
Articles
https://doi.org/10.1038/s41593-019-0516-y

1Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany. 2Department of Neurobiology, Weizmann 
Institute of Science, Rehovot, Israel. 3Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany. 
4Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 5Department of Behavioral Biology, University of Osnabrück, 
Osnabrück, Germany. 6These authors contributed equally: Oren Forkosh, Stoyo Karamihalev. *e-mail: alon_chen@psych.mpg.de

Individual differences are a hallmark of living organisms and cen-
tral to our understanding of behavior and psychopathology. In 
humans, consistencies in emotional and behavioral expression 

have been extensively investigated and categorized by psychologists 
within the framework of personality traits1,2. In other species, how-
ever, the understanding of individual differences and the biological 
processes that underlie them has been hindered by an absence of 
strong conceptual foundations behind the trait establishment pro-
cess and a lack of comprehensive behavioral screening paradigms.

Here, we propose to resolve these issues by using a computational 
framework for capturing and describing the space of individual 
behavioral expression and reducing diverse longitudinal behavioral 
data to trait-like dimensions. Personality traits can be thought of 
as having two essential characteristics: (1) they capture and repre-
sent a continuous gradient of differences between individuals of 
the same species and (2) they tend to be stable for individuals over 
time. Thus, a mathematical formulation of a trait directly informed 
by these properties would be a dimension that captures the maxi-
mum behavioral variability between individuals while maintain-
ing minimum variability within individuals over time. We use 
the term ‘identity domains’ (IDs) to describe such traits obtained 
from decomposing a high-dimensional space of measured behav-
iors. Conceptually similar to principal component analysis (PCA), 
which identifies the directions of maximum variability, our linear 
discriminant analysis (LDA) decomposition-based approach seeks 
out dimensions that have maximal discriminative power and sta-
bility by maximizing the between-individual to within-individual 
variability ratio (Fig. 1a). We validate this framework in mice, one 
of the most commonly used model organisms in neuroscience and 
psychiatry research, and a species that readily allows for exploration 
of the biological underpinnings of individual differences.

Results
The social box paradigm. To assess the broadest variety of etho-
logically relevant voluntary mouse behaviors, we used a long-
term ‘social box’ living paradigm, wherein mice are housed in an 

enriched, semi-naturalistic environment in groups of four and 
monitored over multiple days3,4 (Fig. 1b–d; Supplementary Video 1).  
Automatic location tracking of individuals allowed for high-
throughput behavioral data collection, with readouts consisting of 
both individual (for example, locomotion, exploration and foraging 
patterns) and social (for example, approaches, contacts and chases) 
behaviors. A total of 60 features per mouse per 12-h active phase 
were collected (Supplementary Fig. 1a). We initially monitored 42 
groups of four young adult outbred male mice (a total of 168 ani-
mals) left undisturbed over a period of at least 4 days.

LDA. An initial analysis of the readouts from this dataset revealed 
a subset of behaviors that, in themselves, were discriminating 
between and/or stable within individuals (Supplementary Fig. 1b), 
which suggested that the social box paradigm could capture some of 
the information necessary for building IDs. We therefore proceeded 
to train our algorithm on this dataset.

Since LDA is relatively resistant against redundancies in the 
input, we could afford to use all 60 initial behavioral readouts as 
input (Supplementary Fig. 1a), thus avoiding any bias that may have 
been introduced by a feature selection procedure. Likewise, while 
many readouts represent various normalizations of one underlying 
feature, these often carry additional information. For example, for 
‘chase’ (the total number of chases) versus the same readout normal-
ized to the time outside the nest, the latter holds additional meaning 
given the individual differences in time outside the nest.

Our analysis yielded four significant IDs that passed the threshold 
of less than 5% average overlap between individuals (Supplementary 
Fig. 2, ID5, the first dimension below this threshold, is shown for 
comparison). The dimensions produced this way were uncorrelated, 
although not necessarily orthogonal, thus resulting in four IDs, each 
spanning a different behavioral subspace (Fig. 2a).

To test the replicability of the four IDs, we used a separate dataset 
composed of control mouse measurements (n = 208) in social boxes 
with a different layout (Supplementary Fig. 3a); this yielded only a 
subset of the current behavioral readouts (37 different readouts per 
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mouse per active phase). The scores on the top four IDs obtained 
from this dataset correlated strongly with the respective original 
scores (Supplementary Fig. 3b). The strength of this relationship 
decreased steeply at ID5. We were therefore able to replicate the ini-
tial ID structure on an independent dataset despite the differences 
in setup and readouts.

IDs are stable over time, developmental stages and social contexts. 
Having established and replicated the ID structure, we proceeded to 
experimentally validate the IDs. To assess the stability of ID scores over 
time, we first tested their self-similarity from an average of the first 4 
days of the experimental period to the fifth day (Supplementary Fig. 4).  
All IDs fulfilled this criterion. We then tested their stability over devel-
opmental time by monitoring juvenile mice (8 groups, 4–5 weeks 
old) in the social box paradigm. The same mice were tested again as 
adults (15–16 weeks old). Individual scores on IDs 1–3 were stable 
over this prolonged period of time (Fig. 2b; Supplementary Fig. 5),  
which indicated that IDs assigned to juveniles captured individual 
differences that remained stable across developmental stages.

A major reason for the usefulness of investigating behavioral 
traits over specific behaviors is that traits more closely approximate 
the intrinsic properties of an individual and are therefore more 
robust against manipulations of the social environment. To test this 
property of IDs, mice from 16 groups (64 individuals) that had been 
assigned ID scores based on the 4-day baseline testing period were 
then shuffled into new groups, such that no mouse had ever been 
exposed to any of its new group members and were re-introduced to 
new arenas for another day of measurement (Supplementary Fig. 6).  
For adult male mice, this is a relatively dramatic and stressful 
manipulation and causes significant changes in many behavioral 
readouts, especially those related to general locomotion and aggres-
sion. Despite these changes, the scores for IDs 1–4, but not ID5, 
remained significantly self-similar to their baseline state (Fig. 2c). 
We additionally compared our model against a PCA run on the 
same dataset. In this analysis, only two out of the top four prin-
cipal components (PCs) remained stable after this manipulation 
(Supplementary Fig. 7a–c). Thus, mice tended to maintain their 
distinguishing individual characteristics captured by IDs despite 
substantial changes to the social environment.

IDs combine information from a variety of standard behavioral 
tests. Having established that four IDs were stable over time and 

across social contexts, we set out to assess their ability to predict 
a range of standard behaviors that are typically measured in clas-
sical mouse behavioral paradigms. To this end, we subjected mice 
with known ID scores to a battery of established behavioral assays  
(Fig. 3a,b). ID scores contained a significant portion of the informa-
tion collected from classical tests (Fig. 3a). The pattern of correla-
tions between the various tests and ID scores additionally suggested 
that IDs represent complex entities that could not be fully captured 
without comprehensive behavioral screening. Moreover, these rela-
tionships contribute to the notion that IDs carry information about 
the hidden factors that are co-modulated across the behavioral rep-
ertoire of an animal. For example, ID1 was correlated with a mea-
sure of dominance in the social hierarchy (David’s score, Fig. 3c) 
and with features of locomotion in the open-field test (OFT) and of 
memory recall in the object recognition test. All of these behavioral 
readouts appear to be expressions of a common underlying trait.

IDs capture transcriptomic variance in the brain. A major advan-
tage of animal models is the ability to mechanistically investigate the 
link between brain function and behavior. While the contributions of 
brain transcriptomic differences to human personality traits remain 
largely unexplored due to major technical difficulties in perform-
ing such studies, mouse ID scores may prove to be a useful proxy. 
To assess whether ID scores captured transcriptomic variance in the 
brain, we performed bulk RNA sequencing (RNA-seq) in mice that 
had been profiled in the social box (n = 32). For each individual, we 
sequenced the following three brain regions (Fig. 4a): the basolateral 
amygdala (BLA), the insular cortex (INS) and the medial prefron-
tal cortex (PFC). This yielded a total list of 13,073 genes that were 
jointly detectable in all three regions. For each region, we assessed 
the average variance explained across the gene set by all four IDs 
and compared it against a distribution derived from shuffling the ID 
scores across individuals. This test enabled us to not focus on spe-
cific associations between IDs and genes in a particular region, but 
rather to assess the ability of IDs to explain the variability in expres-
sion across the entire gene list. Strikingly, in all three regions, the IDs 
performed significantly better in their true configuration than would 
be expected by chance, which suggested that ID score assignment is 
remarkably fitting with regard to their association with gene expres-
sion (Fig. 4a). IDs contributed differently to the variance explained 
in each brain region (Fig. 4b), with occasional transcriptome-wide 
significant associations with specific genes (Fig. 4c,d). The same test 
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Fig. 1 | From behavior to personality. a, The task of finding stable and discriminative trait-like dimensions can be formulated as an optimization problem. 
We used LDA to reduce the multidimensional behavioral space by creating dimensions that maximize the ratio of inter-subject to intra-subject variability. 
b, Groups of four male mice, marked with dyes of four different colors for tracking purposes, were housed in an enriched environment where they 
could move and interact freely over multiple days. All of their movements were automatically tracked. Each arena contained a closed nest, two feeders, 
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ethograms for two representative groups of mice show intra-individual consistencies and inter-individual variability. Each row represents a single mouse 
over time, and color codes indicate location (c) or either location or behavior (d).
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performed using the top four PCs derived from the PCA did not 
yield significant findings in any of the three regions (Supplementary 
Fig. 7d). This was a surprising outcome, since the PCA-based analy-
sis captures the maximum variance in behavior and may be expected 
to better predict a dynamic process such as gene expression. The 
finding that IDs outperform PCs in this instance implies that there 
may be genes with stable expression profiles that support stable indi-
vidual differences in behavior.

Personality space. An important benefit that comes with hav-
ing a known space of individual expression is the ability to search 

that space for points of biological interest, which may represent 
behavioral specializations. We made a first attempt at this by using 
Pareto task inference on the two strongest IDs (ID1 and ID2). We 
found that ID1 and ID2 span a behavioral continuum on a triangle 
bounded by three personality archetypes (Fig. 5a). Such a configu-
ration can be interpreted as a trade-off between three distinct evo-
lutionary specializations, as previously shown for features of animal 
morphology5 and Caenorhabditis elegans locomotion6. Analogous 
archetypes were found in the replication dataset.

IDs discriminate between genotypes. Finally, we tested the ability 
of IDs to capture and discriminate between individuals with known 
genetically driven differences in behavioral tendencies. For this 
purpose, we used the high-anxiety versus normal-anxiety (HAB/
NAB) model, wherein mice are selectively bred over multiple gen-
erations for different levels of anxiety-like behavior when subjected 
to the elevated plus-maze (EPM) test7 (Supplementary Fig. 8a). We 
monitored heterogeneous groups composed of one HAB mouse and 
three NAB individuals each in the social box and assigned ID scores 
to them. We found that ID score assignment in its true configura-
tion exhibited considerable power in discriminating between the 
genotypes (Fig. 5b; Supplementary Fig. 8b), with ID1 being the best 
predictor of genotype classification.

Discussion
The systematic categorization of individual differences into con-
stituent traits is an essential step toward more targeted explora-
tions of their biological underpinnings. Human research in this 
direction, which typically uses questionnaires rather than behav-
ioral input, has resulted in well-known and widely used taxono-
mies of human personality2,8. While the five-factor model, for 
example, replicates well across human cultures, some cross-cul-
tural differences do exist9,10. Perhaps a more accurate analogy to 
what is usually referred to as personality in animals may be the 
concept of temperament. Individual differences in infants, for 
example, who are still relatively unaffected by the enculturation 
process, are typically described in psychology as temperamental 
traits11. We attempt to circumvent the terminological discussion by 
using the term ‘identity domain’ to refer to a trait-like dimension 
that is produced by maximizing the ratio of variability between 
individuals to the variability within. Regardless of terminology, 
each taxonomy is derived from a broad view of individual expres-
sion and assumes some degree of biological contribution to indi-
vidual variability.

The structure of personality is often inferred by reducing 
the dimensions of a larger initial dataset. There are a variety of 
approaches available for dimensionality reduction, from the more 
commonly used PCA and factor analyses to various spectral tech-
niques such as local linear embedding. Each method carries a set of 
underlying assumptions and may or may not require labeled data. 
Our choice of method was driven by theoretical considerations. We 
modeled IDs as dimensions with the following two main character-
istics: the ability to capture individual differences (inter-individual) 
and stability over time (intra-individual). LDA capitalizes on the 
longitudinal aspect of behavioral data, reducing its dimensions so as 
to simultaneously maximize differences between individuals while 
minimizing variability within individuals over time. The impor-
tance of preserving stability during the decomposition process is 
demonstrated by the comparatively reduced performance of PCA 
on the same dataset (Supplementary Fig. 7).

LDA carries an underlying assumption of linearity, namely, that 
behaviors should map to IDs in a linear way. While nonlinear ver-
sions of the analysis are available, these require larger datasets and 
may produce noisier results. We attempted to overcome the limita-
tions posed by this assumption by introducing nonlinearity to the 
model using different normalizations of the input behaviors and by 
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warping the data to fit a normal distribution. Fitting the data to a 
normal distribution also reduced the negative impacts of outliers.

A general limitation of our approach is that the resulting ID 
space depends on the choice of behaviors used as input. We tried 
to contain this by expanding the behavioral space to everything 
we could observe and categorize. We additionally validated the ID 
structure in a separate dataset with different readouts used as input, 
and we showed that the specific list of readouts does not have a 
major impact on the outcome (Supplementary Fig. 3). Nevertheless, 
it is conceivable that the result of such an analysis may be swayed 
toward traits that are more easily detected using a given behavioral 
assessment device. Accordingly, in a setup in which groups of male 
mice cohabitate in an enclosed environment, the most prominent 
dimension (ID1) is related to social dominance, and individual dif-
ferences such as those from the domains of learning and memory, 
which typically require stringent learning protocols, are likely to be 
underrepresented.

In addition, while the social box represents a relatively enriched 
and interactive environment, it is nevertheless modest and simplis-
tic compared to the natural habitats of mice. We therefore suspect 
that the four IDs described here do not capture the entire extent of 
individual differences that mice might reveal in more complex and 
diverse situations. Likewise, the finding of four unique IDs only sets 
a lower bound on the total number of IDs that may best describe 

the entire space of behavioral expression of individual differences in 
mice. More IDs may emerge given a broader range of observations.

An important advantage of this approach, however, is that there 
is no principal limit on the number and breadth of additional read-
outs that can be used to supplement our 60-dimensional behavioral 
space. In addition, there is no principal objection against expand-
ing the initial dataset beyond behavioral readouts to also include 
physiological (for example, heart rate and blood pressure) or neural 
(for example, electro-encephalography) input. We anticipate that as 
the inputs become more varied, covering additional sections of the 
phenotypic repertoire, the resulting ID space will come ever closer 
to the true underlying structure of individual differences in mice.

It is important to note that the personality space we describe was 
not arbitrarily structured. Instead, we found a well-defined triangle 
at the intersection of ID1 and ID2. One plausible explanation for 
this geometry comes from the concept of Pareto optimality. For a 
biological system that faces multiple tasks, this is a state wherein 
improvements on one task are only possible at the expense of 
another. In nature, evolutionary trade-offs are a driving force for 
Pareto optimality. It was recently shown that optimal states translate 
to polygons in trait spaces, with the corners representing archetypal 
optimality in a single evolutionary task5. For example, the famous 
Darwin’s finches were shown to have three morphologically dis-
tinct beak-shape archetypes that are optimized for the consump-
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tion of different foods5. Archetype analysis has been used to infer 
the functional identities of cell types based on their gene-expression 
profiles12, and to detect activity patterns related to motor tasks in 
human functional MRI experiments13. The existence of a three-

archetype structure at the intersection of ID1 and ID2 indicates that 
IDs may be capturing evolutionarily meaningful variation in indi-
vidual differences. While we were able to describe the archetypes 
in light of the behavioral associations of ID1 and ID2, inferring the 
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selection pressures that may have led to such specializations is much 
less straightforward. Further research is needed to better assess the 
origins and meaning of the presented archetype structure.

Personality is a complex entity that reflects stable individual dif-
ferences and, in so doing, maps the space of phenotypic variability. 
Here, we showed that IDs provide a bias-free surrogate measure of 
personality obtained directly from behavioral data. IDs show con-
siderable stability over time, developmental stages and across social 
contexts. They allow quantitative exploration of personality differ-
ences in organisms in which such analyses were previously inac-
cessible. By drawing on consistent inter-individual differences, IDs 
captured the essential features of personality, thus offering access to 
a biologically meaningful and evolutionarily relevant meta-behav-
ioral phenotype.
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Methods
Animals. All animal experiments were approved by the Animal Care and Use 
Committees of either the Government of Upper Bavaria (Munich, Germany) or the 
Weizmann Institute of Science (Rehovot, Israel).

Male CD-1 (ICR) mice aged 8–12 weeks during the assessment were used 
for all experiments, with the exception of the HAB/NAB animals (see below). 
The animals were housed in an specific-pathogen-free facility in temperature-
controlled rooms under standard conditions with a 12 h light–dark cycle (lights 
on at 8:00). After weaning, non-sibling individuals were randomly assigned to 
be housed in groups of four per cage. At around 7–8 weeks of age, the mice were 
transferred to the behavioral testing rooms and painted. All animals were housed 
in a temperature-controlled environment with food and water available ad libitum.

Painting. The fur of each mouse was painted to enable identification by automatic 
video tracking. Painting was carried out under mild isoflurane anesthesia using 
commercially available semi-permanent hair dyes of the following three colors: 
Pillarbox Red, Voodoo Blue and Sunshine (Tish & Snooky’s NYC). A fourth color, 
a green hue, was achieved by mixing the latter two dyes. The dyes were applied 
using a paint brush. Excess color was removed from the animal’s fur with tissues. 
The period under anesthesia was typically no longer than 10 min.

Mice were single-housed for 1–2 h after painting and subsequently reunited with 
their cage mates. A minimum of 3 days of recovery and habituation was allowed 
following this procedure before the mice were introduced into the social arenas.

Social box setup. Mice were studied in a specialized arena designed for automated 
tracking of individual and group behavior. Each arena housed a group of four male 
mice. The arena consisted of an open 60 × 60 cm box and included the following 
objects: a covered nest, an open shelter, an S-shaped wall, two water bottles, two 
feeders and two elevated ramps. Food and water were available ad libitum. The 
arenas were illuminated at 2 lux during the dark phase (12 h) and at 200 lux (using 
light-emitting diode lights) during the light phase (12 h). A color-sensitive camera 
(Manta G-235C, Allied-Vision) was placed 1 m above the arena and recorded the 
mice during the dark phase. Mouse trajectories were automatically tracked off-line 
using specially written software in Matlab (Mathworks).

To validate the IDs and ensure repeatability, we also computed the ID scores for 
mice that were recorded in arenas of a different design3. These alternative arenas 
were 75 × 50 cm and included a covered nest, a closed shelter (which was smaller 
than the nest and had only one entry), two elevated ramps, two feeders, a single 
water bottle, an elevated block that is away from the walls and a Z-wall.

Identification and classification of interactions between mice. We automatically 
identified and classified interactions between mice as events in which the distance 
between two mice (d) was less than 10 cm. We then used the movement direction 
of one mouse relative to another mouse (θ) to identify the nature of the contact for 
either of the mice. If for mouse A, the projection of the direction of its movement 
relative to mouse B was small enough tan θð Þ  2dj j<θ1; for � π

2 <θ< π
2

� �

I
, then 

it was considered as moving toward B. If tan θð Þ  2dj j<θ2; for π2 <θ< 3
2 π

I
, then it 

was moving away from it. Otherwise, it was assumed that the mouse was idle with 
respect to the other mouse (θ1 and θ2 were found by optimization).

To classify aggressive and non-aggressive contacts, we first used a hidden 
Markov model14 to identify post-contact behaviors in which mouse A was 
moving toward B, and B was moving away from A (A was following B). We then 
used 500 manually labeled events to learn statistical classifiers of aggressive and 
non-aggressive post-contact behavior. For each event, we estimated a range of 
parameters (including individual and relative speed, and distance) and optimized a 
quadratic discriminant classifier15 (a k-nearest neighbor algorithm based on these 
parameters) and a decision-tree classifier (which used these parameters at each tree 
intersection)16. We found that for a test set of 1,000 events, none of these classifiers 
was individually accurate enough. However, a combined approach, in which we 
labeled an event as ‘aggressive’ if any of the classifiers labeled it as such, gave ~80% 
detection with 0.5% false alarms.

David’s score for dominance. We used the normalized David’s score to assign each 
individual with a continuous measure of its social rank17. David’s score assumes a 
linear hierarchy whereby each pair from the group includes a more-dominant and 
a less-dominant individual. The score is based on the measure of the fraction of 
interactions in which mouse i chased mouse j relative to the total number of agonistic 
interactions, which we denote as Pij. David’s score of each individual is the sum

DSi ¼ wi þ wi
2 � li � li2

where wi ¼
P

j≠i Pij
I

 is the sum of the fraction of times that mouse i has ‘won’ (that 
is, was the chaser) and wi

2 ¼
P

j≠i w
jPij

I
 is a similar sum weighted by the wj of the 

other mice. Meanwhile, li ¼
P

j≠i Pji
I

 is the sum of the fractions of ‘losses’ (escapes) 
and, accordingly, li2 ¼

P
j≠i w

jPji
I

 is its weighted sum. The score is then normalized 
to be between 0 and N – 1 (where N is the number of subjects, which is four in our 
case) by using the following formula:

NormDS ¼ 1
N

DSþ N N � 1ð Þ
2

� �

LDA. LDA is a method for finding an optimal linear separator between two or 
more clusters, or, equivalently, finding a subspace in which the differences between 
the clusters are the greatest15. Such a subspace can serve as a lower dimensional 
representation of the data much like the commonly known PCA is used for 
dimensionality reduction. There are two notable differences between LDA and 
PCA. First, unlike PCA, LDA is a supervised method that requires that each data 
point would be labeled (in our case, the labels are the identities of the mice). 
Second, while PCA only seeks to maximize the variance of the entire data, LDA 
also minimizes the variability within each class (here, minimizing the variability in 
the behaviors of each mouse across the 4 days of the experiment). These properties 
of LDA make it suitable for capturing stable behavioral traits.

In mathematical terms, linear discriminant analysis works by finding a 
projection matrix W that both maximizes the variability between clusters Σb and 
minimizes the variability within a cluster Σw (see below for a formal definition of Σb 
and Σw). The ratio between the projection of these two is known as the Fisher–Rao 
discriminant, which is defined as follows:

w ¼ argmaxw0 tr
w0TΣbw0

w0TΣww0

� �

which can be simplified by reformulating it using a Lagrange multiplier λ  
such that

L wð Þ ¼ wTΣbw � λ wTΣww � 1
� �

The solution to this Lagrangian is obtained at its stationary points with respect 
to w, or

d
dw

L wð Þ ¼ 2Σbw þ 2λΣww ¼ 0

and the result is the matrix of eigenvectors of Σ�1
w Σb

IFor comparison, PCA can be defined in a similar way as follows:

w ¼ argmaxw0
w0TΣw0

w0Tw0

where we only take into account the total covariance of the data (Σ is actually 
equal the sum of Σb and Σw up to a factor; see below). Similar to LDA, this quotient 
is solved by rewriting the equation as a Lagrangian and finding the stationary 
points of

L wð Þ ¼ wTΣw � λ wTw � 1
� �

The solution to the PCA problem is obtained by finding the top eigenvectors 
of Σ.

Using LDA to infer the IDs in our study, we started with an ensemble of 1 × 60 
dimensional behavioral vectors, one vector for each mouse m and for each day d,

bm dð Þ ¼ b1m dð Þ; b2m dð Þ; ¼ ; b60m dð Þ
� �

where each dimension bim dð Þ
I

 represents one normalized measured behavior (for 
example, the time that mouse m spent outside on the ith day; see the software 
available through the link in the Code availability statement). The mouse index m 
is in the range m = 1,...,M, where M is the total number of mice (M = 168) and the 
days d vary between d = 1,...,D, where D is the total number of days (D = 4). We 
performed LDA on this ensemble and obtained a set of basis vectors. Choosing 
only eigenvalues that indicate a greater contribution of between-individual  
over within-individual variability (Supplementary Fig. 2), we arrived at four  
eigenvectors for the projection matrix that spans the ID space EID ¼ e1ID; :::; e4IDð Þ

I
.  

Thus, we could now represent the IDs of any mouse m as a 1 × 4 dimensional vector 
(since there are four IDs) such that

idm ¼ EID  bm dð Þ
� �

d

where the average <·>d is carried out along all 4 days of the experiment (see the 
software available through the link in the Code availability statement).

Fisher–Rao discriminant. The Fisher–Rao discriminant is a measure of how 
separable two or more clusters are. It assumes that clusters are more distinct when 
the distance between them Σb is large relative to the size of each cluster by itself Σw. 
In mathematical terms, the Fisher–Rao discriminant is defined as the ratio of these 
two quantities

DFR ¼ tr
Σb

Σw

� �

where tr() is the trace function (which is needed in the case of a multivariate space 
in which Σw and Σb are matrices). The variability (or distance) between clusters is 
defined as

Σb ¼
XC

c¼1
nc μc � μ
� 

μc � μ
� T
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and the variability within (or size of) the clusters is defined as

Σw ¼
Xn

i¼1
xi � μci

 
xi � μci

 T

where μ is the global mean, μci is the mean of the cluster associated with the ith 
sample xi, nc is the number of samples in cluster c, n = Σcnc is the total number of 
samples, and C is the number of clusters.

Note that the sum of the within-variability and between-variability is 
proportional to the total covariance of the data (Σ)

Σ ¼ Σb þ Σw

n� 1

In our case, and using the nomenclature defined in the previous section, as 
each cluster represents the measured behaviors of one mouse m along 4 days, the 
Fisher–Rao discriminant equals

DFR ¼ tr
Σb

Σw

 
¼ tr

PM
m¼1 D μm � μ

� 
μm � μ
� T

PD
d¼1

PM
m¼1 bm dð Þ � μm
� 

bm dð Þ � μm
� T

 !

where, again, m = 1,..M is the mouse index (M = 168), d = 1,..,D is the day index 
(D = 4), bm dð Þ

I
 is the behavioral vector of mouse m at day d (vector of size 1 × 60), and

μm ¼ 1
D

XD

d¼1
bm dð Þ and μ ¼ 1

M

XM

m¼1
μm

IDs. Personality cannot be directly measured, but it can be inferred from the 
behavior. We used the measured behavior of the mice for each of the 4 days they 
spent in the social box. The normalized measured behaviors of mouse m on 
day d are denoted by a vector xm,d of dimension 60 (the number of behaviors; 
an explanation of the normalization procedure follows). The ID Im defines a 
distribution on the behavior space in the following way:

xm;d ¼ AIm þ ε

where A is a matrix linking the IDs to the behaviors, and ε is a distribution term (or 
noise due to variability or external factors). To estimate the IDs, this equation was 
reversed to find a W that would give us

Im ¼ W xm;d þ ε
� �

Note that since A is not usually square, W is not simply a reversal of A.
To find W, which in turn would give us the IDs, we used LDA. Here the 

variability-within is defined as the variability of the same individual mouse on 
different days, or

Σw ¼
XM

m¼1

XD

d¼1

xm;d �
XD

d0¼1
xm;d0

 
xm;d �

XD

d0¼1
xm;d0

 T

where M is the total number of mice (M = 168) and D is the total number of days 
(D = 4). Accordingly, the variability-between is the variability between mice or

Σb ¼ D 
XM

m¼1

XD

d¼1
xm;d � μ

  XD

d¼1
xm;d � μ

 T

The link between the behavior and the IDs is obtained in the same way as in 
the classical LDA by solving

W ¼ argmaxW 0 tr
W 0TΣbW 0

W 0TΣwW 0

� �

Once we have W, we found A by solving it as a linear regression problem  
of the form

xm;d ¼ AIm þ ε

We tested 42 groups of mice in 6 separate batches (8 groups of mice were tested 
simultaneously in 8 separate social arenas each time). To avoid batch effects and 
data drifts, we used quantile normalization on each behavior for each batch on 
each day separately. We quantile-normalized the data to have a normal distribution 
by computing the quantile of each sample and then computing the inverse of the 
normal cumulative distribution function (also known as the ‘probit’ function). 
If two or more samples were identical before the normalization, they were all 
assigned the same value after normalization.

Pareto optimality. To survive and reproduce, animals are constantly confronted 
with tasks such as finding food or evading predators. There is often a trade-off 
between tasks so that the success of an animal in one task has to come at the 
expense of its performance on another. Recent work has shown that the best 
phenotypes are the weighted average of archetypes, which are phenotypes that 
specialize in one task5,12. These phenotypes can either be morphological, as for the 
beak sizes of ground finches, or behavioral phenotypes.

The shape of the phenotype space is determined by the number of archetypes 
or by the number of tasks the animal faces. In case of two archetypes, optimal 
phenotypes would fall on the line connecting the two archetypes, while if there are 
three archetypes, the phenotypes would be contained inside a triangle, and so on.

One direct outcome of this theory is that looking at the entire phenotype space 
makes it possible to deduce the location of the archetypes and thereby the different 
biological challenges that an animal can face. The positions of the archetypes are 
found using a hyperspectral unmixing algorithm. The data are first centered to 
have zero mean, and then projected using PCA into a subspace with dimension 
n – 1 (where n is the number of archetypes). Then, an unmixing algorithm is used 
to fit a n vertices polytope that best fits the data. Here, we used minimal volume 
simplex analysis, which is suitable for relatively small datasets since it does not 
allow for outliers. The analysis was performed in Matlab using the package Pareto 
task inference package.

Social box behavioral readouts. We collected a total of 60 different readouts for 
each mouse on each day. Due to the linearity of LDA, some of the behaviors we 
measured were computed with several different normalizations. The most common 
normalizations we used were the total time in the arena (12 h; abbreviated total), 
the time outside the nest (outside), and for interactions, the total number of 
contacts (contacts). Definitions of the readouts are provided below.

Pairwise. 
•	 Time outside (1): the fraction of time that the mouse spends outside the nest. 

Normalizations: total time (%).
•	 Frequency of visits outside (2): the rate at which the mouse exits the nest. 

Normalizations: total time (per 1 h).
•	 Foraging correlation (3): the correlation between the times that the mouse is 

outside the nest and the times that another mouse is outside the nest, averaged 
over all mice. For example, the foraging correlation between two mice would 
equal one if the mouse is always outside the nest when the other mouse is out-
side, and also enters the nest whenever the other mouse enters the nest. The 
correlation would be –1 whenever the mouse is outside and the other mouse is 
inside the nest. Normalizations: (3) none (arbitrary units (a.u.)).

•	 Contact rate (4, 5): the number of contacts the mouse had. A contact is 
defined as two mice being less than 10-cm apart while both are outside the 
nest. Normalizations: (4) total time (per 1 h), (5) time outside (per 1 h).

•	 Time in contact (6): the fraction of time that a mouse is in contact with other 
mice while outside the nest. Normalizations: (6) time outside (per 1 h).

•	 Median/mean contact duration (7, 8): median or mean duration of contacts. 
The contact duration does not include the times when the mouse approached, 
moved away from or chased the other mouse. Normalizations: (7, 8) none (s).

•	 Follow (12, 18, 24): a follow is a contact that ended with one mouse going after 
another mouse until disengagement. Follows can be either aggressive (chases) 
or non-aggressive. Normalizations: (12) number of contacts (a.u.), (18) time 
outside (per 1 h), (24) total time (per 1 h).

•	 Being followed (13, 19, 25): the number of times a mouse is followed at the 
end of a contact. It can be either in an aggressive (chases) or non-aggressive 
manner. Normalizations: (13) number of contacts (a.u.), (19) time outside  
(per 1 h), (25) total time (per 1 h).

•	 Chase (10, 16, 22): chases are interactions that ended with the mouse pursuing 
another mouse in an aggressive manner. Aggressiveness was determined using a 
classifier that was trained on labeled samples (see Methods). Normalizations: (10) 
number of contacts (a.u.), (16) time outside (per 1 h), (22) total time (per 1 h).

•	 Escape (11, 17, 23): the number of time that the mouse was aggressively 
chased by another mouse. Normalizations: (11) number of contacts (a.u.), (17) 
time outside (per 1 h), (23) total time (per 1 h).

•	 Non-aggressive follow (14, 20, 26): the number of times the mouse followed 
another mouse at the end of a contact in a non-aggressive way. Normaliza-
tions: (14) number of contacts (a.u.), (20) time outside (per 1 h), (26) total 
time (per 1 h).

•	 Non-aggressively being followed (15, 21, 27): the number of times the mouse 
was followed by another mouse at the end of a contact in a non-aggressive 
way. Normalizations: (15) number of contacts (a.u.), (21) time outside (per 
1 h), (27) total time (per 1 h).

•	 Approach (28–32): an approach is a directed movement of the mouse toward 
another mouse that ends in contact. Not all interactions necessarily start with 
an approach, while others might start mutually, with both mice approaching 
each other. Normalizations: (28) none (a.u.), (29) time outside (per 1 h), (30) 
time outside with one or more mice (per 1 h), (31) number of contacts (a.u.), 
(32) total (per 1 h).

•	 Being approached (33–35): the number of times the mouse was approached 
by another mouse. Normalizations: (33) number of contacts (a.u.), (34) time 
outside (per 1 h), (35) none (a.u.).

•	 Approach escape (36): the fraction of contacts in which the mouse initiated 
the contact and ended up being chased. Normalizations: (36) number of 
aggressive contacts (a.u.).

•	 Difference between approaches and chases (9): the total number of chases sub-
tracted from the total number of approaches. Normalizations: (9) none (a.u.).
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Individual. 
•	 Region of interest exploration (37, 38): quantifies the amount of exploration 

the mouse is doing. Measured as the entropy of the probability of being in 
each of the ten regions-of-interest (ROIs). Mice that spend the same amount 
of time in all regions will be given the highest score, while mice that spend 
all their time in a single ROI will be scored zero. When normalized to the 
time outside, the computation of the entropy also differed by ignoring the 
probability of being inside the nest. Normalizations: (37) none (bits), (38) time 
outside (bits h–1).

•	 Grid exploration (59): quantifies the amount of exploration the mouse is 
doing. Analogous to ROI exploration, grid exploration was determined using 
entropy; however, instead of looking at the ROIs, we divided the arena into a 
6 × 6 grid (10 ×10 cm; a total of 36 possible locations). Normalizations: (59) 
none (bits).

•	 Predictability (60): measures how predictable the paths that the mouse takes as 
the mutual information between its current and previous location in the arena. 
For that, the arena was divided into a 6 × 6 grid (10 ×10 cm; a total of 36 pos-
sible locations), and for each cell, we computed the probabilities of it moving 
to any of the adjacent cells. Normalizations: (60) none (bits).

•	 Distance (58): the total distance traveled by the mouse while outside the nest. 
To smooth the tracking, the mice locations were sampled once every second. 
Normalizations: (58) none (m).

•	 Median/mean speed (54, 55): the median or mean speed while outside the 
nest. To smooth the computation of the speed, the locations of mice were 
sampled once every second. Normalizations: (54, 55) none (m s–1).

•	 Tangential velocity (56): the tangential component of the speed or the part of 
speed perpendicular to the previous direction of movement. Normalizations: 
(56) none (m s–1).

•	 Angular velocity (57): the rate of change in the direction of the mouse. Nor-
malizations: (57) none (rad s–1).

•	 Food or water (39, 40): the time spent in the feeder or water zones. Normaliza-
tions: (39) total time (a.u.), (40) time outside (a.u.).

•	 Food (41): the time spent next to the feeders. Normalizations: (41) time 
outside (a.u.).

•	 Water (42): the time spent next to the water bottles. Normalizations: (42) time 
outside (a.u.).

•	 Feeder preference (43): the time spent at (or near) the feeder adjacent to the 
nest (feeder 1) relative to the farther-away feeder (feeder 2). Normalizations: 
(43) none (a.u.).

•	 Water preference (44): time spent near the water bottle adjacent to the nest 
(water 1) relative to the farther-away water bottle (water 2). Normalizations: 
(44) none (a.u.).

•	 Elevated area (45, 46): the time spent on an elevated object in the arena: ramps 
or block. Normalizations: (45) total time (a.u.), (46) time outside (a.u.).

•	 Open area (47): the time spent in the open area (outside the nest and in any of 
the ROIs). Normalizations: (47) time outside (a.u.).

•	 Shelter (48): the time spent in the shelter, which is a box without a roof and is 
closed only on its sides. Normalizations: (48) time outside (a.u.).

•	 Ramps (49): the time spent on the elevated ramps. Normalizations: (49) 
outside (a.u.).

•	 S-wall (50): the time spent in the S-wall. Normalizations: (50) time outside (a.u.).
•	 Distance from walls (51): the average distance from the walls while in the open 

area. Normalizations: (51) none (cm).
•	 Distance from nest (52): the average distance from the nest (while outside the 

nest). Normalizations: (52) none (cm).
•	 Alone outside (53): the fraction of time the mouse is outside while all other 

mice are in the nest. Normalizations: (53) total time (a.u.).

Standard behavioral assays. All behavioral tests were performed within 2 weeks 
following the social arena assessment in the same test room in two batches of eight 
groups each using two different test sequences. During this time, the mice were 
housed in their original groups in standard polycarbonate cages. For all tests that 
were assessed by human observers, the observers were blinded to the specific ID 
scores of the mice.

Timeline 1 consisted of the OFT and novel object recognition (NOR) test, the 
social preference test (SPT) and the dark-light transfer (DaLi) test. Timeline 2 
consisted of the OFT and NOR test, followed by the EPM, the DaLi test, the SPT 
and the forced-swim test (FST). For both timelines, each test was followed by a 
minimum of 48 h of rest.

OFT and NOR test. The OFT and NOR tests were performed in 60 × 60 cm boxes 
under minimal illumination (2–3 lux) in 3 sessions. Each animal was introduced 
to the arena for 5 min then briefly removed and reintroduced for an additional 
5 min to the same arena, now with two identical objects placed at predetermined 
locations (acquisition phase). Finally, each animal was reintroduced to the arena 
after a 4-h delay for 5 min (retrieval phase), with one of the two identical objects 
replaced by a novel one18. Object preference was calculated as the novel/familiar 
object ratio, while the discrimination index was calculated as the ratio of preference 
to the retrieval phase total exploration time.

DaLi test and EPM tests. Anxiety-like behaviors were assessed using the DaLi or 
EPM tests performed in standard behavioral apparatuses. The illumination of the 
light sections of each apparatus was set at 200 lux, and the duration of both tests 
was set to 5 min.

FST. Behavioral despair was measured using the FST. Each animal was placed in 
a 2 liter transparent beaker filled halfway with 23 °C water for 6 min. Floating, 
swimming and struggling times were manually scored by experienced observers.

SPT. The SPT was performed under low illumination (2 lux) over three sessions 
in a three-chamber apparatus. This consisted of a middle chamber connected to 
two chambers on each side by a door. An empty metal grid cone was placed in the 
center of each of the two side-chambers. During the first session, the doors to the 
side chambers were closed and each test mouse was introduced into the middle 
chamber and allowed to habituate for 5 min. The doors were subsequently opened 
and a stimulus CD-1 mouse was placed under one of the metal grid cones, the 
other remaining empty, for 10 min. Sociability was calculated based on this session 
as the ratio of time spent in the chamber with the stimulus mouse to the time in 
the chamber with the empty cone, weighted by the total time spent in both of these 
chambers. Finally, in a subsequent 10-min session, a different stimulus mouse was 
placed under the other cone. Preference for social novelty was assessed using the ratio 
of time with novel versus familiar mouse weighted by total time in either chamber.

Y-maze alternation task. Working memory was assessed using the Y-maze 
alternation task. Each mouse was introduced for 5 min into a Y-shaped three-arm 
apparatus with distinguishing visual cues on the walls at the end of each arm. The 
proportion of spontaneous non-repeated subsequent entries into each of the three 
arms (alternations) from the total number of three-arm entries (including repeat 
entries) was used as the final readout.

Resident–intruder test. Aggression toward an unfamiliar intruder mouse was 
assessed using a resident–intruder paradigm. For this test, each mouse was single-
housed in a fresh type 2 cage. At each time point, 48, 72 and 96 h after single-
housing, an intruder C57/BL6 mouse was introduced into the cage. Latency to the 
first aggressive interaction was assessed by an observer. Each trial was interrupted 
after the first overtly aggressive confrontation or after 15 min.

Holeboard exploration test. Exploratory behavior was measured using the holeboard 
exploration test. Each mouse was introduced for 5 min into a 40 × 40 cm arena 
surrounded by transparent Plexiglas walls with 4 × 4 equally spaced holes on the 
floor. The number of head dips into any hole and the number of rearings during 
the test interval were assessed by an observer.

RNA-seq. Animals were killed via an overdose of isoflurane, and the brains were 
then dissected and flash-frozen. Tissue samples were cryopunched using a 1-mm 
diameter punching tool at bregma 1.98 mm (600-µm depth for the PFC and the 
INS) or an 0.8-mm diameter punch at bregma –0.7 mm (1,000-µm depth for 
the BLA) according to Paxinos and Franklin19. Total RNA was isolated using a 
miRNeasy micro kit (Qiagen) after homogenization using a Bullet Blender (Next 
Advance). Residual genomic DNA was removed using a Turbo DNA-free kit 
(Ambion, Invitrogen). RNA integrity (RIN) and absence of DNA were confirmed 
using an Agilent RNA ScreenTape (4200 TapeStation, Agilent; eRIN values all 
>7.8) and a Qubit DNA High sensitivity kit, respectively. Sequencing libraries 
were prepared using an Illumina TruSeq Stranded Total RNA Library Preparation 
HT kit using mammalian RiboZero Gold following the standard protocol starting 
from 300 ng (PFC), 500 ng (INS) and 375 ng (BLA) of total RNA using 12 cycles of 
PCR amplification. Libraries were quality checked using Bioanalyzer DNA High 
Sensitivity chips (Agilent Technologies) and quantified using a KAPA Library 
Quantification kit (KAPA Biosystems). Sequencing was performed on six lanes of 
an Illumina HiSeq4000 PE 2×100 (Illumina) multiplexing all samples.

Sequencing was performed on a HiSeq4000 to generate 100 base pair paired-
end reads. Read quality was checked using FastQC20, and adapters were then 
trimmed using cutadapt21. For quantification of transcript expression levels, 
Kallisto22 was executed using Gencode M11 annotation and collapsed to gene level.

Count data were prefiltered for low counts at a threshold of ≥20 counts per 
sample in a minimum of 31 out of 32 samples per region. In addition, the top three 
most highly expressed genes were excluded, which resulted in a total list of 13,073 
genes. Differential gene expression analyses were performed in DESeq2 (ref. 23). 
Heteroscedasticity in the data was reduced using the DESeq2 regularized logarithm 
transformation. The plate row of each sample was identified as a potential batch 
effect and corrected for using the package limma24.

The normalized and log-transformed count data were then used as the 
outcome of a linear model with either the real or the shuffled ID scores (day 
1 in the social box) as predictors (rlog(count) = ID1 + ID2 + ID3 + ID4 + ε). 
Total variance explained by the model and the fraction of variance explained by 
each individual predictor were estimated using the variancePartition package25. 
Two hundred models with shuffled ID scores were run per region to generate a 
distribution of mean variance explained across all genes, and the model with the 
real ID scores was tested against this distribution using a one-sample t-test.
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Statistics. Statistical analyses were performed using Matlab or R. Most test 
statistics were derived from permutation tests (unless otherwise specified). 
For these tests, the relevant statistics were derived by permuting individual 
group-belonging to create a null distribution. Normality of the underlying data 
distributions was typically not assumed, except in cases when parametric tests 
were used (for example, analysis of variance (ANOVA)) as indicated where 
applicable. Differential RNA expression analyses were conducted with the 
assumption of a negative binomial distribution, adjusting significance levels for 
multiple comparisons using Benjamini–Hochberg correction. The tests used and 
the relevant test statistics are specified in the figure legends. The sample size of 
the main cohort used to infer IDs was chosen to maximize the specificity and 
applicability of the resulting model, going far beyond the sample sizes typically 
used for behavioral experiments. Sample sizes for the ID validation experiments 
were similar to or larger than those reported in previous publications4,5.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The RNA-seq data for this project have been deposited to the NCBI’s Sequence 
Read Archive (SRA) under the following accession number: PRJNA542512. The 
datasets generated during and/or analyzed during the current study are available 
from the corresponding author upon request.

Code availability
All the code used in the Matlab LDA implementation, including a demonstration of 
its use on the results from the original cohort of mice (n = 168), is publicly available 
at the following link: https://orenforkosh.github.io/IdentityDomains/. The color-
based video tracking system will be made available upon request. Likewise, the self-
similarity tests implemented in Matlab and the R code used in the RNA-seq data 
analysis will be made available upon reasonable request.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Data collection Videos from the social arena were recorded and encrypted using the Gecko GigE Video Recorder (version 1.9.9.4).

Data analysis LDA was implemented in Matlab (version 2017a, the Mathworks, Inc.). Likewise, Pareto Task Inference and 
the self-similarity permutation-based tests were performed in Matlab using the Pareto Task Inference (ParTI) package.  
Bioinformatic analyses 
for the RNA-sequencing dataset as well as multiple standard statistical tests, were performed in R (version 3.4). The open-source 
packages used in the analyses were as follows: FastQC, cutadapt, Kallisto, DESeq2, limma, variancePartition
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Sample size The initial sample size for creating the ID structure was informed by the need to balance the 
number of behavioral features which go into the algorithm against the number of individuals 
available. The initial experiments were thus on 16 groups (n = 64) animals, such that more 
individuals would be available than behavioral features. As this initial experiment generated 
hypotheses regarding stability and relationships to classical tests, we continued adding the 
"baseline" days of new cohorts to the training pool for the ID algorithm, such that the final 
pool is derived from 168 individuals.

Data exclusions No data exclusion was performed in the major (n = 168) cohort used to create the ID 
structure. Likewise, no data were excluded in the ID score versus standard behavioral tests 
set of experiments. 
A single group was excluded from the high- normal-anxiety selectively bred mouse cohort, 
since the high-anxiety mouse in that group was considered a strong outlier on ID1 based on pre-established criteria  (> 2 SD 
away from the group mean, data available upon request). This exclusion ultimately increased 
the statistical significance of the group-test for ID1, yet it rendered the findings of the 
corresponding test for ID3 insignificant.

Replication The central validation of our method in the current paper involves training an LDA algorithm 
on a set of behavioral data. Therefore, in addition to a number of cross-validations internal to 
this dataset, we performed an external replication (described in the manuscript) using new 
data with different readouts from a similar system. We then confirmed that the top-ranking 
Identity Domains produced in this data were strongly related to the original IDs when 
mapped onto the same space.

Randomization For most experiments, no individual allocation was necessary, as there were no experimental 
groups. In the case of the group-mix experiment, a scheme of how the mice were shuffled 
between groups is provided in the supplement. This allocation was blind to any information 
about individual behavior, only taking into account fur color, which was necessary for 
automatic behavioral tracking. In the case of the high-anxiety & normal-anxiety selectively 
bred line of animals, group allocation was such that a single high-anxiety mouse was grouped 
with 3 randomly selected non-littermate normal-anxiety mice.

Blinding All videos generated from the the social arenas were tracked automatically after the end of 
each experiment. Thus prior knowledge about the behavioral features of any individual was 
available a priori and no blinding was necessary. This also applies in the case of the standard 
behavioral set of tests - the ID characterization of each animal was not available prior to the 
execution and scoring of the behavioral test battery.
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Laboratory animals Male CD-1 mice between the ages of 8 and 12 weeks old (at the start of each experiment) 
were used in the central ID cohort (n = 168). Similarly, CD-1 males starting at a younger age 
(4-5 weeks old, n=32) were used in the juvenile/adult ID score comparisons. The adult (ca. 12 
weeks old, n = 24) male mice that were selectively bred for differential levels of anxiety-like 
behavior (HAB/NAB model) also originated from a CD-1 background.

Wild animals No wild animals were used in the reported set of experiments.

Field-collected samples No field-collected samples were used in the reported set of experiments.

Ethics oversight All animal experiments were approved by the Animal Care and Use Committees of either the Government of Upper Bavaria 
(Munich, Germany) or the Weizmann Institute of Science (Rehovot, Israel).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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