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Tensor analysis - Solution

A general comment

The purpose of the HW exercises is to give you hands-on experience with the course materials. We
try hard to ask questions that require a conceptual process of understanding, rather than technical
computation. Whenever some complicated calculations are required, please remember that it is only
in order to convey the mathematical structure of the physical problems that we tackle, a structure
that might elude the “passive listener” in the classroom. Accordingly, in the answers you hand in
we do not require detailed calculations, unless they are crucial for the understanding.

1 Isotropic tensors

We defined tensors as linear operators transforming n into m vectors. One can define a tensor as an
object that under orthogonal (unitary) coordinate transformations (i.e. rotations) transforms as

Ai1i2...ik = Qi1j1Qi2j2 ...QikjkAj1j2...jk , (1)

where the Q’s represent the orthogonal transformation from coordinates j to coordinates i. We will
not bother with the distinction between covariant and contravariant degrees of freedom (though they
are crucial in other fields of physics like general relativity).

A tensor is called isotropic if its coordinate representation is invariant under coordinate rotation.
In this question, we will look at all the possible forms of isotropic tensors of low ranks in 3 dimensions.

(i) How do scalars change under rotations? Does a 0th rank isotropic tensor, a.k.a a scalar, exist?
If yes, give an example. If not, explain why.

Solution
A 0th rank tensor, a.k.a a scalar, does not change under rotations, therefore all scalars are
isotropic (surprise!).

(ii) A vector v⃗ is isotropic if for every rotation matrix Rij we have Rij vj = vi. Does a 1st rank
isotropic tensor, a.k.a an isotropic vector, exist? If yes, give an example. If not, explain why.

Solution
A vector v⃗ is isotropic if for every rotation matrix Rij we have

Rij vj = vi . (2)

You can easily show that this condition is satisfied for arbitrary R only if v⃗ = 0. So the
zero vector is the only isotropic vector (surprise #2!!).
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(iii) A matrix A is isotropic if for every rotation matrix R we have Aij = RikRjlAkl, or in matrix
notation:

RART = A . (3)

• Choose a specific rotation matrix, say a rotation of angle α around ẑ

Rz(α) ≡

 cosα sinα 0
− sinα cosα 0

0 0 1

 . (4)

Using this in the Eq. (3) will be complicated (you can go ahead and try). Instead —
expand the matrix for small rotation angle α to linear order i.e. Rz(α) ≃ M0 + αM1.
What is the zeroth order matrix M0? What is the matrix M1? (hint: you may have
encountered these objects before, e.g., in quantum mechanics courses).

Solution
We expand in orders of α to find:

Rz(α) ≡

 cosα sinα 0
− sinα cosα 0

0 0 1

 ≃ I + α

 0 1 0
−1 0 0
0 0 0


︸ ︷︷ ︸

≡Lz

+O
(
α2

)
. (5)

We see that M0 is the identity matrix, and M1 is the generator of rotations in the z
direction, a.k.a. Lz!

• Use the approximate matrixM0+αM1 in Eq. (3). Differentiate both sides of the equation
with respect to α, and then substitute α = 0. What conditions does the entries of the
matrix A should satisfy?

Solution
Differentiating with respect to α and plugging α = 0 gives

0 =
∂A(0)

∂α
=

∂A(α)

∂α

∣∣∣∣
α=0

=
∂Rz(α)

∂α

∣∣∣∣
α=0

ARz(0) +Rz(0)A
∂Rz(α)T

∂α

∣∣∣∣
α=0

, (6)

but since Rz(0) is the identity matrix, this reduces to the simple equation 0 1 0
−1 0 0
0 0 0

A+A

 0 −1 0
1 0 0
0 0 0

 = 0 . (7)

We see that equation A(0) = A(α) is equivalent to the much easier equation (notice
the sign change)

A(0) = A(α) ⇐⇒ [A,Lz] = 0 . (8)
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Explicitly calculating [A,Lz] gives

[A,Lz] =

 −A12 − A21 A11 − A22 −A23

A11 − A22 A12 + A21 A13

−A32 A31 0

 . (9)

We see that commutation with Lz requires (a) A13 = A31 = A23 = A32 = 0 and (b)
A11 = A22.

• The choice of ẑ was arbitrary. What conditions will you get if you were to repeat the
above procedure for rotations around different axis?

Solution
If we repeat the above procedure for the other L’s, the analog of (a) will be that
all off-diagonal elements must vanish, and the analog of (b) will be that all diagonal
elements must be equal.

• Does a 2nd rank isotropic tensor, a.k.a an isotropic matrix, exist? If yes, give an example.
If not, explain why.

Solution
All of the above implies that a 2nd rank isotropic tensor has the form

Aij ∝ δij . (10)

(iv) Bonus I: A 3rd rank tensor A is isotropic iff for every rotation matrix Rij we have

Riα Rjβ RkγAαβγ = Aijk . (11)

You can imagine the mess that comes out of this if you plug in a real rotation matrix with
sines and cosines and whatnot, and then start using trig identities. Phew, no thanks!

• Instead, like before, choose R = Rz(α), differentiate, and set α = 0. You should end up
with

0 =
(
Lz
iα δjβ δkγ + δiα L

z
jβ δkγ + δiα δjβ L

z
kγ

)
Aαβγ

= Lz
iαAαjk + Lz

jβ Aiβk + Lz
kγ Aijγ .

(12)

Solution
Some algebra is required here, but the final form is given above.

• To see what kind of equation we got, let’s choose i = 1, j = 3, k = 3. Since the only
non-zero elements of Lz are Lz

12 and Lz
21, we get

0 =Lz
1αAα33 + Lz

3β A1β3 + Lz
3γ A13γ = A233 . (13)

3



Similarly, by choosing different combinations of i, j, k and/or different L’s, you get that
Aijk = 0 whenever i, j, k are not all different, that is, if (ijk) is not a permutation of
(123).

Using this knowledge, we can choose now i = 1, j = 1, k = 3, and we get

A113 = 0 = Lz
1α Aα13 + Lz

1β A1β3 + Lz
3γ A11γ = A213 + A123 ,

or put differently, A213 = −A123. Similarly, we can show that every time we flip two
indices we get a minus sign. Can you guess what is this 3rd rank isotropic tensor A?

Solution
We guess that the only isotropic 3rd rank tensor is equal, up to a multiplicative con-
stant, to E ,

Eijk =

{
0 (ijk) is not a permutation of (123)

sign of permutation otherwise
. (14)

As you probably know, E is called the Levi-Civita completely anti-symmetric tensor1.

(v) Bonus II: You have shown above (if done correctly) that in 3 dimensions a 2nd rank isotropic
tensor must be proportional to δij, (in fact, this is true for all dimensions ≥ 3). However, in
2D this does not hold. Find the general form of an isotropic two-dimensional 2nd rank tensor.
What kind of symmetry do these tensors violate (those not proportional to the identity)?

Solution
In 2D, there’s only one rotation, so A is isotropic iff[(

a11 a12
a21 a22

)
,

(
0 −1
1 0

)]
=

(
a12 + a21 a22 − a11
a22 − a11 −a12 − a21

)
= 0

That is, we A is isotropic iff a12 = −a21 and a11 = a22. Thus, the general form of an

isotropic 2D tensor is

(
a −b
b a

)
and is itself proportional to a rotation, because

(
a −b
b a

)
=

1√
a2 + b2

(
cosα − sinα
sinα cosα

)
for α = tan−1

(
b
a

)
. So it is not surprising that it commutes with other rotations.

Another way to look at the same thing: We can write the general isotropic tensor as(
a −b
b a

)
= a I + bLz .

So we actually proved that there are exactly two independent isotropic tensors in 2D: I
and Lz. Both can be generalized to higher dimensions and ranks. In general, one can
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always construct an isotropic tensor with an even number of indices from copies of I (in
our case, one copy), and this is not surprising. About Lz, you may look at it as the
completely antisymmetric tensor of rank 2, i.e. the 2-rank analogue of E . This is because
Lz
ij is zero when i = j, 1 when (ij) is an even permutation of (12) and -1 when it’s an odd

permutation. In general, the completely antisymmetric tensor of rank k in k dimensions is
isotropic. It’s geometrical meaning is that

Ei1,i2,i3,...,ik v1i1 v
2
i2
. . . vkik = det


− v1 −
− v2 −

...
− vk −

 ,

and in our case

Lz
ijviuj = v1u2 − v2u1 = det

(
v1 v2
u1 u2

)
.

Last comment: This is out of the scope of this course, but for those of you who are
interested in this kinda stuff: The fact that there are non-trivial isotropic 2D matrices is
closely related to the fact that SO2 is a one-parameter Lie group, and hence abelian. SOn

for n > 2 is not Abelian.

Can you think of an example of an isotropic 2D tensor that is not diagonal, for a real physical
system?

Solution
Three generic (and closely related) examples would be:

(i) The conductivity tensor in a 2D plate when a perpendicular magnetic field is present,

(ii) The matrix that relates the velocity of a charged particle in 2D with the Lorentz
force,

(iii) The tensor that relates the velocity to the Coriolis force in a rotating disc.

These tensors violate reflection symmetry in the 3rd dimension, which is also related to
time-reversal symmetry.

2 Tensor integration — Archimedes law

Fluids exert forces on bodies that are submerged in them. At each point on the body’s surface, denote
the local normal by n̂. The force per unit area exerted by the fluid is given by fi = σijnj, where the
index j is summed over, and the index i is not. σ is called the stress tensor of the fluid, and we’ll
deal with it extensively in the course. The component σij denote the force in the i direction applied
to areal element whose normal is in the j direction. Consider a stationary (hydro-static), isotropic
fluid that occupies the bottom half-space z < 0. The fluid is subjected to a constant gravitational
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field −gẑ. At z = 0, we have σij = 0; that is, the surface of the fluid is stress-free (we neglect air
pressure).

(i) The off-diagonal elements of σij are called shear stresses. Almost by definition, in a stationary
fluid the shear stresses must vanish. Therefore, for i ̸=j we must have σij=0 for every choice
of coordinate system. Prove that this implies σij = −p(r) δij, where p(r) is a scalar field (hint:
think about isotropic tensors). Note: p=−1

3
tr(σ) is called pressure.

Solution
Choose any coordinate system. Since the shear stresses vanish, we can write

σ =

 σ11 0 0
0 σ22 0
0 0 σ33


Let’s rotate around the z axis, by:

R =

 cosα − sinα 0
sinα cosα 0
0 0 1


σ̃ = RTσR =

 σ11 cosα
2 + σ22 sinα

2 (σ22 − σ11) cosα sinα 0
(σ11 − σ22) cosα sinα σ22 cosα

2 + σ11 sinα
2 0

0 0 σ33

 .

Since the off-diagonal terms must vanish in this basis too, we have σ11 = σ22. The same
works for σ33, and we see that σ is proportional to δij.

A different way, in the spirit of the previous question: differentiate σ(α) with respect to α
and plug in α = 0:

∂ασ|α=0 = Lzσ − σLz = [σ,Lz] =

 0 σyy − σxx 0
−σyy + σxx 0 0

0 0 0

 .

And since σ is always be diagonal, its derivative cannot have off-diagonal elements, so we
must have σyy = σxx.

(ii) By considering the force balance on a small cube of fluid and the translational symmetries of
the system (in the x− y plane), show that the stress field satisfies the equation

∂zσzz(x, y, z) = −ρg

where ρ is the fluid’s density. Together with the results of (i), conclude that the stress tensor is
given by σij = −ρgzδij (note that you satisfy both the equation and the boundary conditions).
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Solution
Due to symmetry, ∂xσij = ∂yσij = 0. The total force on a small cube of fluid must vanish,
because the situation is static. The gravitational force is ρg · dx · dy · dz. The vertical force
exerted on this cube from the lower side is σzz(x, y, z)dx · dy, and the force exerted by the
upper side is −σzz(x, y, z + dz). Therefore, force balance tells us that

[−σzz(x, y, z + dz) + σzz(x, y, z)] dx · dy = ρg dx · dy · dz

σzz(x, y, z + dz)− σzz(x, y, z)

dz
= −ρg

Taking the limit dz → 0, one gets the differential equation ∂zσzz = −ρg, the solution of
which is clearly σzz = −ρgz. Since we know already that σ ∝ δij we immediately have
σij = −ρgzδij.

(iii) Consider an imaginary surface within the fluid, of arbitrary shape and volume V . Calculate
the magnitude and direction of the total force exerted by the surrounding fluid on the enclosed
fluid by integrating σijnj over the imaginary surface (hint: recall Gauss’ tensorial theorem).
This force is called the Buoyancy force.

Solution
Denote the space occupied by the enclosed fluid by V and its surface by ∂V . The total
force is

F⃗ = −
∫
∂V

σn̂dS .

Note the minus sign, because σn̂ (for outwards-pointing normal) is the force exerted by the
internal fluid on the outer one, and we want the force exerted by the fluid on the enclosed
fluid. By Gauss’ theorem this is equal to

F⃗ = −
∫
V

divσdV =

∫
V

ρge⃗zdV = ρge⃗z

∫
V

dV = ρgV e⃗z

where e⃗z is the unit vector in the z direction.

(iv) Take the same shape and volume of (iii) and replace it with a solid body of arbitrary mass
density ρs, and hold it in its place (within the surrounding fluid). What forces are needed to
keep this body within the fluid? (hint: the situation is static). What would happen if you let
the solid body go?

Solution
The force exerted on the solid must exactly balance its weight. The gravitational force due
to the solid is

F⃗s = −mge⃗z = −ρsgV e⃗z .

7



The fluid gives F⃗f = ρfgV e⃗z , such that overall the net force is

F =(ρf − ρs) gV e⃗z .

In order to have a static situation, one would have to apply an external force that is exactly
opposite of this net force, to produce force balance. That is, the external force needed to
create a static scenario is Fext=− (ρf − ρs) gV e⃗z. If one then releases the solid (i.e. taking
away the external force), the solid will start sinking if ρf <ρs, while if ρf >ρs the fluid will
push the body up.

(v) Bonus: Demonstrate this effect using your favorite solids and fluids. Stand up and shout out
loud “Eurika!!” (Note: only filmed evidence will be considered for bonus purposes).

Solution
There are many possible solutions to this question. One of them is shown here: https:

//www.youtube.com/watch?v=JUxJBgJ5FJ4. It’s not the best one, it’s simply the only one
that was uploaded to YouTube.

3 Invariants

A scalar function of a tensor f(A) = f(Aij) or of a vector g(v⃗) = g(vi) is called invariant if its
value is independent of the choice of basis. That is, if it has a proper geometric meaning which is
independent of the particular basis that one happens to choose. Later in this course, we will be
interested in scalar invariants of tensors. For example, the elastic energy is a scalar invariant of the
strain tensor.

(i) Show that the trace is the only linear invariant scalar of a 2nd rank tensorA. That is, show that
if f(A) is an invariant function that is linear in A’s entries, it can be written as f(A) = λ trA
for some constant λ. Assume the dimension is ≥ 3.

Solution
Let f(Aij) be a scalar invariant that is linear in the entries of A. We know f is linear
means that we can write it as a linear combination of the entries of A, i.e.

f(Aij) = CijAij = tr
(
CAT

)
= C : A

where Cij is some matrix. The invariance of f means that f(A) should be unchanged when
applying a rotation Q:

tr
(
CÃT

)
= tr

(
CQTATQ

)
= tr

(
QCQTAT

)
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This should be true for all A, which means QCQT = C. Or in other words, this means
that C rotates like a proper tensor, and is isotropic. As we’ve seen, the only 2nd rank
isotropic tensor is δij, up to a multiplicative constant. Therefore

f(A) ∝ δijAij = Aii = tr(A)

As you know by now, this only works for d ≥ 3 unless we demand that f should also be
reflection invariant. Otherwise, Lz : A is also invariant.

(ii) Show that the only quadratic invariants of a 2nd rank tensor A are tr (A2), (trA)2, and
tr
(
AAT

)
. That is, show that if f(A) is invariant and quadratic in A’s entries, it can be

written as f(A) = λ1 tr (A
2) + λ2 (trA)2 + λ3 tr

(
AAT

)
(hint: think about the isotropic

tensors of question 1).

Solution
Exactly like before, if f is a quadratic function in the entries of A, it must be of the form

f(A) = CijklAijAkl

for some tensor C, which must be isotropic. There are exactly 3 options for such a tensor,
as we saw in class:

AijAklδij δkl = AiiAkk = (trA)2

AijAklδil δjk = AijAji = tr
(
A2

)
AijAklδik δkj = AijAij = tr

(
AAT

)
All quadratic invariant functions are linear combination of these.
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