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Tensor analysis

A general comment

The purpose of the HW exercises is to give you hands-on experience with the course materials. We
try hard to ask questions that require a conceptual process of understanding, rather than technical
computation. Whenever some complicated calculations are required, please remember that it is only
in order to convey the mathematical structure of the physical problems that we tackle, a structure
that might elude the “passive listener” in the classroom. Accordingly, in the answers you hand in
we do not require detailed calculations, unless they are crucial for the understanding.

1 Isotropic tensors

We defined tensors as linear operators transforming n into m vectors. One can define a tensor as an
object that under orthogonal (unitary) coordinate transformations (i.e. rotations) transforms as

Ai1i2...ik = Qi1j1Qi2j2 ...QikjkAj1j2...jk , (1)

where the Q’s represent the orthogonal transformation from coordinates j to coordinates i. We will
not bother with the distinction between covariant and contravariant degrees of freedom (though they
are crucial in other fields of physics like general relativity).

A tensor is called isotropic if its coordinate representation is invariant under coordinate rotation.
In this question, we will look at all the possible forms of isotropic tensors of low ranks in 3 dimensions.

(i) How do scalars change under rotations? Does a 0th rank isotropic tensor, a.k.a a scalar, exist?
If yes, give an example. If not, explain why.

(ii) A vector v⃗ is isotropic if for every rotation matrix Rij we have Rij vj = vi. Does a 1st rank
isotropic tensor, a.k.a an isotropic vector, exist? If yes, give an example. If not, explain why.

(iii) A matrix A is isotropic if for every rotation matrix R we have Aij = RikRjlAkl, or in matrix
notation:

RART = A . (2)

• Choose a specific rotation matrix, say a rotation of angle α around ẑ

Rz(α) ≡

 cosα sinα 0
− sinα cosα 0

0 0 1

 . (3)

Using this in the Eq. (2) will be complicated (you can go ahead and try). Instead —
expand the matrix for small rotation angle α to linear order i.e. Rz(α) ≃ M0 + αM1.
What is the zeroth order matrix M0? What is the matrix M1? (hint: you may have
encountered these objects before, e.g., in quantum mechanics courses).
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• Use the approximate matrixM0+αM1 in Eq. (2). Differentiate both sides of the equation
with respect to α, and then substitute α = 0. What conditions does the entries of the
matrix A should satisfy?

• The choice of ẑ was arbitrary. What conditions will you get if you were to repeat the
above procedure for rotations around different axis?

• Does a 2nd rank isotropic tensor, a.k.a an isotropic matrix, exist? If yes, give an example.
If not, explain why.

(iv) Bonus I: A 3rd rank tensor A is isotropic iff for every rotation matrix Rij we have

Riα Rjβ RkγAαβγ = Aijk . (4)

You can imagine the mess that comes out of this if you plug in a real rotation matrix with
sines and cosines and whatnot, and then start using trig identities. Phew, no thanks!

• Instead, like before, choose R = Rz(α), differentiate, and set α = 0. You should end up
with

0 =
(
Lz
iα δjβ δkγ + δiα L

z
jβ δkγ + δiα δjβ L

z
kγ

)
Aαβγ

= Lz
iαAαjk + Lz

jβ Aiβk + Lz
kγ Aijγ .

(5)

• To see what kind of equation we got, let’s choose i = 1, j = 3, k = 3. Since the only
non-zero elements of Lz are Lz

12 and Lz
21, we get

0 =Lz
1αAα33 + Lz

3β A1β3 + Lz
3γ A13γ = A233 . (6)

Similarly, by choosing different combinations of i, j, k and/or different L’s, you get that
Aijk = 0 whenever i, j, k are not all different, that is, if (ijk) is not a permutation of
(123).

Using this knowledge, we can choose now i = 1, j = 1, k = 3, and we get

A113 = 0 = Lz
1α Aα13 + Lz

1β A1β3 + Lz
3γ A11γ = A213 + A123 ,

or put differently, A213 = −A123. Similarly, we can show that every time we flip two
indices we get a minus sign. Can you guess what is this 3rd rank isotropic tensor A?

(v) Bonus II: You have shown above (if done correctly) that in 3 dimensions a 2nd rank isotropic
tensor must be proportional to δij, (in fact, this is true for all dimensions ≥ 3). However, in
2D this does not hold. Find the general form of an isotropic two-dimensional 2nd rank tensor.
What kind of symmetry do these tensors violate (those not proportional to the identity)?

Can you think of an example of an isotropic 2D tensor that is not diagonal, for a real physical
system?

2 Tensor integration — Archimedes law

Fluids exert forces on bodies that are submerged in them. At each point on the body’s surface, denote
the local normal by n̂. The force per unit area exerted by the fluid is given by fi = σijnj, where the
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index j is summed over, and the index i is not. σ is called the stress tensor of the fluid, and we’ll
deal with it extensively in the course. The component σij denote the force in the i direction applied
to areal element whose normal is in the j direction. Consider a stationary (hydro-static), isotropic
fluid that occupies the bottom half-space z < 0. The fluid is subjected to a constant gravitational
field −gẑ. At z = 0, we have σij = 0; that is, the surface of the fluid is stress-free (we neglect air
pressure).

(i) The off-diagonal elements of σij are called shear stresses. Almost by definition, in a stationary
fluid the shear stresses must vanish. Therefore, for i ̸=j we must have σij=0 for every choice
of coordinate system. Prove that this implies σij = −p(r) δij, where p(r) is a scalar field (hint:
think about isotropic tensors). Note: p=−1

3
tr(σ) is called pressure.

(ii) By considering the force balance on a small cube of fluid and the translational symmetries of
the system (in the x− y plane), show that the stress field satisfies the equation

∂zσzz(x, y, z) = −ρg

where ρ is the fluid’s density. Together with the results of (i), conclude that the stress tensor is
given by σij = −ρgzδij (note that you satisfy both the equation and the boundary conditions).

(iii) Consider an imaginary surface within the fluid, of arbitrary shape and volume V . Calculate
the magnitude and direction of the total force exerted by the surrounding fluid on the enclosed
fluid by integrating σijnj over the imaginary surface (hint: recall Gauss’ tensorial theorem).
This force is called the Buoyancy force.

(iv) Take the same shape and volume of (iii) and replace it with a solid body of arbitrary mass
density ρs, and hold it in its place (within the surrounding fluid). What forces are needed to
keep this body within the fluid? (hint: the situation is static). What would happen if you let
the solid body go?

(v) Bonus: Demonstrate this effect using your favorite solids and fluids. Stand up and shout out
loud “Eurika!!” (Note: only filmed evidence will be considered for bonus purposes).

3 Invariants

A scalar function of a tensor f(A) = f(Aij) or of a vector g(v⃗) = g(vi) is called invariant if its
value is independent of the choice of basis. That is, if it has a proper geometric meaning which is
independent of the particular basis that one happens to choose. Later in this course, we will be
interested in scalar invariants of tensors. For example, the elastic energy is a scalar invariant of the
strain tensor.

(i) Show that the trace is the only linear invariant scalar of a 2nd rank tensorA. That is, show that
if f(A) is an invariant function that is linear in A’s entries, it can be written as f(A) = λ trA
for some constant λ. Assume the dimension is ≥ 3.

(ii) Show that the only quadratic invariants of a 2nd rank tensor A are tr (A2), (trA)2, and
tr
(
AAT

)
. That is, show that if f(A) is invariant and quadratic in A’s entries, it can be

written as f(A) = λ1 tr (A
2) + λ2 (trA)2 + λ3 tr

(
AAT

)
(hint: think about the isotropic

tensors of question 1).
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