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Ribosome’s mode of function: myths, facts and
recent results‡
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Haim Rozenberg,a Anat Bashan,a Rita Berisiob and Ada Yonatha∗

Ribosomes translate the genetic code into proteins in all living cells with extremely high efficiency, owing to their inherent
flexibility and to their spectacular architecture. During the last 6 decades, extensive effort has been made to elucidate the
molecular mechanisms associated with their function, and a quantum jump has been made in recent years, once the three
dimensional structures of ribosomes and their functional complexes have been determined. These illuminated key issues in
ribosome function, confirmed various biochemical, genetic, and medical findings, and revealed mechanistic details beyond
previous expectation, thus leading to conceptual revolutions, and turning old myths into actual facts. Copyright c© 2008
European Peptide Society and John Wiley & Sons, Ltd.
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Introduction

Ribosomes, the universal riboprotein assemblies, are the nanoma-
chines which translate the genetic code into proteins. These giant
organelles, of a molecular weight of about 2.5 MDa in bacteria and
up to 4 MDa in higher organisms, are composed of many different
proteins and long RNA chains, accounting for two-thirds of the
mass, except for mitochondria, where the ratio of RNA to proteins
is ∼1 : 1. All ribosomes are constituted by two unequal subunits,
which associate during the initiation step of protein biosynthesis.
In prokaryotes, the small subunit, denoted as 30S, contains an
RNA chain (16S) of about 1500 nucleotides and 20–21 different
proteins, whereas the large subunit (called 50S in prokaryotes) has
two RNA chains (23S and 5S RNA) of about 3000 nucleotides in
total, and different 31–35 proteins.

The mRNA chains carry the genetic information that is translated
by the ribosome, and tRNAs bring the cognate, the amino acids
to the ribosome. The ribosome contains three sites for hosting its
tRNA substrates, each residing on both the subunits. The A-site
hosts aminoacyl-tRNA (aa-tRNA) molecules, while the P-site hosts
the growing peptidyl-tRNA (pept-tRNA). E denotes the site of the
exiting tRNA. The decoding center resides on the small subunit,
hence the mRNA and the tRNA anticodon loops are attached to
it, whereas catalytic site of the ribosome, the peptidyl transferase
center (PTC), resides on the large subunit (Figures 1 and 2). During
the formation of the peptide bond, nucleophilic attack of the
amino group of the aa-tRNA in the A site on the carbonyl carbon
of pept-tRNA produces a pept-tRNA that is elongated by one
amino acid residue and the deacylated tRNA moves into the E
site and then exits the ribosome. The decoding and the formation
of the peptide bonds occur in an iterative manner, resulting
in a polypeptide chain with a sequence dictated by the mRNA
sequence.

Recent reviews demonstrate the current understanding of the
ribosomal functions, based on the correlation between the func-
tional data and their high resolution crystal structures (e.g. [1,2])
obtained after 20 years [3] of extensive systematic explorations

of crystal growth, refinements of bacterial growth pathways [4],
and ribosome separations (E. Zimmerman, data not shown) and
requiring the development of innovative methodologies, such as
bio-crystallography at cryogenic temperatures [5], and an uncon-
ventional use of multiheavy atom clusters [6–9]. Accompanied by
advances in the cryo electron microscopy that revealed elements
of ribosome’s functional dynamics, e.g. Ref. 10–13, these struc-
tures revolutionalized many issues concerning ribosome mode of
function. Time has come to shed light on selected points in the
history of ribosome structural research.

‘Palade particles’, suggested to be involved in genetic expression
were detected already in the 1950s [14], and later located within
RNA rich regions, in close association with the membrane of the
endoplasmic reticulum [15]. However, as the detailed structural
information of such a big organelle was hard to be elucidated,
a series of myths were built over the years, based on common
wisdom combined with results of biochemical experiments. For
example, originally, the common view was that the ribosomal
RNA is the scaffold holding the numerous ribosomal proteins in
the stereochemistry allowing for performing their tasks, including
catalyzing peptide bond formation, and that nascent polypeptide
chains leave the ribosome while advancing on its surface [16,17].

Here, we discuss several recent results from the analysis of high-
resolution crystal structures, EM reconstructions of ribosomes
and of their complexes with substrate analogs or inhibitors with
emphasis on those that challenged early conceptions and shed
light on ribosome function.
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Polypeptide Synthesis by the Ribosome

In the mid 1980s, the importance of the ribosomal RNA (rRNA)
became evident [18] and in the 1990s, the dominance of rRNA in
ribosome functional activity was proven biochemically [19]. All the
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available crystal structures verified this notion [20–24]. However,
the mode of ribosome function and the nature of its contribution
to peptide bond formation remained controversial for quite some
time. Thus, based on the early high resolution structure of the
large ribosomal subunit from Haloarcula marismortui (H50S), four
universally conserved rRNA nucleotides of the PTC were identified
as the main players in peptide bond catalysis [20,21], through a
general acid–base-mechanism, an idea that was soon disputed by
a battery of methods (e.g. [25,26]).
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The choice of substrate analogs is partially responsible for
the misinterpretation. Amino-acylated tRNA molecules are the
natural substrates of ribosomes for the production of nascent
proteins. However, for matters of simplicity, substrate analogs
commonly used are ‘minimal substrates’ or ‘fragment reaction
substrates’ (mainly puromycin derivatives), capable of producing
single peptide bonds. The complexes of H50S with such minimal
substrates obtained under far from physiological conditions and
showing disorder in all of the functionally relevant regions,

Figure 1. The PTC and the nascent protein exit tunnel in the large ribosomal
subunit. The backbones of the ribosomal RNA and the ribosomal proteins
are drawn in gray, except for proteins L4, L22, and L23, which contribute to
the tunnel wall architecture, and are shown as space-filled bodies colored
in blue, pink and light-green, respectively. P-site tRNA is shown in lemon-
green, a modeled poly-alanine, representing the nascent chain, is shown in
purple, and the PTC is indicated as a transparent purple circle. Coordinates
are of the large subunit from D. radiodurans (PDB 1NKW).

led to the above misinterpretation. Furthermore, additional
crystallographic studies on complexes of H50S with similar, albeit
more sophisticated substrate analogs illuminated several aspects
of peptide-bond formation. In contrast, crystals obtained and
maintained under conditions that are more similar to those
optimal for protein biosynthesis of complexes of the ribosome
large subunit from Deinocuccus radiodurans (D50S) with the entire
fraction of the A-site tRNA that binds to the large subunit, led
to a step forward in the comprehension of peptide synthesis
and showed that the ribosome contributes positional, rather than
chemical catalysis [24]. In these crystals, the substrate mimicked the
entire A-site tRNA acceptor-stem (composed of 35 nucleotides)
and the aminoacylated 3′ end (called ASM). This D50S–ASM
complex is so far the only complex with A-site tRNA mimic
extending beyond the tip of the tRNA 3′ end, although crystals of
entire ribosomes with two and three tRNA molecules have been
subjected to crystallographic analysis [27,28].

Different than the ‘minimal substrates’ that are only capable of
the fragment reaction, ASM can ensure peptide synthesis similar
to a full length tRNA. Notably, whereas in analyzing the complexes
including the ‘minimal substrates’ the sole attention is paid to the
PTC; the complex D50S–ASM demonstrated the importance of
the large cavity located above the PTC and hosting the substrate
during catalysis. Furthermore, key interactions that occur between
the acceptor stem of A-site tRNA and the ribosome cavity were
identified in the ASM–D50S complex (Figure 2). These seem to
govern the accurate substrate positioning and consequently
efficient nascent protein elongation [29].

A sizable intraribosomal region, located in and around the PTC
and connecting all ribosomal components involved in protein
biosynthesis, has been identified in the crystals of the ASM–D50S
complex. This region contains 180 nucleotides of which the
RNA backbone fold and base orientation are internally related
by a pseudo twofold symmetry (Figure 2) [29]. This striking
architectural element was later revealed in all known structures
of the large ribosomal subunit, regardless of its source (namely
mesophilic, thermophilic, and halophilic bacteria), its functional
state (assembled ribosome or unbound subunit, as well as
complexes of either with substrate analogs or inhibitors or an), or
its kingdom of life (eubacteria and archaea).

As the bond connecting the ASM 3′end with the rest of the
molecule was found to overlap the twofold rotation axis, this
structure shows that the A-site tRNA translocation occurs by a
motion composed of two components: a rotatory motion of the
A-site tRNA 3′end in concert with the sideways translocation
of mRNA, and the helical portions of the A-site tRNA [24]. The
architectural design of the symmetrical region navigates and
guides the translocation of the A-site tRNA 3′end towards the
P-site. Simulation studies indicated that during this motion the
rotating moiety interacts with ribosomal components confining
the rotatory path, along the ‘PTC rear wall’ [24,29]. Consistently,
the quantum mechanical calculations indicated that the transition
state (TS) for this reaction is formed during the rotatory motion,
and is stabilized by the interactions of the rotating 3′end with
the ribosome components of the rear wall [30]. The location of
the computed TS is similar to that observed crystallographically
for mimics of the TS in the large ribosomal subunit from another
source, namely H50S [31], and the significance of the interactions
between the rotating moiety and the PTC walls was verified by
comprehensive mutagenesis analysis [32].

Analysis of the substrate location within the PTC showed that the
rotatory motion positions the proximal 2′-hydroxyl of P-site tRNA

www.interscience.com/journal/psc Copyright c© 2008 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2009; 15: 122–130
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A76 in the same position and orientation found in the crystals
of the entire ribosome with mRNA and tRNAs, as determined
independently in two laboratories [27,28]. This position allows
for chemical catalysis of the peptide bond formation, in accord
with the biochemical observations showing a substrate-assisted
catalysis of peptide bond formation by full size tRNA [33].
Remarkably, substrate catalysis was not implicated in the crystal
structure of the complexes of H50S with ‘minimal substrates’,
in accord with the differences between the formation of the
nascent chain by full-size tRNAs and ‘minimal substrates’ observed
by biochemical and kinetics studies, as well as, by mutagenesis
[31,33,34].

The current consensus view is that the ribosome supply posi-
tional catalysis provides the path along which the translocation
from the A- to the P-site occurs and promotes substrate-mediated
chemical catalysis. The ability of the symmetrical region to provide
all structural elements required for performing polypeptide elon-
gation and the high level of conservation of components of the
symmetrical region, which was detected even in mitochondrial ri-
bosomes, in which half the ribosomal RNA is replaced by proteins,
suggest that the ribosome evolved by gene fusion or duplication
[29].

Essential Contributions of Ribosomal Proteins

As discussed above, although in the late 1980s, the importance
of the rRNA became evident, and in the 1990s its dominance
in ribosomal functional activity was proven [19], it is clear that

the ribosomal proteins make crucial contributions to selected
ribosomal activities. Among these, protein S12 of the small
subunit is responsible to a conformational switch in the rRNA
during decoding of the mRNA [35] and monitors the accuracy of
decoding by the ribosome [36]. Proteins of the large subunit that
play an important role in PTC activities are proteins L16 [22,24] and
L27 [37], which appears to assists proper substrate positioning,
as well as protein L2 [38,39] that has been shown to be required
for smooth elongation of the polypeptide chain. In addition, long
internal loops or external termini of a few r-proteins (L4, L22, L23,
and L29) penetrate the RNA that lines the nascent polypeptides
exit tunnel (Figure 1) and seem to be involved in the progression
of the nascent chains through it. Among those proteins, L22 is
involved in elongation arrest [40] and protein L23 is located so
that it can influence the trafficking of the nascent proteins near
the tunnel opening [41].

The Ribosome Tunnel: from the PTC to the
External Cellular Environment

The exit tunnel is a conserved feature of the large ribosomal
subunit that extends from the PTC to the ribosome exterior,
for a total length of about 120 Å and of a diameter varying in
the range of 10–25 Å. Historically, nascent polypeptide chains
were assumed to leave the ribosome while advancing on its
surface, although pioneering experiments, performed during the
1960s, showed that the most recent synthesized segments of
nascent chains are resistant to proteolytic degradation [42,43].

(a) (b)

(c)

Figure 2. The PTC pocket and the universal symmetry related region. (A and B) Two views of the pocket, with the tRNA Acceptor stem mimic (ASM)
shown in red. (A) Highlights the PTC guanines involved in base pairing with A- and P-site tRNAs (depicted by circles). The two base-pair donors at the
P-site (compared to the single donor at the A-site), indicate the reason for the preference of the initial P-site tRNA for binding in the P-site, half of the PTC
at the rotated orientation. A-site tRNA as seen in Yusupov et al., 2001 (PDB 1GIY) is docked on the right image (B). Color code for both sides is as on the left
image (A). (C) Superposition of the backbones of the symmetrical region in all known structures of the large subunit (in each it includes 180 nucleotides).
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Even after an elongated tunnel in the large ribosomal subunit
has been visualized in the mid-1980s by a three-dimensional
image reconstruction from two-dimensional arrays of the entire
ribosomes [44] and of the large subunit [45], these findings were
met with skepticism, since even then the common perception
was that all proteins are produced as α-helices and thus resist
degradation even when partially exposed on the ribosome surface
[46]. Only after verification, almost a decade later by cryo EM
[47,48], the notion that the ribosomes possess a tunnel that
can protect emerging nascent chains from degradation became
commonly accepted. Nevertheless, even after accepting the
existence of the tunnel, its involvement in the passage of the
nascent chains and in transmitting information to the cell, as
found biochemically [49,50], was hard to comprehend. Hence,
when seen at high resolution in the structure of H50S the tunnel
was considered as a passive, ‘Teflon-like’ path [20,21].

Currently, not only is the existence of a protein exit tunnel
commonly accepted it is also well established that this tunnel
possesses dynamic features [40,51] which enable it to play active
roles in the sequence-specific arrest of nascent chains in response
to the cellular signals [52,53] and in controlling the operational
mode of the translocon at the ER membrane [54]. Fluorescence
resonance energy transfer (FRET) measurements [54,55] and
computational analyses [56–58] have indicated that some extent
of protein folding may happen within the ribosome exit tunnel.
In support to these findings, a crevice adjacent to the tunnel
wall that can provide space for co-translational transient folding
has been identified [59], thus hinting at intratunnel ribosomal
chaperon activity. Nevertheless, whether events of cotranslational
folding of nascent proteins occur within the ribosome is still under
debate. An additional issue to be further investigated is the mode
of action of the extended loop of protein L23 that spans the tunnel
wall in a fashion allowing for trafficking nascent chains [41,60].
As protein L23 belongs to the small group of ribosomal proteins
that display significant evolutionary divergence and this loop
is a eubacterial unique feature, higher organisms must possess
alternative pathways, which so far have not been identified.

A smooth entrance of nascent proteins into the crowded cellular
environment is ensured by molecular chaperones, which support
protein proper folding. This is required since nascent chains are
exposed to the cellular environment when they reach a length that
is not sufficient to allow for proper folding. In eubacteria, trigger
factor (TF) is the first chaperone encountered by the emerging
polypeptides at the tunnel opening. The various functions of TF are
still being explored, as in addition to minimization misfolding and
aggregation, it may provide a cradle for the newly born protein
[61,62], or provide a sheltered region in which small proteins can
obtained their mature fold [63].

TF binds to the ribosome via a few contacts with rRNA and
the external globular domains of ribosomal proteins L23 and
L29. A comparison of the crystal structures of free TF from
Escherichia coli [61] with the structure of the binding domain
of TF from its homologue D. radiodurans bound to the 50S subunit
of D. radiodurans has shown that TF undergoes conformational
rearrangements once bound to the ribosome [41,64]. Notably,
these rearrangements expose a sizable hydrophobic region, which
confer TF the ability to mask hydrophobic patches occurring on
non–fully synthesized proteins, thus stabilizing their temporary
conformations. Consistently, FRET studies have shown that the TF
bound to the translating ribosomes interacts with nascent chains
containing exposed hydrophobic segments after its chemical
activation [65], which can be described as the exposure of

its hydrophobic regions by conformational rearrangement [66].
Gradual burial of the hydrophobic regions may be accompanied
by TF release.

Ribosome Inactivation by Antibiotics

Ribosomes are the target of many clinically relevant antibiotics.
As no structural information is available for the ribosomes
of pathogenic organisms, crystallizable eubacterial ribosomes,
proved to provide suitable models for understanding the mode
of action of various antibiotics, are the only sources for structural
information of antibiotics binding. As a rule of thumb, all major
sites of antibiotic binding are within functional regions of the
ribosome. In the large ribosomal subunit, these are the PTC (e.g.
chloramphenicol, clindamycin, pleuromutilins, streptograminA,
and oxazolidinones), the ribosome exit tunnel (e.g. macrolides)
and the base of the L7/L12 stalk (e.g. thiostrepton, evernimicin).

Antibiotics targeting the PTC [20,24,67–75] hamper either the
binding of A-site tRNA or interfere with the formation of the
peptide bond. Chloramphenicol blocks only the A site, whereas
clindamycin, tiamulin, and streptogramin A bind to both the A
and the P sites. Notably, most of these drugs are rather selective
despite the high conservation of the PTC. Pleuromutilin and its
various derivatives are of great interest for their clinical relevance,
as well as for their action mechanism, which demonstrates how
selectivity (and resistance) can be acquired despite almost full
conservation [70,71]. These drugs have been shown to bind
through an induced-fit mechanism that exploits the flexibility
of two specific nucleotides, U2585 and U2506, to tighten the
antibiotic binding (Figure 3) accompanied by the creation of a
network of contacts that involve remote nucleotides, which are
less conserved, hence allow for drug selectivity [71].

A different mechanism of action is displayed by the exit tunnel
targeting antibiotics, which block the ribosome exit tunnel at
a specific latitude and hamper the nascent chain progression.
Macrolides are typical exit tunnel targeting antibiotics. They share
common chemical characteristics, as they are composed of a
derivatized macrolactone ring. The first widely used macrolide
drug was erythromycin, a 14-member lactone ring, derivatized with
a desosamine and cladinose sugar (Figure 4). All currently available
crystal structures of complexes of macrolides and their advanced
derivatives with large ribosomal subunits [40,59,67,76–82] show
that most of the interactions of macrolides with the ribosome exit
tunnel involve the main constituents of the macrolide-binding
pocket, nucleotides A2058–A2059, which reside on one side of
the tunnel wall, and provide the major elements allowing for
drug selectivity (see below) and drug resistance. Erythromycin
resistance can be acquired also by mutations in protein L22 tip, as
well as in protein L4 that forms, together with L22, a constricted
region of the tunnel, and can meet it in its swung conformation
(Figure 4). As neither of these proteins interacts directly with the
bound drug, it is conceivable that in addition to the change of the
protein conformation [83], these mutations may trigger alterations
in the structure of the tunnel walls. Indeed, preliminary results of
high-resolution structural studies verified previous biochemical
[84] and electron microscopical [51] findings, indicating such
alterations.

Among exit tunnel targeting drugs, a peculiar inhibitory
mechanism has been observed in the crystal structure of D50S
complex with the macrolide troleandomycin (TAO). This structure
evidenced a novel mechanism where an exit tunnel blockage

www.interscience.com/journal/psc Copyright c© 2008 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2009; 15: 122–130
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Figure 3. Induced fit and remote interactions in pleuromutilins binding. Remarkable conformational reorganization observed for nucleotides U2506 and
U2585. U2506 is tilted toward the pleuromutilins tricyclic cores and thus tightens up the binding pocket on the bound drugs, while U2585 is shifted
away from all C14 extensions for avoiding hindrances. Pleuromutilins antibiotics SB-571519 (PDB 2OGM), SB-280080 (PDB 2OGN), and retapamulin (PDB
2OGO) are shown in red, pink, and yellow, respectively. Nucleotides of the unbound large subunit, D50S (PDB 1NKW), are in black and their positions
observed in the presence of the antibiotics are in blue, cyan, and orange, respectively.

is achieved by novel interactions with the macrolide binding
pocket alongside conformational changes in the protein L22,
whose β-hairpin tip is swung across the tunnel (Figure 4). In its
swung conformation, the L22 β-hairpin tip gates the tunnel [40].
TAO’s interactions with nucleotides of the tunnel wall across
the macrolide binding pocket are correlated with mutations
bypassing tunnel arrest [52], hence providing the structural basis
for conformational dynamics of the tunnel and validating tunnel
discrimination properties, obtained biochemically [52,53]. These
results have been successively corroborated by the studies of drug-
dependent ribosome stalling during translation, which identified
the β-loop of L22 as a major molecular player involved in a
translation arrest [85] and by mutagenesis studies indicating that
in addition to protein L22, protein L4 is also involved in the
translational arrest [86].

Ketolides are derivatives of macrolides with an alkyl–aryl or
quinollyallyl arm bound to the macrolactone ring and a keto
group replacing the cladinose sugar at its C3 position. These
chemical modifications have proved to confer a stronger binding.
Indeed, biochemical and crystallographic studies [82,87] have
shown that they bind to both the sides of the tunnel and that
this binding mode exploits an extensive and precise network of
interactions [88], at both sides of the tunnel, and therefore can
bind to macrolide resistant bacterial strains.

To BE or Not to BE a Pathogen Model

The crystal structures of either of the ribosomal subunits in com-
plex with antibiotics have provided a plethora of information on
antibiotic inhibitory mechanisms. Additionally, by revealing the
structural factors that discriminate between the ribosomes from
eubacteria and those of an archaeon representing eukaryotes,

these structures illuminated basic issues in antibiotics susceptibil-
ity, specificity, selectivity, and toxicity [1,75,80,89]. As an example,
the key nucleotide in position 2058, which is crucial for macrolides
binding, plays a major role in macrolide selectivity. In eubacteria,
namely in all pathogens, it is an adenine, whereas in eukaryotes
and in the archaeon H. marismortui, it is a guanine, thus requir-
ing a large drug excess for facilitating some macrolide binding
[76]. As this nucleotide is also involved in most macrolides resis-
tance mechanism, advanced compounds that can bind to resistant
stains (e.g. with A2058G mutation or A2058 methylamine) were
designed. An example is azithromycin that was designed for in-
creased flexibility by an addition of a member to the macrolactone
ring (15 rather than 14 members). Indeed, this modification fa-
cilitated the binding of the drug also to the ribosomes from the
archaeon H. marismortui [76], albeit without inhibitory action, since
its mode of binding is different from that observed for eubacteria
[81]. Thus, azithromycin binding to H50S blocks only a small part
of the tunnel, whereas in D50S the binding yields an effective
blockage of the exit tunnel [70,80].

Consistently, G2058A mutation in ribosomes of H. marismortui
[77], aimed at mimicking the binding properties of eukaryotic
ribosome, led to macrolide and ketolides binding to H50S at
clinically relevant concentrations. However, careful comparisons
between the antibiotic-binding sites in ribosomes from the
eubacterium D. Radiodurans and those from the archaeon H.
marismortui highlighted a neat distinction in the nucleotide
sequence and orientation, leading to substantial differences in
macrolide binding modes [2,75,80]. Hence, it was concluded
that although A2058 is the main macrolide binding ‘anchor’, it
is not the sole nucleotide determining drug positioning and,
therefore, effectiveness. In support of these conclusions is the
study showing that mutagenesis from guanine to adenine in the

J. Pept. Sci. 2009; 15: 122–130 Copyright c© 2008 European Peptide Society and John Wiley & Sons, Ltd. www.interscience.com/journal/psc
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Figure 4. The location of the macrolide troleandomycin (TAO) in the
ribosome exit tunnel. The tunnel is represented by the backbone of its
RNA, shown as gray ribbons. (A) TAO binding to the ribosome exit tunnel
triggers a motion of the tip of the β-hairpin of protein L22 from its native
conformation (cyan), lining the tunnel wall, to the other side of the tunnel
(purple). (B) In its swung conformation, L22 occludes the tunnel and forms
interactions with the RNA components of the tunnel wall, as well as with
ribosomal protein L4 (red). Insert: the chemical structures of erythromycin
and troleandomycin. In Erythromycin, the depicted OH moieties are those
involved in interactions with the binding pocket.

yeast Saccharomyces cerevisiae rRNA at the position equivalent to
E. coli A2058, allows erythromycin binding but does not confer
erythromycin sensitivity [90].

Conclusions

The intricate ribosomal architecture positions its substrates in an
orientation that promotes peptide bond formation and provides
the machinery required for enabling the reiteration of this reaction,
which results in amino acid polymerization. The current consensus
is that the ribosome contributes positional catalysis to peptide-
bond formation and provides the path along which A-to-P-site
translocation occurs, whereas chemical catalysis is provided by
the proximal 2′-hydroxyl of P-site tRNA A76. Although several
structural and biochemical studies have been so far carried out, a
rational view of the protein manufacture process and its regulation
in cells is still to come. The picture that emerges from the available
studies is that the ribosome is a stunning autonomous machinery

with outstanding sensory elements. Indeed, not only ribosomes
synthesize proteins in a cell-free environment but they also auto-
control and adjust the rate of polypeptide synthesis to the specific
expression requirements [85,91].
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