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Onsager’s Reciprocal Relations

We have talked in class about the continuum description of the laws of thermodynam-
ics. As a complementary discussion, we present here the notion of Onsager’s Reciprocal
Relations, a fundamental concept in close-to-equilibrium statistical mechanics. Though
this is not directly related to continuum theory (i.e. they do not involve spatial degrees
of freedom), they are crucial in understanding macroscopic response of thermodynamic
systems, and we feel that no introductory course in non-equilibrium thermodynamics can
be complete without it. These relations are derived within a linear response theory, i.e.
close to thermal equilibrium. This is the simplest non-equilibrium case and later in the
course we’ll go nonlinear, which will be a whole lot of fun.

1 Transport coefficients (out of eq. properties)

Say there is a set of thermodynamic variables {Ai} that describe our system. For sim-
plicity we’ll assume that 〈Ai〉 = 0, otherwise we can always define αi = Ai − 〈Ai〉. We
define the conjugate fluxes and forces to be

Ji ≡
dAi
dt

, Xi ≡
∂S

∂Ai
, (1)

where S is the system’s entropy (but could equally as well be any thermodynamic poten-
tial). Note that by Ji we mean a steady change in Ai, not thermal fluctuations. These
changes are maintained by fixing the forces Xi. Using (1), we can write the entropy
production rate Σ as

Σ =
dS

dt
=
∑
i

JiXi (2)

The basic assumption of close-to-equilibrium thermodynamics is that the fluxes are linear
functions of the forces. This is known by the name linear response. Explicitly, we write

Ji =
∑
j

LijXj . (3)

The matrix Lij is called the transport matrix, or the conductivity matrix. The meaning
of “linear response” is that the coefficients Lij do not depend on Xi. They may depend
on state variables such as the temperature, but not on the forces.

Plugging (3) into (2) gives

Σ =
∑
i,j

LijXiXj . (4)

The 2nd law of thermodynamics tells us that Σ is non-negative. We therefore see im-
mediately that Lij is a positive-definite matrix. This constraints the transport coefficient
in a strong way. For example, for any pair of indices i, j we must have

Lii, Ljj < 0 (5)

det

(
Lii Lij
Lji Ljj

)
= LiiLjj − LijLji < 0 . (6)

1



But Onsager tells us even more, with further reasoning that goes beyond the 2nd law.

2 Equilibrium properties

For Onsager’s relation to hold, we need to assume microscopic time-reversibility. Thus,
the equilibrium correlations must satisfy

Cij(τ) = 〈Ai(t)Aj(t+ τ)〉 = 〈Ai(t)Aj(t− τ)〉 = Cij(−τ) . (7)

Also, in equilibrium we have stationarity so we can shift the time by τ and get

〈Ai(t)Aj(t+ τ)〉 = 〈Ai(t+ τ)Aj(t)〉 . (8)

Close to equilibrium, we can approximate that

S = Seq + ∆S(A1, . . . , An) ≈ Seq −
1

2

∑
i,j

gijAiAj , gij ≡ −
∂2S

∂Ai∂Aj
. (9)

The linear term vanishes because in equilibrium S is maximal, and the minus sign makes
gij positive definite. gij is also clearly symmetric. In particular, we see that

Xi =
∂S

∂Ai
=
∂∆S

∂Ai
≈ −

∑
j

gijAj (10)

From the definition of the entropy, the probability measure for fluctuations is

f(A1, . . . , An) = eS(A1,...,An)/kB ≈ e∆S(A1,...,An)/kB

normalization
(11)

The matrix gij quantifies the fluctuations in the system - one can immediately calculate
the instantaneous correlation 〈AiAj〉 by simple Gaussian integration with the measure f .
However, it does not tell us anything about dynamics.

Eq. (11) tells us that

log(f) = − 1

2kB
gijAiAj + const (12)

kB
∂ log f

∂Ai
= −gijAj = Xi (13)

We therefore get the orthogonality criterion:

〈AiXj〉 =

∫
AiXjf(A1, . . . , An)dA1 . . . dAn

= kB

∫
Ai
∂ log f

∂Aj
fdA1 . . . dAn = kB

∫
Ai

∂f

∂Aj
dA1 . . . dAn

= kB

∫ (
∂

∂Aj
(Aif)− f ∂Ai

∂Aj

)
dA1 . . . dAn = −kBδij . (14)

The first term vanishes as it is a boundary term, and the second term is δij because f is
normalized and {Ai} are independent.
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3 The regression hypothesis and symmetry of Lij

Eq. (3) describes the dynamics of equilibrium fluctuations of {Ai}. Onsager assumed that
when we take the system out of equilibrium by applying external forces, the dynamics
will still be governed by Eq. (3), although the Hamiltonian has changed. That is,
Onsager assumed that the relaxation (“regression”) towards equilibrium follows the same
dynamics as equilibrium fluctuations do. This is called “the regression hypothesis”. We
therefore have

Ji(t) =
∑
j

LijXj(t) (15)

With this at hand, we can differentiate Eq. (8) with respect to τ . The LHS gives

∂

∂τ
〈Ai(t)Aj(t+ τ)〉 |τ=0 = 〈Ai(t)Jj(t)〉 =

∑
k

〈Ai(t)LjkXk(t)〉 = −kB
∑
k

Ljkδik = Lji

(16)
Where we used Eq. (14) to obtain the δ. Similarly, the RHS gives

∂

∂τ
〈Ai(t+ τ)Aj(t)〉 |τ=0 = 〈Ji(t)Aj(t)〉 =

∑
k

〈LikXk(t)Aj(t)〉 = −kB
∑
k

Likδkj = Lij

(17)
Equating (16) and (17) gives the famous Onsager Reciprocal Relations:

Lij = Lji (18)

3.1 Remarks

3.1.1 Assumptions

Note that we needed:

� Time reversibility.

� Regression hypothesis.

� Independece of Ai, and conjugacy of Ai to Ji through ∆S.

� Linearity.

4 Relaxation to equilibrium

Why do systems relax toward equilibrium? One can see this by using Onsager Relations,
as we will now show. Since gij is symmetric positive definite, we can choose to work with
rotated and scaled variables A′

i for which gij = δij. Thus, the relation (10) takes the
simple form Xi = −Ai. The evolution of Ai is then

∂tAi = Ji =
∑
j

LijXj = −
∑
j

LijAj , (19)
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or, in compact form,
∂t ~A = −L ~A (20)

Since Lij is positive definite (by the 2nd law) we see that all the eigenvalues of Lij have
positive real parts, and therefore the system cannot explode, but we are not guaranteed
that we’ll have decay towards equilibrium ( ~A = 0). Onsager tells us that since Lij is
symmetric, it is diagonalizable with real eigenvalues, and therefore must decay towards
equilibrium without oscillations. For example, suppose we had

L =

(
0 −1
1 0

)
(21)

This L does not violate the 2nd law, but what will the dynamics look like? Let’s say we
start with the initial condition A1 = 1, A2 = 0. The solution of the ODE (20) is(

A1(t)
A2(t)

)
= exp

[(
0 −1
1 0

)
t

](
A1(t = 0)
A2(t = 0)

)
=

(
cos t − sin t
sin t cos t

)(
1
0

)
=

(
cos t
sin t

)
(22)

The solutions are oscillatory and do not decay towards equilibrium. This is because the
eigenvalues of L are ±i, which could not have been the case if L were symmetric.
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