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Covalent RNA modifications were recently rediscovered as abundant RNA chemical tags. Simi-

larly to DNA epigenetic modifications, they have been proposed as essential regulators of gene

expression. Here we focus on 3 of the most abundant adenosine methylations: N6-

methyladenosine (m6A), N6,20-O-dimethyladenosine (m6Am) and N1-methyladenosine (m1A).

We review the potential role of these modifications on mature mRNA in regulating gene

expression within the adult brain, nervous system function and normal and pathological

behavior.

Dynamic mRNA modifications, summarized as the epitranscriptome, regulate transcript matura-

tion, translation and decay, and thus crucially determine gene expression beyond primary tran-

scription regulation. However, the extent of this regulation in the healthy and maladapted adult

brain is poorly understood. Analyzing this novel layer of gene expression control in addition to

epigenetics and posttranslational regulation of proteins will be highly relevant for understand-

ing the molecular underpinnings of behavior and psychiatric disorders.
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1 | INTRODUCTION

The brain is a unique and complex structure that consists of a large

number of highly specialized, majorly post-mitotic cells. These cells

work together in a highly-synchronized fashion to execute complex

activity and regulation via molecular, cellular and circuit-associated

mechanisms. Together, the symphony of coordinated cells encodes a

variety of brain functions ranging from homeostasis and support

functions to complex behavior. Since all brain cells essentially share

the same genomic information, all functional specialization and

response to external stimuli, including short- and long-term systems

adaptation, is achieved via gene expression regulation. Therefore,

understanding all layers of gene expression regulation is critical in

understanding this highly complex system both during brain develop-

ment and in the postnatal brain.

Regulation of gene expression involves primary transcription reg-

ulation by transcription factors. Additionally, several epigenetic mech-

anisms are involved in short- and long-term adaptation of gene

expression to challenges. These mechanisms include DNA methyla-

tion, chromatin and histone modifications, non-coding RNAs

(ncRNAs) and posttranslational regulation of proteins. It has recently

been rediscovered that, similarly to the epigenetic code on DNA,

RNA as the functional mediator of gene expression undergoes sub-

stantial regulation by a diverse layer of covalent modifications. These

RNA modifications, collectively termed the epitranscriptome, can pro-

foundly influence RNA maturation, stability, location, and availability

to protein translation, and thus determine gene expression beyond

simply regulating RNA abundance. Therefore, this introduces yet

another layer of potentially regulated and stimulus-adaptive gene

expression control.

Detailed analysis of the epitranscriptome has only recently begun

but impressive progress has already been made. This is primarily due

to advances in the research tools available, which also made epitran-

scriptome analysis the “Method of the Year”1 (Nature Methods Edito-

rial, 2017). Here, we attempt to give an introduction to this exciting

yet incipient area of research and integrate it into the conceptual
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framework of gene expression regulation in the adult brain. Further-

more, we seek to explore its putative role in normal and pathological

behavior. However, as a result of the relative young age of this field,

there are still many gaps in the data waiting to be filled soon.

2 | THE EPITRANSCRIPTOME

There are over 100 known covalent base modifications found on

almost all types of RNA including mRNA, tRNA, rRNA and snRNA.2

These modifications are being collected in large databases such as

MODOMICs, which currently holds 144 modifications together with

relevant information on pathways and references3 (http://modomics.

genesilico.pl) and RMBase, which has collected thousands of

modification-sites from over 100 different modifications identified by

high-throughput sequencing4 (http://mirlab.sysu.edu.cn/rmbase/).

The majority of these modifications were originally discovered in the

1960s and 1970s but, due to technical limitations, attracted little

attention in their potential to regulate gene expression post-tran-

scriptionally.5,6 The most abundant modifications on protein-coding

mature mRNAs in the brain, and the focus of this review, are methyl-

ations on adenosine (including N6-methyladenosine, m6A; N6,20-O-

dimethyladenosine, m6Am; and N1-methyladenosine, m1A) (Figure 1).

The brain also harbors several other modifications125, for example,

pseudouridine Ψ,7–9 5-methylcytosine m5C10,11 and A-to-I edit-

ing.12,13 However, most of these are more abundant in rRNAs and

tRNAs than in mRNAs. Finally, mRNA molecules can be further modi-

fied on a whole molecule level by 50 mRNA capping and polyadenyla-

tion, which facilitate transcript stability, nuclear export, translation

initiation and dynamic changes of secondary structure of RNA.14,15

Although we focus here on mature mRNAs, it should be noted that

introns in unspliced pre-mRNA (hnRNA9,16–19) and small and long

non-coding mRNA are also widely methylated.20–22

3 | mRNA ADENOSINE METHYLATION

m6A is the most abundant internal modification first described in

1974.23–27 m6A is also the most extensively characterized internal

modification in mammalian mRNA16,28 owing to the power of next-

generation sequencing, which was widely adapted for this modifica-

tion first. Currently, RMBase contains over 62 000 m6A peaks in over

10 000 genes for the mouse and over 118 000 m6A peaks in over

12 000 genes for the human transcriptome (Reference 4; data set as

of 20-10-2015). The m6A modification is typically located in a con-

sensus motif (DRACH/GGAC), although a considerable amount of

m6A sites does not locate to these core motifs (eg, 23 to 31% for the

DRACH motif,29). m6A is enriched near stop codons and in 50

untranslated regions (UTRs), as well as to a lesser extent in introns

and long internal exons.16,28–30 Watson-Crick pairing with U is not

disturbed but may modulate secondary structure thus predisposing
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FIGURE 1 RNA adenosine methylation

marks on mRNAs in the brain. The
adenosine methylations m6A, m6Am and
m1A are the most abundant modifications
on mature mRNAs in the brain. Several
methyltransferases and demethylases for
them have been discovered, enabling them
to be highly dynamic marks. They appear
on characteristic positions within
transcripts and may function among others
via binding of specific readers or via
alterations of RNA structure
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the respective RNA region for recognition by binder

proteins.14,18,31,32

Several highly conserved m6A-metabolizing enzymes have been

discovered, accentuating this modification as a prime candidate for

dynamic regulation (Figure 1). These include a methyltransferase com-

plex with both catalytic and regulatory units including METTL3,

METTL14, WTAP, KIAA1429 and RBM15/B,27,30,33–35 with METTL3

shown to be the main methyltransferase.36–38 For removal of m6A,

there are at least 2 demethylases, Fat Mass and Obesity-Associated

(FTO) and Alkylated DNA repair protein alkB homolog 5

(ALKBH5).39–41 The existence of this writer and eraser network is

widely thought to signify that m6A methylation on a given transcript is

highly dynamic and readily reversible. However, more recent reports

indicate that m6A is mainly deposited co-transcriptionally on nascent

RNA that is still associated with chromatin17,42 and thus argue that

once RNA is released from chromatin, the modifications are surpris-

ingly static.17,43 While this does not prevent m6A from being regulated

in a highly dynamic fashion, it may limit the spatial and time-window

of dynamic m6A regulation to the newly produced transcripts and

emphasizes the importance of regulation of tagged transcripts by

mRNA stability. The cellular consequences of m6A modification

depend on its specific site within the target transcript and the binding

of additional m6A-reader proteins. Among m6A-reader proteins are

nuclear and cytoplasmic proteins of the YT521-B homology (YTH)-

domain-family (YTHDF1, YTHDF2, YTHDF3, YTHDC1 and YTHDC2)

and HNRNP-proteins (HNRNPA2B1, HNRNPC and HNRNPG).5,6,44,45

A recent interactome study of m6A identified further binding partners

including the neuronal RNA-binding and translation-regulating proteins

FMR1, FXR1 and FXR2.46 Cellular functions of m6A include regulation

of RNA maturation as alternative polyadenylation,47 splicing18,48,49 and

nuclear export. However, the actual extent of splicing regulation by

m6A is still unclear.17

The main function of m6A seems to be in regulating and distrib-

uting transcripts into either RNA decay50,51 or translation pathways

including both promotion and inhibition of translation.50,52–54 So far

it is largely unclear how specificity of the different enzymes and

readers to single transcripts and target sites is achieved. Interestingly,

m6A on non-mRNA/rRNA/tRNA-species has similar functions, includ-

ing the control of miRNA biogenesis by m6A on pre- and pri-

miRNAs,48,55 regulation of translation by m6A in circular RNAs56 and

changes of conformation by m6A in long ncRNAs.57

Regarding cellular functions, m6A was found to control a plethora

of systems, among others stem cell proliferation and

differentiation,58–61 cellular heat-shock response,54 spermatogonial

differentiation,62 maternal-to-zygotic transition,5,6 X-chromosome

inactivation,34 UV DNA damage response63 and tumorigenesis.64

A chemically closely related modification, m6Am, is a 20-O-

methylated base found at the second nucleotide of certain mRNAs as

well as snoRNAs, thus at the first nucleotide following the m7G

cap29,30,40,65 (Figure 1). m6Am is co-detected by the most commonly

used anti-m6A antibody, making currently available m6A-data poten-

tially a mixture of both m6A and m6Am.29,40 m6Am rather than m6A

is the preferred substrate of the demethylase FTO in vitro,40 although

cellular action in vivo may be different due to the higher stoichiome-

try of m6A compared to m6Am. The m6Am methyltransferase and

potential further demethylases are not known yet. m6Am stabilizes

mRNA by preventing DCP2-mediated decapping and mRNA decay,

which is potentially mediated by miRNAs.40

Lastly, m1A is a dynamic modification recently reported to be

added on transcripts of over 4000 genes66,67 at an average methyla-

tion level of 20%.66 These sites were enriched around the start codon

upstream of the first splice site, around the translation initiation sites

(Figure 1,66–68). m1A, like m6A and m6Am, is a dynamic modification

and can be removed by ALKBH3.66,67 The methyltransferases cata-

lyzing m1A on mRNA are yet to be fully identified (Figure 1) although

several enzymes have been reported for rRNA and tRNA including

ALKB, ALBH1, TRM6, TRM10 and TRM61.69–71 In contrast to m6A

and m6Am, m1A disturbs the Watson-Crick base pairing and thus

likely alters protein-RNA interactions and RNA secondary structures

through electrostatic effects. It further may affect translation by facil-

itating non-canonical binding of the exon-exon junction complex at 50

UTRs devoid of 50 proximal introns.68

Finally, m6A and m1A as well as potentially m6Am marks are highly

conserved between mouse, primate and human transcriptomes,16,66,72

strongly indicating an evolutionary conserved mechanism of RNA

regulation.

4 | mRNA METHYLATION IN THE BRAIN

Brain m6A mRNA methylation is comparably high and increases dur-

ing development.28 The abundance of other adenosine methylations

during development still needs to be assessed. A recent report

showed m6A to be critical for perinatal and early postnatal cortical

neurogenesis in mouse brain and in human induced pluripotent stem

cell (iPSC) derived organoids with depletion of Mettl14 or Mettl3

leading to a protraction of neurogenesis via prolonging the cell-cycle

of radial glia cells.73 This may be mediated by m6A-dependent decay

of transcripts typical for late progenitor cells and differentiated neu-

rons in neural stem cells.73 Comparing human and murine fetal m6A-

epitranscriptomes, the authors further concluded that m6A mRNA

methylation in the developing human brain is as well more prevalent

as enriched for genes related to mental disorders.73

Switching focus to the adult brain, it is unique in its multitude of

specialized brain regions and cell types. m6A RNA methylation levels

and patterns were shown to be highly diverse in different brain regions,

using the example of mouse cerebellum and cerebral cortex.74 Further-

more, single-cell RNA-Seq data has shown that all known m6A enzymes

and readers are expressed in all major brain cell types including neurons

and glia and their subtypes (eg, Reference 75). The FTO protein is also

expressed in non-neuronal cell types.76,77 Cell-type specific abundance

of the modifications, as well as other RNA methylation enzymes and

readers, still needs to be investigated.

Within a given cell-type, different m6A enzymes and binding

proteins may potentially possess distinct regional and subcellular dis-

tributions. This is likely significant in neurons due to their high cellular

compartmentalization, requiring specific mechanisms for long-

distance distribution of mRNAs and proteins across axons and

dendrites. Paired with local translation at neuronal synapses,78 this

provides yet another mechanism for the temporal and spatial
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regulation of gene expression specific to the brain. Interestingly, frag-

ile X mental retardation protein (FMRP), a neuronal RNA-binding pro-

tein that forms RNA transport granules regulating dendritic

localization of RNAs as well as inhibits transcript translation including

local synaptic translation,79,80 was recently identified as a RNA-

sequence-context-dependent reader for m6A.46 Furthermore, it was

proposed that FTO protein in cells in vitro and in neurons in vivo may

shuttle between and be located in both the nucleus, cell body and

dendrites including synapses, enabling local RNA methylation dynam-

ics.77,81 Similar mechanisms of local synaptic action at the synapse

have been proposed for RNA m5C methylation.82 In contrast, writer

and eraser enzymes of RNA methylations are generally considered

and demonstrated by several studies to be strictly nuclear proteins.

Even more, the addition and removal of m6A was proposed to be lim-

ited to chromatin-associated mRNAs before they are exported into

the cytoplasm.17 Therefore, the distribution of methylation enzymes

and reader proteins in neurons and especially in synaptic compart-

ments still needs to be extensively tested. If proved, it would enable

additional local regulation of transcript translation and decay crucial

for such highly compartmentalized cells. Finally, m6A enzymes and

reader expression may be dynamically regulated within different brain

regions as shown for example for FTO83,84 enabling region-specific

control of RNA methylation.

5 | mRNA METHYLATION IN NORMAL AND
PATHOLOGIC BEHAVIOR

Here, we focus on the role of mRNA adenosine methylation in the reg-

ulation of emotional and cognitive behaviors. Gene-specific quantita-

tive regulation of RNA methylation may underlie gene expression

regulation in the brain and thus the encoding of normal and maladap-

tive behavior (Figure 2). On a cellular level, dynamic changes of m6A

and m1A have been observed in cell-systems in response to heat-

shock and starvation stress.54,66 It is mostly unknown to what extent

brain m6A is controlled by external stimuli in vivo with the exception

of m6A reported to be regulated during memory formation.77,85 m6A

was further implicated in regulation of dopaminergic brain networks

and the expression of cocaine response, implying a potential role in

the reward system.86 Additionally, gene expression changes of adeno-

sine methylation enzymes have been described in mice subjected to

learning tasks with fear memory increased after knock-down of FTO

in prefrontal cortex or in the dorsal hippocampus,77,85 suggesting a

role for m6A/m6Am in experience-dependent plasticity.87 Based on

loss-of-function animal models, m6A modification was proposed to be

essential for early development given the embryonic lethality of germ-

line knockout mice for Mettl360 and Wtap.88 Furthermore, mice with

Mettl14 knockout in the developing mouse brain die before reaching

adulthood.73 Similarly, the m5C methyltransferase Nsun2 is critical for

differentiation of human neural stem cells and mouse early brain

development.89 In contrast, increasing m6A by knockout of the

demethylase enzymes (Fto and Alkbh5) produces mainly metabolic

phenotypes; including postnatal growth retardation, increased energy

expenditure, altered locomotor activity and altered neuronal response

to food cues in Fto knockout mice86,90,91 and impaired fertility in

Alkbh5 knockout mice.41 Importantly, homozygous Fto knockout mice

also have increased postnatal death rates potentially as a consequence

of their metabolic phenotypes.90

Furthermore, a variant in an intron within the human FTO gene

is associated with obesity.92,93 Whereas this association has been

confirmed across several studies including different populations and

age groups, the phenotype is likely not mediated through the FTO

gene that the single-nucleotide polymorphism (SNP) was mapped to,

but rather through long-range regulation to the neighboring genes

IRX3 and IRX5.94–96 This may also explain the contradictory findings

of different metabolic effects in Fto knockout mice.

Finally, the role of m6A-reader proteins in the brain so far is unknown

apart from one study that suggests the m6A-reader YT521-B regulates

neuronal function in drosophila, with motoric and behavioral defects seen

in knockout flies.97
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Taken together, emerging evidence indicates that RNA methyla-

tion may be crucial for transcript fate and the subsequent protein

levels in neurons and other cells of the brain, thus essential for brain

function and plasticity and enabling appropriate adaptation to exter-

nal challenges (Figure 2). However, the exact molecular and cellular

mechanisms that govern this regulation still need to be identified.

Since dysregulation of epitranscriptomic mechanisms may lead to

maladaptive behavior, future studies should address this aspect.

6 | mRNA METHYLATION IN HUMAN
BRAIN PATHOPHYSIOLOGY

Gene polymorphisms have long been investigated for their contribution

to stress and resiliency as well as genetic risk factors for psychiatric dis-

orders.98 Several variants in RNA methylation enzymes were associated

with risk for psychiatric disorders in small cohorts. Variants include

human FTO99–103 and ALKBH5104 as well as associations to many non-

psychiatric disorders including obesity and cancer survival.93,105–108

Likewise, RNA methylations may be involved in the disease

pathology of psychiatric diseases beyond gene polymorphisms.

Indeed, psychiatric disorders largely deviate from the “common dis-

ease, common variant” hypothesis suggesting the need for additional

regulating systems. Increasing evidence suggests that fine-tuning of

transcriptional regulation by gene-environment interactions is central

to the etiology of psychiatric disorders. Evidence includes disease-

associated SNPs in enhancer regions,98 epigenetic changes109 such as

chromatin conformation110 and histone modifications111 as well as

short and long ncRNAs.112,113 Therefore, elucidating the role of

mRNA methylation in regulating normal and aberrant neuronal activ-

ity and brain functions may add to a better understanding of psychi-

atric disorders (Figure 2). mRNA methylation may represent a

particularly interesting mechanism to target for treatment as it could

fine-regulate or even counteract gene expression regulation caused

by other gene-environment interaction mechanisms, for example

pathologically maladapted regulation patterns inflicted by trauma.

7 | FUTURE CHALLENGES

Epitranscriptomic modifications are emerging as a widely-

underestimated part of the molecular regulation of the adult brain.

We are only starting to understand the extent and complexity of both

the regulation and importance of mRNA methylation in vivo. To date,

several RNA modifications have been mapped in a transcriptome-

wide fashion in baseline cells, including comprehensive maps of m6A

in unstimulated mouse brain28,86 and several writer-, eraser- and

reader-proteins have been described. Most modifications seem to be

crucial in stem cells and during organism development60,114 but it is

mostly unclear how dynamic the different modifications are in an

intact post-mitotic in vivo system like the adult brain. Precise quantifi-

cation of modification dynamics in the brain will be crucial to eluci-

date the importance of these mechanisms for brain function.

Currently, methods to precisely quantify regulation of RNA methyla-

tion beyond qualitative detection require large amounts of input

material or are limited to global or low-throughput gene- and site-

specific measurements (please refer to a recent comprehensive review

of techniques by References 115). SCARLET, a ligation-based method,

provides quantification at single-base resolution but in a low-

throughput manner.116,117 Most other site-specific detection methods

rely on antibodies with potential cross-reactivity to different modifica-

tions and yet unclear quantitative nature.29,66 Protocols for identifying

the precise location of m6A RNA methylation at single base resolution

have only very recently become available, including photoactivatable

ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-

CLIP) and high-throughput sequencing of RNA isolated by crosslinking

and immunoprecipitation (HITS-CLIP).29,47,118 Given the enormous

cellular heterogeneity of the brain, assessing RNA modification

dynamics in a cell-type-specific manner will be important.

Furthermore, future work needs to identify the upstream regula-

tor cascades of methylation in vivo as well as downstream conse-

quences per specific methylation event, including mapping of cell-

type-specific binding by reader-proteins and molecular consequences

of such binding. To this goal, it will also be important to integrate

investigations of mRNA methylation patterns with measurements of

RNA abundance, alternative polyadenylation, alternative splicing,

translation efficiency and protein expression.

Genetic and pharmacological tools to investigate consequences

of single modifications at certain genes in vitro and in vivo are still in

their infancy. Conditional knockout animals for most of the m6A

enzyme and reader proteins recently became available allowing for

diverse examination of cellular and behavioral consequences of

manipulation of m6A in specific (brain) cell types by deletion of single

key players or whole functional families. Unfortunately, the present

lack of tools to manipulate specific single-site modifications in vivo in

a temporal and cell-type-specific manner still limits the causal investi-

gation of cellular consequences of covalent RNA manipulations.

Several clustered regularly interspaced short palindromic repeats

(CRISPR) approaches have been recently described that direct inter-

ference complexes toward single-stranded RNAs and are potentially

useful for visualizing, degrading and binding mRNAs, including the

bacterial RNase C2c2, RCas9 and Cas13a.119–122 These upcoming

CRISPR/Cas9 technology derived systems may soon be available not

only to target mRNAs directly but also to carry RNA-modifying

enzymes to specific targets.123

Taken together, recent methodological developments will allow

the assessment of not only the precise dynamics of RNA modifica-

tions in vivo but also their role in regulating normal and pathological

behaviors. How RNA modifications differ by sex and age as well as

their contribution to individual differences related to resiliency or

susceptibility to environmental challenges and vulnerability to psychi-

atric disorders would provide some much-needed insight.

8 | OUTLOOK

Although RNA modifications have been known for many decades,

only recent work has revealed their actual abundance and function in

mRNAs. Elucidating the underlying molecular and cellular processes

that regulate the fine-tuning of transcription- and translation-control
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in the developing and adult brain is essential for understanding nor-

mal and pathological behavior and, ultimately, psychiatric disorders.

RNA modifications represent a pivotal layer of regulation of gene

expression previously under-appreciated. The nature of RNA modifi-

cations enables them to regulate gene expression beyond the regula-

tion of mRNA abundance itself and thus are inclined to be a crucial

fine-tuner of protein levels once RNA becomes available in a cell. This

level of regulation should also be kept in mind when estimating pro-

tein expression using transcriptomic data.124 Integrating measure-

ments of RNA modifications with those of DNA modifications as well

as posttranslational protein regulation will be critical for understand-

ing the complex molecular underpinnings of normal and pathological

behavior.
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