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  Abstract   An impressive number of crystal structures of ribosomes, the universal 
cellular machines that translate the genetic code into proteins, emerged during the 
last decade. The determination of ribosome high resolution structure, which was 
widely considered formidable, led to novel insights into the ribosomal function, 
namely, fi delity, catalytic mechanism, and polymerize activities. They also led to 
suggestions concerning its origin and shed light on the action, selectivity and syner-
gism of ribosomal antibiotics; illuminated mechanisms acquiring bacterial resis-
tance and provided structural information for drug improvement and design. These 
studies required the pioneering and implementation of advanced technologies, 
which directly infl uenced the remarkable increase of the number of structures 
deposited in the Protein Data Bank. 

         18.1   Introduction 

 The translation    process requires a complex apparatus composed of many components, 
among which the ribosome is the key player, as it is actively involved in the transla-
tion process. Ribosomes are universal ribozymes performing two main tasks: 
decoding the genetic information and polymerizing amino acids, while providing 
the framework for the proper positioning of all other participants, including mRNA, 
its substrates (tRNAs) and initiation, elongation, release and recycling factors that 
ensure that protein synthesis occurs progressively and with high specifi city. They 
operate is each living cell continuously since the constant programmed cell death, 
which implies constant proteins degradation, requires simultaneous production of 
proteins. Hundreds of thousands of ribosomes are present in typical mammalian 
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cells. Fast replicating cells, e.g. liver cells, may contain a few millions ribosomes. 
Even bacterial cells may contain to 100,000 ribosomes during their log period. 
mRNA chains, produced by the transcription of the segments of the DNA that 
should be translated, carry the genetic information to the ribosomes, and tRNA 
molecules bring the cognate amino acids to the ribosome (Fig.  18.1 ). The tRNA 
molecules from all living cells are built of double helical L-shape molecules 
containing an anticodon loop that matches its three-nucleotide codes on the mRNA 
on one of their edges, ~70 Ǻ away, their 3 ¢ ends are single strands with the universal 
sequence CCA to which the cognate amino acid is bound by an ester bond. For 
increasing effi ciency, a large number of ribosomes act simultaneously as polymerases 
synthesizing proteins by one-at-a-time addition of amino acids to a growing 
peptide chain, while translocating along the mRNA template, producing proteins 
on a continuous basis in an incredible speed (5–15 new peptide bonds per second, 
in eukaryotes and prokaryotes, respectively).  

 The ribosomes are giant assemblies composed of many different proteins 
(r-proteins) and long ribosomal RNA (rRNA) chains. The ratio of rRNA to 
r-proteins (~2:1) is maintained throughout evolution, except in mitochondrial 
ribosome (mitoribosome) in which almost half of the bacterial rRNA is replaced 
by r-proteins. In all organisms ribosomes are built of two subunits, which associate 
to form functionally active ribosomes. In prokaryotes, the small subunit, denoted as 
30S, contains an RNA chain (16S) of ~1,500 nucleotides and ~20 different proteins. 
The large subunit (50S in prokaryotes) has two RNA chains (23S and 5S RNA) of 
about 3,000 nucleotides in total, and different <31 proteins. The available three 
dimensional structures of the bacterial ribosome and their subunits show that in 
each of the two subunits the ribosomal proteins are entangled within the complex 

  Fig. 18.1    Schematic view of the translation process       
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rRNA conformation, thus maintaining a striking dynamic architecture that is inge-
niously designed for their functions: precise decoding; substrate mediated peptide-
bond formation and effi cient polymerase activity. The structural bases for ribosomal 
functions, as obtained by high resolution crystallographic studies are summarized in 
several recommended recent reviews  [  34,   46,   58,   73  ] . Further insights obtained 
from the combination of the crystallographic results with those emerging from 
single-molecule techniques (cryogenic electron microscopic and fl uorescence 
resonance energy transfer) are outlined in  [  23  ] . Selected topics of ribosome function 
are discussed below. As so far high resolution structures are available only for 
prokaryotic ribosomes, the discussion is confi ned to these ribosomes and to insights 
evolved from their structures.  

    18.2   Snapshots Along the Birth of the Nascent Chains 

 While the elongation of the nascent chain proceeds, the two subunits perform 
cooperatively. The tRNA molecules are the non-ribosomal entities combine the 
two subunits, as each of their three binding sites, A-(aminoacyl), P-(peptidyl), and 
(exit), (Fig.  18.2 ) resides on both subunits. Their anticodon loops interact with the 
mRNA on the small subunit, and their acceptor stems with the aminoacylated or 
peptidylated 3’ends are located on the large subunit.  

  Fig. 18.2    ( Left ) The two 
subunits. The approximate 
positions of the mRNA and 
three tRNA sites are marked. 
( Right ) A slice through the 
center of the translating 
ribosome showing the P-site 
tRNA ( blue ), the nascent 
chain path and direction are 
shown as a  red arrow , and the 
fi rst chaperone encountering 
the emerging nascent chain 
( TF  trigger factor) is 
represented by a  half circle        
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 The small subunit provides the path along which the mRNA progresses, the 
decoding center and the mechanism controlling translation fi delity  [  46 ,  51  ] . 
Translation initiation is the rate-limiting step of the entire process. It starts by the 
correct selection and placement of the mRNA reading frame, with the help of the 
initiation factors, and then proceeds through a tightly regulated steps. Within the 
initiation complex the initiation codon is decoded in the P-site of the ribosomal 
subunit, and involves GTP-binding  [  57  ] . 

 The large subunit contains the site for the main ribosomal catalytic function, 
namely polymerization of the amino acids and provides the dynamic protein exit 
tunnel  [  13  ] . The structure of its larger subunit revealed that the ribosome is a 
ribozyme with RNA at the core of its enzymatic activity. Simultaneously with the 
advancement of the mRNA along the path in the small subunit, peptide bonds are 
being formed in the large subunit. This inherently dynamic process requires small 
and large-scale motions of the ribosomal substrates (e.g., the intersubunit rotational 
movements during tRNA-mRNA translocation), coupled to conformational rear-
rangements of its components, facilitating the translocation of the tRNA 3 ¢ end from 
A- to P-site, the detachment of the P-site tRNA from the growing polypeptide chain, 
the passage of the deacylated tRNA molecule to the E-site and its subsequent release. 
The nascent proteins progress along a dynamic tunnel and emerge from the large 
subunit (Fig.  18.2 ) into a shelter formed by ribosome-bound trigger-factor, acting as 
a chaperone preventing aggregation and misfolding  [  8,   53  ] . 

 The current consensus view is consistent with ribosomal positional catalysis 
assisted by its P-site tRNA substrate (e.g.  [  9 ,  11  ]    ) and not by acid/base mecha-
nism [ 43 ]. All known structures indicate that the ribosomes provide the suitable 
stereochemistry for peptide bond formation, the guided path for the A- to P- site 
translocation and the appropriate geometrical means for substrate mediated 
catalysis. In all of the so far determined structures the ribosomal catalytic site, 
called the peptidyl transferase center (PTC), is situated within a highly con-
served symmetrical region (Fig.  18.3 ) that connects all ribosomal functional 
centers involved in amino-acid polymerization, namely the tRNA entrance/exit 
dynamic stalks, the PTC, the nascent protein exit tunnel, and the bridge connect-
ing the PTC cavity with the vicinity of the decoding center in the small subunit. 
Hence, it can serve as the central feature for signaling between all the functional 
regions involved in protein biosynthesis, that are located remotely from each 
other (up to 200 Ǻ away), but must “talk” to each other during elongation  [  1,   2, 
  9  ] . As the symmetry relates the backbone fold and nucleotides orientations, but 
not nucleotide sequence, it emphasizes the superiority of functional requirement 
over sequence conservation.  

 The linkage between the elaborate architecture of the symmetrical region and 
the position of the A-site tRNA, as observed crystallographically  [  9  ]  indicates that 
the translocation of the tRNA 3 ¢ end is performed by a combination of two indepen-
dent, albeit synchronized motions: a sideways shift, performed as a part of the 
overall mRNA/tRNA translocation, and a rotatory motion of the A-tRNA 3’end 
along a path confi ned and navigated by the PTC walls, of which all nucleotides 
have been classifi ed as essential by a comprehensive genetic selection analysis 
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 [  49  ] . This motion enables the formation of all interactions that are prerequisite for 
substrate positioning  [  33,   56,   63  ] , for mediating acceleration  [  64  ] , and for the for-
mation of the transition state (TS) of this reaction  [  24  ] . This stunning architecture 
allows for the PTC remarkable ability to rearrange itself upon substrate binding, 
explaining the pace difference between the formation of single peptide bond by 
minimal substrates and possessive amino acid polymerization and verifying the 
fi nding that the peptidyl transfer reaction is modulated by conformational changes 
at the active site  [  9,   11,   12,   54,   67  ] .  

    18.3   The Proto Ribosome Concept 

 The high level of conservation suggests that the modern ribosome evolved from a 
simpler entity that can be described as a pro-ribosome, by gene fusion or gene 
duplication. In particular, the preservation of the three-dimensional structure of the 
two halves of the ribosomal frame regardless of the sequence demonstrates the rig-
orous requirements of accurate substrate positioning in stereochemistry supporting 
peptide bond formation. This, as well as the universality of the symmetrical region 
led to the assumption that the ancient ribosome contained a pocket confi ned by two 
self folded RNA chains, which associated to form a pocket like dimer (Fig.  18.4 ).  

 As RNA chains can act as gene-like molecules coding for their own reproduc-
tion, it is conceivable that the surviving pockets became the templates for the ancient 
ribosomes. In later stage these primitive RNA genes underwent initial optimization 

  Fig. 18.3    The symmetrical 
region within the large 
ribosomal subunit (colored 
in  blue  and  green ). 
Its extensions are shown 
in  gold . The A-site tRNA 
is shown in  metal blue  and 
the P-site tRNA in  light green        
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to produce a more defi ned, relatively stable pocket, and when a clear distinction was 
made between the amino acid and the growing peptidyl sites, each of the two halves 
was further optimized for its task so that their sequences evolved differently. In 
parallel, the substrates of the ancient ribosomes, which were initially activated 
amino acids (presumably by binding to single or oligo nucleotides), evolved to 
allow accurate binding. Later, for increasing specifi city, these short RNA segments 
were extended to larger structures by their fusion with RNA stable features, to form 
the ancient tRNA. Later, RNA chains capable of storing, selecting and transferring 
instructions for producing useful proteins became available. Subsequently, the 
decoding process was combined with peptide bond formation. Then single mole-
cules evolved, capable of not only carrying the amino acids while bound to them, 
but also translating the genomic instructions, by adding a feature similar to the mod-
ern anticodon arm to the ancient tRNA structure  [  10 ,  21  ] . Importantly, the notion 
that the ribosome evolved around an ancient core is also supported by computa-
tional and biochemical studies  [  15,   31  ] . 

 In short: analysis of substrate binding modes to unbound ribosomal subunits 
and to functionally active ribosomes illuminated the signifi cance of the PTC 
mobility and supported the hypothesis that the ancient ribosome could have 

  Fig. 18.4    Shows how the proto ribosome could have evolved. The symmetrical region is high-
lighted within the contemporary ribosome. A view showing its pocket-like nature is shown on 
 bottom right        
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evolved from an RNA molecular machine that was functionally active in the RNA 
world era, which produced single peptides bonds and non-coded chains. Genetic 
control of the reaction seems to evolve after polypeptides capable of enzymatic 
function were created, and a stable RNA primitive carrier fold was converted into 
tRNA molecules.  

    18.4   Structures for Improving Antibiotics 

 The intensive research on ribosomes has practical aspects; one of them has clini-
cal relevance since many antibiotics target the ribosome. The increasing incidence 
of antibiotic resistance and toxicity creates serious problems in modern medicine; 
combating resistance to antibiotics has been a major concern in recent years. 
Useful antibiotics that target ribosomes inhibit cell growth by selectively paralyzing 
the ribosome’s activity in pathogens (always eubacteria) and not the eukaryotes. 
They act by diverse mechanism, all based on a common strategy: coinciding with 
functionally critical centers of the ribosome Examples are causing miscoding, 
minimizing essential mobility, interfering with substrate binding at the decoding 
center and at the PTC, or blocking the protein exit tunnel (Suggested reviews and 
recent work are:  [  3–  5,   16–  20,   32,   37–  39,   45,   53,   55,   59,   61,   68,   69  ] ). 

 By its nature, X-ray crystallography should be the choice method for investigating 
ribosome-antibiotics interactions. However, since X-ray crystallography requires 
diffracting crystals, and since so far no ribosomes from pathogenic bacteria could be 
crystallized, currently the crystallographic studies are confi ned to the currently available 
crystals of suitable pathogen models. Currently available are high-resolution structures 
of complexes of antibiotics with ribosomal particles from the eubacteria  E. coli, Thermus 
thermophilus  and  Deinococcus radiodurans , all suitable to serve as a pathogen model. 
Also available are complexes obtained from antibiotics bound to ribosomes from the 
Dead Sea archaeon  Haloarcula marismortui  that resembles eukaryotes in respect to 
antibiotics binding site, hence requiring enormously high antibiotics concentrations 
for obtaining these complexes. Comparisons between the two types of complexes 
proved indispensable for increasing our understanding on antibiotics action (Fig.  18.5 ).  

 A major issue concerning the clinical usefulness of ribosomal antibiotics is their 
selectivity, namely their capabilities in the discrimination between the ribosomes of 
the eubacterial pathogens and those of eukaryotes. Although prokaryotic and 
eukaryotic ribosomes differ in size (~2.4 and 4 Mega Dalton, respectively), their 
functional regions, which are the targets for the antibiotics, are highly conserved. 
Therefore the imperative distinction between eubacterial pathogens and mammals, 
the key for antibiotics usefulness, is achieved generally, albeit not exclusively, by 
subtle structural difference within the antibiotics binding pockets of the prokaryotic 
and eukaryotic ribosomes. In fact, even among the pathogens, there are examples 
for species selectivity that determines the susceptibility and the fi tness cost of the 
ketolides (e.g.  [  44  ] ). Selectivity (and resistance) can also be obtained by exploiting 
induced fi t mechanisms based on network of remote interactions by utilizing 
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nucleotides that are less conserved, as they do not directly involved in the ribosome 
functions  [  19,   20  ] . Another intriguing issue relates to the contributions of two 
ribosomal proteins, namely L4 and L22. These proteins line a small part of the exit 
tunnel at its constriction, and do not interact directly with most of the members of 
the macrolides family, yet their mutations acquire resistance to them  [  14,   22,   42,   72  ] , 
presumably by perturbing the rRNA structure at the tunnel walls  [  26,   35  ] . 

 Current attempts to overcome antibiotics resistance and increase their selectivity 
are being made (e.g.  [  18,   66  ] ).These include developments of synergetic antibiotics, 
such as the recent potent antibiotic drug, synercid  [  29,   69  ]  and reviving “forgotten” 
antibiotics families, such as the lankacidins  [  5  ] . Other strategies are based on 
insertions of additional moieties that should bind to the ribosome and compensate 
for the lost interactions in the resistant strains. In parallel, comprehending the 
factors allowing for selectivity should provide powerful tools to understand many 
of the mechanisms exploited for acquiring resistance. Thus, the lessons learned 
from ribosome crystallography for combating resistance of antibiotics targeting 
the ribosome paved new paths for antibiotics improvement.  

    18.5   Historical Comments 

 Owing to the huge size and the complexity of the ribosome, it was widely assumed 
that ribosomes cannot be crystallized. Twenty years passed from the fi rst indications 
for potential high resolution by examining the initial microcrystals that diffracted to 

  Fig. 18.5    Shows a section 
through the large ribosomal 
subunit at the level of the 
protein exit tunnel, together 
with P-site tRNA. The 
location of the macrolide 
binding pocket is circled       
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relatively high resolution, namely 3.5 Ǻ  [  71  ]  to the fi rst 3D structures. The shift 
from poorly diffracting microcrystals to high-resolution structures was achieved 
gradually, based on the assumptions that the higher the conformational homogene-
ity the better the crystals, and that the preferred conformation is that of functionally 
active ribosomes. Assuming that the ribosomes of bacteria that grow under robust 
conditions are less sensitive to external conditions, we focused on such sources, 
and, indeed, the fi rst three dimensional microcrystals were obtained (Fig.  18.6 ) 
from the large ribosomal subunits from  Bacillus stearothermophilus   [  71  ] , a source 
considered to be an extremophile at the beginning of the eighties. Extensive systematic 
explorations for suitable bacterial sources indicated that the key for obtaining 
crystals suitable for crystallographic studies is to use ribosomes from relatively 
robust bacteria, such as  H. marismortui, T. thermophilus  and  D .  radiodurans   [  25  ] . 
A parallel strategy is to crystallize complexes of ribosomes with substrates, inhibi-
tors and/or factors that can trap them at preferred orientations. Among such com-
plexes are the initial crystals of the whole ribosome from  T. thermophilus  with 
mRNA and tRNA molecules  [  27  ] . Efforts aimed at crystals improvement included 
a thorough examination of the infl uence of the relative concentrations of mono- and 
di-valent ions  [  62  ]  and constant refi nements of bacterial growth pathways  [  6  ] . 
Remarkably, fl exible functional regions could be traced in maps obtained from 
crystals grown under conditions mimicking their physiological environment  [  28  ] , 
whereas in crystals obtained under far from physiological environment these regions 
are highly disordered  [  7  ] .  

 While developing crystallographic procedures, we obtained a starting model by 
electron microscopy, using three-dimensional image reconstruction from two dimen-
sional sheets (Fig.  18.7 ). These studies revealed that nascent proteins progress zcated 
protection of nascent chains by the ribosome  [  36,   48  ] . However, the common notion 

  Fig. 18.6    Shows the progress in crystallization. On the  left , the microcrystals are shown in an 
insert ( top left ), and a positively stains section of these micro crystals as seen by EM       
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  Fig. 18.7    A section through the large subunit ( top left ) and the protein exit tunnel, in which poly-
alanine is docked.  C  denotes a crevices where initial folding can take place and  M  is the location 
of the macrolides binding pocket. The initial three dimensional reconstructions (from 2D sheets) 
are shown in the  bottom-left  inset       

that nascent proteins progress on the ribosome surface until its maturation, raised 
doubts in the existence of the tunnel  [  41,   47  ] , even after its visualization.  

 Alongside the improvement of the quality of the micro- or poorly diffracting crys-
tals, our studies required the development of innovative methodologies. Among these 
is the pioneering of bio-crystallography at cryogenic temperatures, which was intro-
duced because of the extreme radiation sensitivity of the ribosomal crystals  [  30  ]  and 
became almost instantaneously the routine method all over the world, thus enabling 
structure determination from crystals considered not useful previously. Also, we 
introduced an unconventional use of multi-heavy atom clusters  [  60  ]  (Fig.  18.8 ).  

 One of them, the heteropolytungstate (NH4)6P2W18O62 was found to play a 
dual role in the determination of the structure of structure of the small ribosomal 
subunit from  T. thermophilus . Thus, in addition to signifi cant phasing power and 
anomalous signal, post crystallization treatment with minute amount of one of this 
cluster increased dramatically the resolution of the X-ray diffraction from the initial 
low resolution (7–9 Ǻ) to ~3Ǻ  [  25,   50  ]  presumably by minimizing the internal 

 



20518 Ribosomes: Ribozymes that Survived Evolution Pressures...

 fl exibility involved naturally in mRNA binding to the ribosome and its progression 
through the ribosome.  

    18.6   Conclusions 

 By providing molecular snapshots of various intermediates in ribosome-mediated 
translation in atomic detail, the high resolution structures have revolutionized our 
understanding of the mechanism of protein synthesis. Despite this impressive 
progress, countless new questions arose. Many of which concern structural dynamics 
and intricate localized rearrangements, with answers that may emerge by combina-
tion of approaches like X-ray crystallography, cryo EM, FRET and biochemistry. 
An striking advance in this direction is the recent ability to follow translation by 
single ribosomes, one codon at a time) using mRNA hairpins tethered by the ends 
to optical tweezers  [  65  ] .      
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