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The crystal structure of the ketolide telithromycin bound to the Deinococcus radiodurans large ribosomal
subunit shows that telithromycin blocks the ribosomal exit tunnel and interacts with domains II and V of the
23S RNA. Comparisons to other clinically relevant macrolides provided structural insights into its enhanced
activity against macrolide-resistant strains.

Macrolide drugs, which have been used for decades, provide
effective coverage against most pathogenic bacteria. Neverthe-
less, the rapid development of antibiotic resistance severely
hampers modern medicine and has prompted a search for
improved antimicrobial agents. Ketolides, a newer class of
macrolides that exhibits a safety profile comparable to that of
other antibiotics (15), were shown to be potent in vitro and in
vivo against many bacterial strains, including those resistant to
drugs such as macrolides-lincosamides-streptogramin B (10,
11).

The ketolides are semisynthetic derivatives of erythromycin,
the first macrolide in clinical use. The ketolides have a 14-
member macrolactone ring, posses an extended arm, and lack
the cladinose sugar. Their macrolactone ring has a keto group
at position 3, and their hydroxyls in positions 11 and12 are
replaced by a cyclic carbamate. Telithromycin has an alkyl-aryl
extension that is bound to its cyclic carbamate, whereas ABT-
773 has a quinolylallyl arm at the O-6 position (Fig. 1A).

We present here the crystal structure of the ketolide te-
lithromycin in complex with the large ribosomal subunit from
Deinococcus radiodurans (D50S). Analysis of this structure
shows that like other macrolides, telithromycin inhibits pro-
tein biosynthesis by blocking the passage of nascent proteins
through the ribosome exit tunnel (Fig. 1B), but unlike them, it
binds to two regions of the 23S RNA. This unique binding
mode, observed also in the only available crystal structure of a
ketolide (ABT-773) bound to the large ribosomal subunit (14),
enabled correlation of the enhanced antimicrobial activity of
ketolides against macrolide-resistant pathogens.

Methods. (i) Base numbering. Nucleotides are numbered
according to the D. radiodurans numbering. In the text, Esch-
erichia coli numbering is given in parentheses (EC numbers).

(ii) Crystallization and data collection and processing. Coc-
rystals were grown, as described in reference 8, from the com-
plex of D50S and a clinical relevant concentration (0.01 mM)
of telithromycin.

Data were collected at 90 to 100 K at ID29/ESRF/EMBL
and ID19/APS/ANL and recorded on Quantum-210 and APS
detectors, respectively. Data were processed and scaled (Table
1) with DENZO/SCALEPACK/HKL2000 (12).

(iii) Antibiotic placement and structure refinement. Overall
and group rigid body refinements were performed with CNS
(Crystallography & NMR System) (4) by using the 3.0-Å res-
olution structure of D50S as a starting model (8). A substan-
tial improvement of the Fourier electron density (Fo-Fc and
2Fo-Fc) maps was achieved by solvent flattening by using
SOLOMON (1). Telithromycin conformation was modeled in-
teractively with O (9). Further refinement was carried out with
CNS. Surface accessibilities were calculated with CCP4 (2).
Figures were produced with RIBBONS (5) and LIGPLOT
(16).

Drug binding site. The crystal structure of the complex of
D50S with telithromycin allowed a clear definition of the drug
binding site (Fig. 2A and B). It showed that telithromycin
interacts solely with the 23S RNA and that about 55% of the
surface area of the bound telithromycin is buried by these
interactions. We found that the mode of telithromycin binding
to D50S (Fig. 2B and C) is consistent with biochemical results
(7, 18).

Telithromycin binds to 23S rRNA domain V. The telithro-
mycin macrolactone ring binds to domain V of the 23S rRNA
through a hydrogen bond involving its 3-keto group and via
hydrophobic interactions (Fig. 2C). Additional interactions
with this domain are formed by telithromycin desosamine
sugar, similar to the modes of binding of most macrolides to
eubacterial large ribosomal subunits (13, 14). This sugar is in-
volved in electrostatic interactions with the backbone of G2484
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(G2502EC) and in hydrophobic interactions with A2042
(A2059EC). Its 2� OH group is located within hydrogen bond-
ing distance of A2041 (A2058EC). This nucleotide was shown
to play a major role in binding of macrolides to eubacterial
ribosomes (3, 13). It also plays a main role in resistance to
macrolides from the erythromycin family, often acquired by
steric hindrance caused by its methylation or A-to-G mutation
(6, 17).

Ketolides anchor 23S rRNA domain II. Telithromycin also
interacts with domain II of the 23S rRNA (Fig. 2C), consistent
with footprinting and mutation data (19) and with the binding
mode of the ketolide ABT-773 (14) (Fig. 2D). Protection and
mutation studies with E. coli indicated interactions between
ketolides and nucleotide A752 (19). In their complexes with
D50S, neither ABT-773 (14) nor telithromycin interacts with
the corresponding D50S base, C765, but both are located in

FIG. 1. (A) Chemical structures of the macrolide erythromycin and the ketolides telithromycin and ABT-773; (B) view into the D50S tunnel
with a bound telithromycin molecule (red).
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close proximity to this base (Fig. 2E). As with ABT-773 (14),
telithromycin contacts to domain II are confined to the nucle-
otide C803 (C790EC), although the extension arms of these
two ketolides have different structures and positions on the
macrolactone rings.

These two ketolides interact with the same regions of the
23S RNA, but a comparison of the binding modes shows some
subtle, albeit significant, differences. For example, G2484
(G2502EC) forms a hydrogen bond in the telithromycin com-
plex whereas it is involved is less intensive coulombic interac-
tions in the ABT-773 complex (14). Similar considerations
apply to the O-6 atom, which can act as both a hydrogen
bonding acceptor and donor. We observed that the alkyl-aryl
extension of telithromycin reaches further than and is rather
ordered compared to the quinolylallyl arm of ABT-773 (14)
(Fig. 2D). We attributed the lower flexibility of telithromy-
cin extension to the groove formed by nucleotides A764
(A751EC), A802 (A789EC), and C803 (U790EC), which sur-
rounds its extended arm (Fig. 2E), compared to the larger
space that is available for conformational mobility of the ABT-
773 quinolylallyl group (14).

Ketolide binding to macrolide-resistant pathogens. Com-
parisons of the binding modes of telithromycin and the mac-
rolides from the erythromycin family (13) to domain V of the
23S RNA indicated that telithromycin binding should be less
hindered by A2058EC modifications. Not only should the ad-

ditional domain II interactions of the ketolides (14) lead to
tighter binding, as observed in pharmacological studies (15),
but they are also likely to compensate for the alterations of the
binding site A2058EC due to bacterial resistance. Further sta-
bilization of telithromycin binding seems to be achieved by the
unique stacking arrangement of its long arm (Fig. 2E). It is
therefore likely that drug interactions with domain II allow
binding to ribosomes of resistant pathogens, even when the
macrolide binding site in domain V is perturbed (6). This
finding is consistent with previous observations showing that
troleandomycin, a macrolide with a desosamine sugar lacking
hydroxyls, binds nevertheless to the large ribosomal subunits,
and its binding seems to benefit from its interactions with
domain II (3). Hence, studies on the binding of telithromycin
and of ABT-773 (14) provide a structural basis for the effi-
ciency of ketolides against macrolide-resistant pathogens.

Conclusions. Analysis of the crystal structure of the D50S-
telithromycin complex showed binding to both domains V and
II of the 23S RNA. The latter seem to compensate for pertur-
bations in domain V binding interactions induced by meth-
ylation or mutation, thus providing structural clues to the
elevated antimicrobial action of telithromycin against sev-
eral macrolide resistant strains. The structural model for the
unique binding mode of telithromycin paves the way for fur-
ther improved drugs, capable of bypassing alterations in the
drug binding sites occurring arising from bacterial resistance.

Protein Data Bank identification code. The coordinates re-
ported here have been deposited in the Protein Data Bank
with the code 1P9X.
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TABLE 1. Crystallographic data

Parameter (unit) Valuea

Space group..................................................................I222
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Rmerge (%) ....................................................................18.1 (49.3)
�I�/��(I)� ........................................................................3.4 (1.5)
Redundancy..................................................................3.4 (2.2)
Rfactor/Rfree (%) ............................................................28.0/34.0
Root mean square deviations from ideality

Bond lengths (Å) .....................................................0.011
Bond angles (°) ........................................................1.7

a Values in parentheses refer to the highest-resolution shell (3.46 to 3.4 Å).
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