding such a run:

$$
f_{e}(A B C)=E\left(U_{M}(B)\right) \square \frac{f_{o}\left(A B^{*}\right)}{f_{o}\left(B^{*}\right) \square f_{o}\left(B B^{*}\right)} \square \frac{f_{o}(* B C)}{f_{o}\left(B^{*}\right) \square f_{o}\left({ }^{*} B B\right)}
$$

2. For semi homotripeptides $A B B$ or $B B C$, one needs to consider only positions that are beginnings or ends, respectively, of non-singleton runs. There are expected to be $R_{L}(B)-E\left(U_{M}(B)\right)$, or, respectively $R_{R}(B)-E\left(U_{M}(B)\right)$ such
positions. Thus, one needs to multiply this number by the probability of encountering the non $-B$ residue:

$$
\begin{align*}
& f_{e}(A B B)=\left(R_{L} \square E\left(U_{M}(B)\right)\right) \square \frac{f_{o}(A B)}{f_{o}(* B) \square f_{o}(B B)} \\
& f_{e}(B B C)=\left(R_{R} \square E\left(U_{M}(B)\right)\right) \square \frac{f_{o}(B C)}{f_{o}\left(B^{*}\right) \square f_{o}(B B)} \tag{11’}
\end{align*}
$$

3. For homotripetides $B B B$, the raw count is a direct function of $U_{M}(B), R_{M}(B)$, and $f_{M}(B B)$:

$$
f_{o}(B B B)=f_{M}(B B)-\left(R_{M}(B)-U_{M}(B)\right)=2 f_{M}(B B)-f_{o}\left(* B^{*}\right)+U_{M}(B)
$$

Therefore:

$$
\begin{equation*}
f_{e}(B B B)=2 f_{M}(B B)-f_{o}\left(* B^{*}\right)+E\left(U_{M}(B)\right) \tag{12'}
\end{equation*}
$$

