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Abstract
Although aggression is associated with several psychiatric
disorders, there is no effective treatment nor a rigorous defi-
nition for “pathological aggression”. Mice make a valuable
model for studying aggression. They have a dynamic social
structure that depends on the habitat and includes reciprocal
interactions between the mice’s aggression levels, social
dominance hierarchy (SDH), and resource allocation. Never-
theless, the classical behavioral tests for territorial aggression
and SDH in mice are reductive and have limited ethological
and translational relevance. Recent work has explored the use
of semi-natural environments to simultaneously study
dominance-related behaviors, resource allocation, and
aggressive behavior. Semi-natural setups allow experimental
control of the environment combined with manipulations of
neural activity. We argue that these setups can help bridge the
translational gap in aggression research toward discovering
neuronal mechanisms underlying maladaptive aggression.
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Introduction
Aggression is a significant cause of human suffering
worldwide. It is abundant in various contexts and

diverse forms, from bullying in schools and toxic
behavior on social media to school shootings, hate
crimes, organized crime, and international warfare [1].
Although elevated or pathological aggression is not
www.sciencedirect.com
considered a defining symptom of any psychiatric dis-
order, it is associated, to some extent, with several (e.g.,
Antisocial Personality Disorder and Post Traumatic
Stress Disorder) [2].

Aggression is an efficient strategy to defend and gain
resources, but it is also risky and energetically costly
and, therefore, must be tightly regulated. Groups of
individuals in many species form social hierarchical
structures that, once established, dictate agreed differ-
ential access to resources and typically reduce excessive
aggression [3]. Once established, social dominance hi-
erarchy (SDH) can be maintained by indirect aggres-
sion, such as threats and submissive gestures, or by
direct aggression. Hence, social dominance hierarchy
(SDH) can reduce aggression but does not necessarily

exclude it. The house mouse (Mus musculus), a primary
animal model in behavioral neuroscience, is character-
ized by a flexible hierarchal structure that depends on
resource availability and can exhibit both SDH and high
levels of aggression [4]. In mice, dominant individuals
typically direct their aggression towards subordinates,
but subordinates can also display aggression in times of
hierarchical instability or as defensive aggression [5].
Thus, research on aggression in animal models should
consider SDH, availability of resources, and the poten-
tial risks involved in a conflict [3,6] (Figure 1).

One of the primary goals of studying the underlying
neural mechanisms of excessive aggression and SDH in
animal models is to translate findings to humans and
ultimately develop new therapeutic agents to treat it.
However, two major translational obstacles hinder
attaining this central goal. The first involves conceptual
and terminological differences between aggression in
animals and humans, and the second involves the over-
simplified behavioral paradigms used to measure
aggression in animal models.

In humans, aggression within societies is considered
abnormal, and like other abnormal behaviors, aggression
and its subtypes are defined by symptoms and not by
biological markers or characteristics of brain circuits.
Human aggression is dichotomously divided into pro-
active and reactive-the first is a calculated effort to
obtain desired objectives, and the second is a
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Figure 1
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Relative social dominance and resource availability affect aggression levels. Left: expected level of aggression based on SDH and resource
availability. The highest aggression level is expected from a dominant mouse when resources are scarce, whereas the lowest level is expected from a
subordinate mouse living in a habitat with abundant resources. Right: observed level of aggression. If the aggression level is higher than expected (the
color in the circle indicates higher aggression than in the relevant location in the graph), aggression can be considered maladaptive.
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spontaneous, impulsive act aiming to harm another
person [7]. The term’ violence’ is applied to aggression
when it involves a conscious attempt to cause physical
harm, while ‘pathological aggression’ is defined as an
extreme and unreasonable act, relying on multiple
criteria such as personality and context [8]. Contrary to
humans, the terminology for aggression used by ethol-
ogists studying non-human animals is far less elaborate
yet more objective. The term ‘violence’ is rarely used to
describe even lethal aggressive acts, which are consid-

ered adaptive survival-oriented measures. Similarly,
subjective definitions based on the aggressor’s intent
and reason, such as pathologic aggression, are avoi-
ded [9].

Despite these terminological discrepancies, aggression
is rooted within our mammalian evolutionary heritage.
Humans are social and territorial mammals that, until a
few thousand years ago, still displayed a high level of
conspecific killing similar to other social and territorial
species [9]. Hence, certain aspects of aggression and

context-dependent inhibition of aggression, its under-
lying neural mechanisms, and its disruption or absence
in certain physiological conditions and pathologies are
shared across species. Mice offer an unprecedented
opportunity to reveal the neuronal mechanisms that
regulate aggression in the laboratory. Accordingly, careful
experimental design, considering how the social and
environmental context, potential risks, and adaptive
value help regulate aggression, can yield insights into
the conserved components between the two species and
make the scientific findings more translational. Alas, the
Current Opinion in Neurobiology 2024, 86:102879
classical approach for measuring aggression and SDH in
mice is reductive with limited translational relevance.
The tests are short, performed in a deprived environ-
ment, cannot be conducted simultaneously, and do not
account for the gain or loss of resources [10,11]. Recent
advances in pose estimation, tracking, and behavior
recognition technologies enable automatic monitoring of
the animal’s individual and group complex behaviors
over long time periods [12e14]. This enables the
simultaneous study of aggression, SDH, and resource

allocation in semi-natural environments, and a deeper
understanding of context-dependent aggression regula-
tion. Hence, as we argue below, the emerging research
field of ‘computational neuroethology’ holds promising
translational value for studying human aggression.

Mice display a versatile social structure that
is affected by resource availability
Mice live primarily near human dwellings in houses,

barns, and food stores. With their high fertility rate and
adaptability to a wide range of habitats and tempera-
tures, they are the second most efficient mammalian
colonizers after humans [4]. The plasticity in mice’s
social structure is remarkable-they reveal different SDH
structures and can be highly aggressive toward conspe-
cifics in some cases or tolerant in others [15e17]. When
resources are limited, males fight furiously to dominate
the territory, and territorial males are more reproductive
and survive more than invaders or wanderers [15].
However, when resources are abundant, and population

size increases, a clan that consists of several reproduc-
tive individuals of both sexes can be established [18].
www.sciencedirect.com
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When 30 male mice were introduced to a large semi-
natural setup with ad-libitum food, they spontaneously
split into two sub-communities. Each sub-group
engaged in aggressive encounters at different setup lo-
cations and formed stable, long-lasting hierarchies [17].
However, in mixed groups, space quickly becomes a
limited resource, even though food can still be abun-
dant. In this case, group members gain weight and

become reproductively inactive once the group size
reaches a certain density. Under such conditions,
neighboring territories do not accept individuals who
leave their territory, these individuals become wan-
derers and probably do not survive [16]. The broad
ecological niche of mice makes them an excellent animal
model for studying the environment’s effects on
aggression, establishment and maintenance of SDH, and
resource allocation [18].

Aggression, SDH, and resource allocation
are coregulated to maintain group
homeostasis
‘Aggressiveness’ is a subjective state that humans can
self-report, but it is more challenging to measure in
other animals. Nevertheless, the behavioral output of
this internal state (e.g., attacks, bites, threat postures) is
intuitive to detect and measure in many animals.
Resource deprivation, such as hunger, is also an internal
state that reciprocally interacts with aggression, and the

behavioral output of hunger (e.g., foraging, risk-taking)
can also be measured in animals. Resource deprivation
and aggression are affected by and affect SDH [3].
Hence, all three states can induce reciprocal in-
teractions and competing motivated drives to maintain
homeostasis [19] (Figure 1).

Using advanced mouse genetics tools and classical
behavioral tests, scientists discovered various neural
circuits and cell-type specific components mediating
aggression, SDH, and resource seeking. To mention a

few-four subcortical regions were found to compose the
Core Aggression Circuit (CAC), which is a part of the
social brain network (the Medial Amygdala (MeA), the
Bed Nucleus of the Stria Terminalis (BNST), the
ventrolateral part of the Ventromedial Hypothalamus
(VMHvl), and the pre-mammillary nucleus [20]. Acti-
vation or silencing of any CAC region evokes or sup-
presses aggression, respectively, which points to the
central role of these regions. In mice, the CAC receives
aggression-provoking inputs mainly from olfactory sig-
nals and is top-down regulated by the Lateral Septum

(LS) [21,22] and the medial Prefrontal Cortex (mPFC).
The mPFC and its input and outputs are also involved in
SDH - an increase or decrease in mouse dorsomedial
PFC activity causes a gradual upward or downward shift
in social status, respectively [23e26]. Another CAC
region, the MeA, is also involved in territoriality and
resource-seeking. The MeA receives projections from
the Arcuate neuropeptide Y neurons (Arc-NPY) that
www.sciencedirect.com
modulate territorial behavior under resource deprivation
[27], and the Arc-NPY neurons contribute to higher
risk-taking during foraging under hunger [28]. Although
aggression and SDH in humans are way more complex
than in mice, there is a certain degree of evolutionary
conservation at the neuronal molecular and physiological
levels [20,29,30]. Further understanding of the extent of
conservation depends on adequate behavioral measures

of aggression in mice.

Several tests were designed to measure aggression and
SDH in rodents (Figure 2(a)). Aggression is commonly
measured using the ‘resident-intruder’ (RI) test,
quantifying the readiness of a male mouse to defend its
home-cage (the ‘territory’) from an unfamiliar juvenile
intruder during a 10-min encounter [31]. SDH in mice
is commonly measured using the Tube Test (TT), a
dyadic confrontation where each individual is positioned
on an opposite side of a narrow tube, and the mouse that

pushes the other out is declared the ‘winner’ [32].
Competition over food or water in rodents is typically
measured by inserting a dyadic unfamiliar conspecific
into an arena for a few minutes with access to a single
feeder or bottle of water [33].

Classical behavioral tests led to important insights into
neuronal networks that regulate aggression and SDH.
Nevertheless, the strengths of these tests are also their
main weaknesses-they are reductive, dyadic, strictly
controlled, short, and only measure specific behavioral

readouts out of more general and complex phenomena.
Hence, such tests that are designed to maximize
standardization might have limited ethological rele-
vance [6,34]. For instance, in the RI test, the intruder
is a juvenile to prevent injuries. However, it results in a
baseline level of attacks or aggressive chases toward the
juvenile that is often too low, even after the resident is
isolated for a week (a manipulation with profound and
intricate social consequences) [31]. In the TT, only
w30% of groups of C57 male mice tend to form stable
SDH [35]. Hence, classical behavioral tests raise con-
cerns about potential selection bias and misinterpre-

tation of limited behavioral readouts. One way to
overcome these limitations is to combine multiple tests
to address a specific behavior. For instance, comple-
ment the TTwith other measures of SDH that rely on
different sensorimotor modalities. Nevertheless, this
practice is time-consuming and complex and is
thus scarce.

A semi-natural setup offers the ability to tease
apart different behavioral domains such as aggression,
SDH, metabolism, or fear and examine the

interactions between them in different environments
and under different levels of resource availability
[36,37] (Figure 2(b)). The next section will review
studies that constitute the first steps toward achieving
this goal.
Current Opinion in Neurobiology 2024, 86:102879
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Figure 2
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a b

Semi-natural setups facilitate studying how SDH and resource availability affect aggression levels. (a) Classical behavioral paradigms separately assess aggression, resource availability, or SDH
during dyadic interactions. (b) Semi-natural setups enable simultaneous measuring of aggressive behaviors, group hierarchy, resource allocation, and their intricate relationship. Resources, such as food,
water, and shelter, can be manipulated automatically to assess the effect of resource availability on aggression.

4
N
eu

ro
b
io
lo
g
y
o
f
B
eh

avio
u
r
(2024)

C
u
rren

t
O
p
in
io
n
in

N
eu

ro
b
io
lo
g
y
2024,

86:102879
w
w
w
.sciencedirect.com

www.sciencedirect.com/science/journal/09594388


Complex behavior in semi natural paradigms Shemesh et al. 5
Measures of aggression, hierarchy, and
resource allocation in a semi-natural setup
In the past decade, several research groups have devel-
oped semi-natural setups for long-term automatic
monitoring and detection of multiple complex behaviors
in groups of freely interacting mice (Figure 3). These
setups include enriched environments with feeders,
water ports, shelters, and other resources. Different
setups utilize different technologies, such as Radio
Frequency Identification (RFID), video recording, or
depth-sensing cameras [34,38,39]. Our group estab-
lished a paradigm named the ‘Social Box’ (SB), in which
color-marked mice are video recorded under a natural-

istic lightedark cycle for days [40], and DeepLabCut
[12] is used for pose estimation of each mouse in every
video frame. Utilizing the pose estimation data com-
bined with a supervised machine learning approach
[41], we train classifiers to automatically identify
behavioral events based on extensive and validated
manually labeled ones. The relative simplicity of the
social box setup enables behavioral characterization of
12 groups or more simultaneously [42].

Semi-natural setups provide an unprecedented tool for

studying how aggression shapes (and is then shaped by)
differential access to resources and SDH under various
social and environmental conditions. Groups of male
mice that are supplied with ad-libitum food maintain
stable SDH as measured by aggressive chases [42,43]. In
the SB, dominant individuals spent more time outside
the nest and near the feeders and water ports than
subordinates, reflecting an expected association be-
tween two key aspects of SDH - aggression and resource
allocation [44]. Dominants also frequently chase sub-
ordinates into the nest, presumably referring to the

open area as a resource [42].

We further utilized the SB to decipher complex trade-
offs between aggression, social avoidance, SDH, and
resource allocation in two mouse models of increased
aggression: (i) a model of early-life exposure to an
enriched environment (EE) and (ii) a model of oxytocin
receptor deficiency (OxtR�/�). While EE is thought to
increase aggression as an adaptive response to external
stimuli, hyper-aggression in OxtR�/� is accompanied
by marked abnormalities in social behavior. We found

that the probability of each social encounter becoming
aggressive in the EE groups was much higher than in the
control groups that were raised in standard cages.
Crucially, EE groups were more socially avoidant than
control, had more stable SDH, and dominance was
correlated with access to resources, as expected from
typical SDH. In the OxtR�/� experiment, mice
engaged in excessive aggressive chasing compared to
OxtRþ/þ groups and exhibited SDH that was not
correlated with access to resources [44]. These results
suggest that aggression in mice exposed to EE in
www.sciencedirect.com
adolescence is adaptive in terms of gaining resources and
avoiding unnecessary aggression, while aggression in
OxtR�/� groups is maladaptive.

Advanced genetic techniques, such as chemogenetics,
optogenetics, and brain recording, greatly enhance the
understanding of neural circuits underlying behavior,
and integrating them into the social box is of the highest

priority. We found that chemogenetic inhibition of MeA
Urocortin3 neurons in the SB increased sociability but
not aggression-all group members (male-only) spent
more time outside the nest without an increase in
aggression than control groups. Interestingly, direct
contact was also increased, but in dependence on SDH -
increased approaches of ‘middle-rank’ towards other
‘middle-rank’ group members, but not towards domi-
nants or subordinates [45].

We also developed a wireless optogenetic device and

induced prolonged activation of oxytocin (OT) neurons
in the paraventricular nucleus of the hypothalamus in
the SB to study the effect on sociability and aggression.
Interestingly, this manipulation caused an increase in
sociability (e.g., more contacts and approaches) be-
tween the mice on the first day of activation. However,
on the second day, the optogenetic activations of the
PVN-OT neurons induced agonistic behaviors (e.g.,
anogenital sniffing) and direct aggression (e.g., aggres-
sive chases) [46]. These findings support the notion
that the OT regulates the salience of social cues and is

not solely a pro-social agent.

Utilizing a miniature wireless electroencephalographic
(EEG) brain recording device in the SB, we found
increased dark-phase slow-wave activity combined with
a pronounced increase in light-phase REM sleep in
subordinate mice, which may reflect a response to
aggressive social interactions during the preceding dark
phase [47]. These suggest that SDH might have sus-
tained physiological and mental effects.

Future directions
Computational ethology and ethologically relevant
setups promise to improve our understanding of mech-

anisms underlying complex behavior in rodents,
including aggression. Nevertheless, experimental design
and interpretation should consider the extent of evolu-
tionary conservation between humans and rodents for
such an approach to be translationally-relevant. For
instance, reactive aggression in humans is exceptionally
low compared to other mammals, while proactive
aggression, which also includes wars, is exceptionally
high. It is hypothesized that language, subordinate co-
alitions, and punishment reduce reactive aggression in
humans, and elaborate symbolic communication en-

hances proactive aggression. Such typical human fea-
tures of aggression cannot be modeled in mice [48].
Current Opinion in Neurobiology 2024, 86:102879
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Figure 3
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a

c

b

The SB paradigm. (a) Setup and tracking-color-marked mice are placed in a 60 × 60 cm arena containing feeders, water, nests, and other enrichments and, using a sensitive light camera, are recorded
under a dark– light cycle for several days. Up to 16 arenas can be used simultaneously in our laboratory settings. Pose estimation of each mouse is obtained for each frame. (b) Extracting behaviors-using
unsupervised machine learning and manually labeled behavioral events, such as chases or sniffing, we extract classification models that can automatically identify behavioral events in new videos. (c)
Combining scientific tools-various scientific tools can be combined with the SB, including optogenetics, chemogenetics, genetic manipulation, and recording of neural activity.
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Complex behavior in semi natural paradigms Shemesh et al. 7
However, reactive and proactive aggression in humans
presumably developed from more primitive and
conserved features. For instance, mice display plasticity
in hierarchal structure and in the level of intragroup
aggression that depends on resource availability. Hence,
brain circuits that mediate inhibition and disinhibition
of aggression under different ecological conditions in
mice might be conserved to some extent in human

reactive aggression. Similarly, some evidence points to
the similarity in mammalian mechanisms that regulate
proactive aggression and hunting: both require planning
and attacking [48]. Hence, brain mechanisms that
regulate hunting in mice might shed light on proactive
human aggression. A single or multi-arena array of semi-
natural setups offers the possibility to model inhibition
and disinhibition of aggression under various group
structures, resource availability, immigration/emigration
challenges, and even predation. To that aim, challenges
and stressors must be incorporated into the semi-natural

setup. For instance, increased competition over food and
mates or a threat (e.g., foot shock) that should be
avoided during foraging for food. Such challenges can be
induced through automated real-time activation of ac-
tuators in the setup. As open-source platforms for
advanced behavioral monitoring and assessment become
increasingly available [14], we hope that diverse ap-
proaches will become more common in the field, ranging
from classic behaviorism to ethologically relevant labo-
ratory research.
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