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22.1
Introduction

Ribosomes, which are the target of many antibiotics [1, 2] possess spectacular
architecture and inherent mobility, allowing their smooth performance in decoding
the genetic information as well as in the formation of the peptide bond and
the elongation of the newly synthesized proteins. The site for peptide bond
formation (peptidyl transferase center, PTC, is located within a highly conserved
pseudosymmetrical region [3, 4] that connects all of the remote ribosomal features
involved in its functions, and seems to be a remnant of an ancient RNA machine
for chemical bonding [5–10].The elaborate structure of this region and its dynamic
properties place the aminoacylated and peptidyl tRNAs in the stereochemistry
required for formation of peptide bonds, for substrate-mediated catalysis, and for
substrate translocation, namely, for all activities enabling nascent chain elongation.

Adjacent to the PTC is the entrance to an elongated tunnel (Figure 22.1),
a universal multifunctional feature of the ribosome, along which the nascent
proteins progress until they emerge out of the ribosome. The existence of an
internal ribosomal tunnel was proposed first in the 1960s, based on biochemical
experiments indicating ribosomal masking of the last to be formed segments of
the nascent chains [11, 12]. Nevertheless, at that time and during the following
two decades it was widely assumed that growing nascent proteins ‘‘travel’’ on
the ribosome’s surface and are not degraded because they adopt compact helix
conformations. In fact, doubts about the mere existence and the universality of
the ribosomal tunnel were publicly expressed [13] and studies aimed at supporting
this assumption were carried out [14] even after its initial visualization by three-
dimensional image reconstructions at rather low resolution in eukaryotic and
prokaryotic ribosomes, namely, 60 and 25 Å, respectively [15, 16]. This tunnel was
rediscovered by cryo electron microscopy [17, 18] and finally verified when it was
clearly observed in the first high-resolution crystal structures of the large ribosomal
subunit [19, 20].
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Figure 22.1 The universal nascent protein
exit tunnel. Located in the large ribosomal
subunit (top left) and extends from the
site for peptide bond formation, PTC (P)
to the other side of the subunit, the
tunnel (highlighted by a modeled polyala-
nine chain) has a nonuniform shape

(seen clearly in the zoomed region). This
uneven shape contains a relatively wide
crevice (C) alongside a narrow constric-
tion, where members of the antibiotic
family macrolides bind (M). A- and P-
site tRNAs are shown in blue and green,
respectively.

22.2
The Multifunctional Tunnel

Despite its considerable dimensions (about 100 Å in length and up to 25 Å width),
uneven shape, and the existence of a wide crevice alongside narrow constrictions
(Figure 22.1), tunnel involvement in the fate of the nascent chains was hard to
conceive. Therefore, it was originally suggested to be a passive conduit, having a
Teflon-like character with no chemical properties capable of facilitating its interac-
tions with the progressively growing nascent chains [21]. However, further studies
clearly indicated the significance of the tunnel and its intricate chemical nature
and diverse functional roles, such as participation in nascent chain progression
and its compaction are currently emerging. Evidence of nascent proteins/tunnel
interactions have accumulated (for a review, see e.g., [22, 23]), some of which
indicate extensive involvement in translation arrest and cellular signaling. It is
conceivable that the interactions of the nascent chains with the tunnel alter the rate
of translation elongation and, in extreme cases, lead to translation arrest. Thus,
peptide monitoring and discriminating properties can be exploited for optimizing
protein targeting and gene expression by small molecules such as tryptophan,
arginine, and S-adenosyl-methionine [24–29].

The tunnel walls are lined predominantly by ribosomal RNA. The tips of
ribosomal proteins L4, L22, and L23 are non-RNA tunnel wall components that
are likely to control the tunnel gating and/or trafficking. While protein L23 resides
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Figure 22.2 Proteins L22 and L4. Left:
the positions of ribosomal proteins L4 and
L22 in the large ribosomal subunit, shown
above the ‘‘background,’’ which is the entire
large ribosomal subunit (D50S). M is the
approximate position of the macrolide bind-
ing pocket. Note the proximity of it to the
tips of L4 and L22, which, together with
L22 elongated shape, allows its indirect

involvement in antibiotic resistance as well
as its direct participation in elongation arrest
and transmission of cellular signals. Top
right: same as in the left, but without the
large ribosomal subunit. Bottom right: the
possible interactions between L4 and L22 in
its swung orientation [36]. Only the hairpin
tips of the elongated proteins L4 and L22,
which reside at the tunnel walls, are shown.

at the tunnel opening and in eubacteria possesses an extended internal loop that
appears to have sufficient mobility for controlling the emergence of newly born
proteins [30], the hairpin tips of the elongated proteins L4 and L22 reside in
proximity to the constrictions of the tunnel wall (Figure 22.2) [20, 31–35] and
are involved, mainly indirectly, in antibiotics binding and resistance as well as in
nascent chain elongation arrest [36, 37].

Elongation arrest and its mutual impact on cellular processes have gained
increased interest in recent years. The discovery of regulatory short nascent peptides
that can promote stalling of the macrolide-bound ribosome stimulated studies on
sequence-specific interactions of antibiotics with the nascent peptide [38–41] as
well as on short peptides that expel macrolide antibiotics from the ribosome while
being formed [42–46]; the disparity in the level of macrolides inhibition observed
in these cell-free systems has also been investigated [47–50]. Furthermore, it was
proposed that in some cases nascent proteins contain arrest segments that may
assume specific folds within the tunnel, capable of preventing nascent protein
progression along it. It is also conceivable that such semifolded segments could
inhibit peptide bond formation or hinder tRNA translocation. Alternatively, arrest
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can occur as a consequence of conformational alterations in the tunnel walls that
are caused by semifolded segments of the nascent proteins [51, 52].

Strikingly, recent studies indicated that the nascent chains may act as cellular
sensors while progressing through the tunnel for regulating membrane protein
biogenesis [23, 53, 54]. Indications of possible active tunnel participation in initial
nascent chain compaction, leading to semifolded chain segments were accumulated
by electron microscopy and single molecule studies (e.g., [54–59]). In addition,
indications of distinct conformations, including helical segments of the nascent
polypeptide chains, were recently reported within several regions of the ribosomal
exit tunnel that have been implicated in nascent chain–ribosome interaction (e.g.,
[60–63]). Furthermore, crystallographic analysis identified a crevice located at the
tunnel wall, where cotranslational initial folding may occur [64]. The currently
available observations imply direct interactions between specific residues of the
nascent peptide with distinct locations in the ribosomal tunnel in prokaryotes
and eukaryotes. These findings indicate that protein L22 appears to have dual
functions: it acts as a cellular sensor as well as a progression barrier of the nascent
peptide. The C- and N-termini of protein L22, located at the outer surface of the
ribosomal particle within the vicinity of the tunnel opening (Figure 22.2), can
sense cellular signals and transmit them into the ribosome through the tunnel
so that the nascent protein exit tunnel together with intraribosomal regulation
processes seem to be responsible for cell–ribosome signaling mechanisms and
govern the fate of nascent proteins expression. Furthermore, as revealed in the
crystal structure of the large ribosomal subunit in complex with the macrolide
antibiotic troleandomycin (see subsequent text and in [36]), the tip of the L22 hair
pin, similar to the consequences of troleandomycin binding, is capable of swinging
across the tunnel, thereby hampering nascent protein progression, and thus can
act as a tunnel gate. In support of this proposition is the finding that the arrest
caused by the SecM arrest sequence is bypassed by mutations in the L22 hairpin
tip region as well as in the 23S rRNA nucleotides [65] that were mapped to interact
with L22 in its swung conformation [36].

22.3
A Binding Pocket within the Multifunctional Tunnel

Simultaneously with the emergence of the first high-resolution structures of the
ribosome, the protein exit tunnel was shown to provide the binding pocket of
the prominent antibiotics family, the macrolides [34]. Erythromycin, the ‘‘mother’’
of this clinically important antibiotic family [50], was introduced into clinical
practice in 1952. It possesses strong bacteriostatic activity against a broad range
of gram-positive and several gram-negative pathogens [66]. The location of the
erythromycin binding pocket, as in the crystal structures of Deinococcus radiodurans
50S/erythromycin complex, can facilitate the obstruction of the tunnel and hamper
the progression of the nascent proteins. This agrees with many biochemical
experiments [67–69] that showed that erythromycin inhibits, to various extents,
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the progression of nascent proteins through the exit tunnel. Indeed, the antibiotic
binding to their pocket narrows the tunnel radically, and therefore should hinder
the progression of the nascent peptide [34].

A major issue concerning the clinical usefulness of ribosomal antibiotics is their
selectivity, namely, their capacity to discriminate between the ribosomes of the
eubacterial pathogens and those of eukaryotes. Although prokaryotic and eukaryotic
ribosomes differ in size (∼2.4 and 4 MDa, respectively), their functional regions,
which are the targets for the antibiotics, are highly conserved [70]. Therefore,
the imperative distinction between eubacterial pathogens and mammals, the key
to antibiotic usefulness, is achieved generally, albeit not exclusively, by subtle
structural difference within the antibiotic binding pockets of the prokaryotic and
eukaryotic ribosomes. A striking example of discrimination between pathogens
and humans is the huge influence played by the minute difference at position
2058 of the rRNA, where the bacterial adenine is replaced by a guanine in
eukaryotes. Indeed, this small difference was found to govern the binding of
macrolides.

Investigations on the binding modes of the macrolides allowed the identification
of the chemical parameters determining the mechanism of action of the various
members of this family of antibiotics [31, 32, 34–36, 71–73]. Structural studies
deciphered the parameters influencing and fine tuning antibiotic binding [73],
revealed the inherent flexibility of tunnel wall components that facilitates remotely
acquired antibiotics resistance (see preceding text and in [36]), and shed light on
the passage of a distinct subset of polypeptides.

22.4
Remotely Acquired Resistance

Four decades ago resistance to erythromycin was detected in mutants of laboratory
strains of E. coli, in which proteins L22 and L4 underwent minor modifications.
These proteins are located in the vicinity of the macrolide binding pocket [34]
and are involved in erythromycin resistance [74], in spite of not belonging to
the pocket. Minute sequence alterations in the tip of the hairpin of protein L22
and/or in protein L4, in proximity to the swung L22 (Figure 22.2), were shown to
confer erythromycin resistance, without preventing erythromycin binding [75, 76].
Analysis of the structures of an L22-resistant mutant showed that this mutation
triggered significant displacements of the RNA components of the tunnel walls
(Wekselman et al., work in progress). These rearrangements seem to cause tunnel
broadening, so that it can host erythromycin while allowing the progression of
nascent polypeptide chain. Interestingly, the influence of L22 conformation on
the shape of the tunnel wall was detected also by electron microscopy [77, 78].
Finally, it is interesting to note that remotely acquired resistance seems to be the
mechanism for acquiring resistance to antibiotics targeting the PTC, including the
pleuromutilins [79].
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22.5
Resistance Warfare

Despite the initial, overwhelmingly positive clinical results obtained with ery-
thromycin, this antibiotic was found to be rather sensitive to acidity and hence
less suitable for treating stomach infections. These, and similar shortcomings,
stimulated the design of semisynthetic antibiotics, such as clarithromycin, rox-
ithromycin, and clindamycin. These also led to the design of new compounds
meant to combat with antibiotic resistance that developed about a decade after the
beginning of the clinical use of the antibiotic. Indeed, in several cases, enhanced
chemical stability, higher inhibition activity (namely, lowering drug concentration),
a wider coverage against various pathogens and binding to erythromycin-resistant
strains were achieved by the modified macrolides, such as the second-generation
azalides, such as, azithromycin [80] and the third-generation ketolides, such as
telithromycin [81–83].

An interesting example is azithromycin, one of the world’s best selling antibiotics
that was designed in the 1980s by researchers at PLIVA, Croatia, with the aim of
combating resistance. Its main ring is a 15-membered derivative of erythromycin,
obtained by inserting a methyl-substituted nitrogen atom into the 14-membered
macrolactone ring (Figure 22.3). Azithromycin is potent against several resistant
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Figure 22.3 Azithromycin. (a) The chem-
ical structure of the macrolide second-
generation azithromycin that binds and
inhibits erythromycin-resistant strains. This is
a 15-membered macrolactone ring, derived
from erythromycin by the insertion of a
methyl-substituted nitrogen atom (in light
blue) into the 14-membered macrolactone
ring of erythromycin. (b) The modes of

azithromycin binding: across the tunnel to
D50S (in green) [72] and along the tunnel
in H50S (in blue) in which 2058 is guanine,
as in eukaryotes, showing the difference
between azithromycin binding to pathogens
(D50S) and patient (H50S) models and
indicating the consequence in therapeutic
effectiveness.
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strains, including those with the potentially hazardous A to G mutation at position
2058, as this substitution may result in binding to eukaryotic ribosomes that
carry G at this position. However, comparison between the azithromycin binding
mode to ribosomes that can serve as pathogen models, namely, of D. radiodurans
[72] with the binding to a eukaryotic model, namely, the large ribosomal subunit
from the Haloarcula marismortui, H50S [33] showed clearly that mere binding of
an antibiotic compound to the ribosome is not sufficient for obtaining efficient
therapeutical effectiveness and indicated that other structural elements of the
binding pocket are important for inhibitory activity. Similar observations were
made by mutagenesis in the yeast Saccharomyces cerevisiae at a position equivalent
to Escherichia coli A2058, which allows erythromycin binding but does not confer
erythromycin susceptibility [76].

22.6
Synergism

Additional attempts aimed at controlling resistance include the development of
synergetic antibiotics. An example is the very potent antibiotic called Synercid®,
a combination of the two streptogramins, dalfopristin and quinupristin, each of
which is a rather weak drug, but together they block the PTC as well as most
of the tunnel while preventing each other from leaving their binding pockets
(Figure 22.4). The impressive synergetic effect of this family can be understood

Synercid®

D50S - Native

Lankamycin-D50S

Lankamycin/Lankacidin-D50S

Lankacidin-D50S

Lankacidin

U2585

U2506

Mg"

(a) (b)

Figure 22.4 Synergism. (a) The two
Synercid® components bound to the PTC
and tunnel entrance and block them as
well as preventing each other from leav-
ing their binding pockets [86]. The tun-
nel wall is shown in blue. (b) The binding

mode of the two components of the
lankacidin–lankamycin to D50S [85] and
the alterations in the orientation of the very
flexible nucleotide U2585 that occur upon
binding of the components of this pair.
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by examining the mechanism of action of this antibiotic. The two components of
the synergetic pair of Synercid bind to the PTC and to the tunnel entrance and
displace A2062 and U2585 (Figure 22.4) [84, 85]. Thus, the inhibition is based
not only on blocking the tunnel and the entrance to it but also on a dramatic
alteration in the orientations of two highly flexible nucleotides, A2062 located at
the entrance of the tunnel and U2585, a principal participant in peptide bond
formation [3, 84–86].

A similar pair, produced by Streptomyces rochei, composed of lankacidin and
lankamycin, is expected to be a potential synergistic drug although currently, this
pair shows only a modest inhibitory effect on cell growth as well as on cell-free
translation. Remarkably, lankamycin binds readily to preformed lankacidin-bound
large ribosomal subunits, whereas erythromycin, which has a very similar structure
(Figure 22.5 and on the book’s cover), disrupts lankacidin binding. The molecular
basis for this unexpected difference has been identified [85] and it is likely that it
can be exploited for increasing the inhibitory effect of this pair.
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Figure 22.5 The chemical formula of (a) lankacidin C, (b) lankamycin, and
(c) erythromycin.
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22.7
Pathogen and ‘‘Patients’’ Models

High-resolution structures have provided many clues pertinent to antibiotic drug
development. As most eubacteria utilize similar structural principles for antibiotic
selectivity and resistance, it is expected that the factors allowing for selectivity
should provide powerful tools to understand many of the mechanisms exploited
for acquiring resistance. Indeed, the lessons learned from ribosome crystallography
concerning combating resistance to antibiotics targeting the ribosome have led to
new ideas for antibiotic improvement. However, it should not be forgotten that all
of these insights are based on structures of ribosomes from eubacteria that were
found to mimic pathogens under clinical-like conditions (e.g., D. radiodurans, E. coli,
and Thermus thermophilus), as so far no ribosomes from genuine pathogens have
been crystallized. Consequently, the current observations provided useful clues
about common traits, such as modes of actions, details of binding interactions,
rationalizations of resistance mechanisms, and the bases for synergism.

Although the currently available structural information is valuable, it seems
to be still insufficient for the acute medical challenges. This is because (i) sig-
nificant variability was detected between binding modes of drugs of the same
family (e.g., [36, 71, 87, 88]); (ii) binding pockets contain species specific unique
chemical properties that seem to confer resistance; and (iii) in several cases remote
interactions are responsible for certain induced fit binding abilities. These enable
species discrimination [79], which does not exist within the highly conserved
antibiotics binding pockets, and may vary between pathogenic and nonpathogenic
bacteria. Combined with the identification of deleterious mutations in rRNA,
there is considerable justification to explore ribosomes from the actual pathogenic
strains.

The large ribosomal subunit from H. marismortui (H50S) can be considered
among the currently known high-resolution eubacterial structures that represent
suitable models of pathogenic bacteria. Furthermore, in light of the properties
that this archaea shares with eukaryotes, in some instances its ribosomes may be
considered as a suitable model for patients.

Another example of different binding modes, similar to that of azithromycin
binding (Figure 22.3), is observed in crystals of ribosomal complexes with the
ketolide telithromycin (Figure 22.6). Thus, even when the nucleotide at the dis-
crimination position for macrolides and ketolides was modified from G2058 (in
native H50S) to A2058, as in eubacteria, significant differences were observed in
the modes of telithromycin binding to these compared to D50S and to T. ther-
mophilus and E. coli ribosomes. Importantly, all of the differences in the modes
of binding could be rationalized structurally by stacking interactions with tunnel
wall components situated in slightly different positions in the various structures
(Figure 22.6); this highlights the significant species specificity existing in antibiotic
susceptibility and sheds light on the clinical diversity between different pathogens.
Importantly, although all macrolides bind to the same binding pocket in a similar
manner, some differences in the exact binding modes, which can be explained
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Figure 22.6 Species specificity revealed
by the binding modes of the ketolide
telithromycin, as observed in crystals of its
complexes with various ribosomal particles.
In all: color code for the orientations of
telithromycin as well as the binding pockets:
red: D50S (also called Dr), beige: T70S (also
called Tt), green: E70S (also called Ec), cyan:
mH50S (also called mHm, namely, a mutant
of H50S in which G2058 was replaced by
A2058 in order to enable telithromycin bind-
ing). (a) All four telithromycin orientations
superposed on each other. Note that the

macrolactone ring occupies the same posi-
tion, whereas the long aliphatic arm is
extremely flexible, and stretches to different
directions, dictated by stacking interactions
with the pocket’s components. (b) Showing
the orientations in the two extreme situa-
tions: in D50S and in mH50S, together with
the various components of the binding pock-
ets and indicating the stacking by broken
lines. (c) All structures within their pockets.
(d) The four panels show each of the bind-
ing modes within its pocket, with the circle
indicating the stacking interactions.

chemically, were identified not only between the various members of this family
but also between two erythromycin/D50S complexes [34, 88].

It should not be forgotten that the crystallographic information has shed light on
mechanisms for antibiotic function and resistance, although the crystal structures
were obtained under conditions barely mimicking the relevant pathogen–host
relationships. Thus, T. thermophilus grows normally at temperatures that cause
disintegration of the antibiotics (namely, >75 ◦C); the entire ribosome from E. coli
was crystallized without mRNA and tRNA substrates, thus representing an artificial
functional state: the archaeon H. marismortui grows at elevated temperatures
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Figure 22.7 Crystals of ribosomes form pathogens. (a) Crystals of the large ribosomal
subunits from Staphylococcus aureus. (b) Crystals of the small ribosomal subunits from
Mycobacterium smegmatis, the diagnostic pathogen model for Mycobacterium tuberculosis.

in ∼3 M KCl, conditions that obviously cannot exist within human or animal cells,
and contains features representing eukaryotes and eubacteria, and D. radiodurans
grows significantly slower than typical bacteria.

In light of this, it is clear that structural information obtained from ribo-
somes of genuine pathogens should reveal crucial parameters that can be useful
for combating resistance. Attempts in this direction are currently under way
(Figure 22.7).

22.8
Conclusion and Future Considerations

The rapid increase in antibiotic resistance among pathogenic bacterial strains
poses a significant health threat. Hence, improvement of existing antibiotics and
the design of advanced drugs are urgently needed. Attempts to overcome antibiotic
resistance and increase their selectivity are currently going on, exploiting several
strategies including the insertion of moieties that should compensate for the lost
interactions of the resistant strains, designing and/or improving natural synergetic
pairs, creation of novel compounds possessing inhibitory properties of various
levels of potency, and reviving ‘‘forgotten’’ antibiotics families.
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