Kinematics - Solution

1 Eulerian and Lagrangian frameworks

Consider the following 2D deformation:

$$
x_{1}(t)=\cosh (t) X_{1}+\sinh (t) X_{2}, \quad x_{2}(t)=\sinh (t) X_{1}+\cosh (t) X_{2} .
$$

(i) Find the material velocity and the acceleration $\boldsymbol{V}, \boldsymbol{A}$ and express their spatial forms $\boldsymbol{v}, \boldsymbol{a}$. Remember to represent each field in the proper coordinates (i.e. $\boldsymbol{V}, \boldsymbol{A}$ in terms of \boldsymbol{X} and $\boldsymbol{v}, \boldsymbol{a}$ in terms of \boldsymbol{x}). Plot schematically \boldsymbol{V} and \boldsymbol{v} at $t=-10,0,10$. Note how vastly different \boldsymbol{V} and \boldsymbol{v} are!

(ii) The acceleration \boldsymbol{a} can also be calculated as a material derivative of the velocity:

$$
\boldsymbol{a}=\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} \boldsymbol{v} .
$$

Calculate \boldsymbol{a} using this expression, and show that the results coincide.

Solution

$$
\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} \boldsymbol{v}=\overrightarrow{0}+\left(v_{1} \partial_{x_{1}}+v_{2} \partial_{x_{2}}\right) \boldsymbol{v}=\left(x_{2} \partial_{x_{1}}+x_{1} \partial_{x_{2}}\right)\binom{x_{2}}{x_{1}}=\binom{x_{1}}{x_{2}}
$$

(iii) Calculate $\boldsymbol{F}=\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{X}}$ and $J=\operatorname{det} \boldsymbol{F}$.

$$
\begin{gathered}
\text { Solution } \\
\boldsymbol{F}=\left(\begin{array}{ll}
\partial_{X_{1}} x_{1} & \partial_{X_{2}} x_{1} \\
\partial_{X_{1}} x_{2} & \partial_{X_{2}} x_{2}
\end{array}\right)=\left(\begin{array}{cc}
\cosh (t) & \sinh (t) \\
\sinh (t) & \cosh (t)
\end{array}\right),
\end{gathered}
$$

and clearly $J=\operatorname{det} \boldsymbol{F}=1$.
(iv) Calculate the Green-Lagrange strain tensor \boldsymbol{E}, and the Euler-Almansi strain tensor \boldsymbol{e}, and show that the results coincide.

Solution

We know that the Green-Lagrange strain tensor is expressed as $E=\frac{1}{2}\left(\boldsymbol{F}^{T} \boldsymbol{F}-\boldsymbol{I}\right)$. Taking \boldsymbol{F} from the previous section, we obtain

$$
\boldsymbol{E}=\left(\begin{array}{cc}
\sinh ^{2}(t) & \sinh (t) \cosh (t) \\
\sinh (t) \cosh (t) & \sinh ^{2}(t)
\end{array}\right)
$$

To obtain the Euler-Almansi strain tensor \boldsymbol{e}, we can either express the X 's in terms of x 's, giving $X_{1}=\cosh (t) x_{1}-\sinh (t) x_{2}$, and $X_{2}=-\sinh (t) x_{1}+\cosh (t) x_{2}$ - this is the inverse mapping $\boldsymbol{\phi}^{-1}$. Next, we define \boldsymbol{f} to be the "equivalent" of \boldsymbol{F} only in the Eulerian frame, as $\boldsymbol{f} \equiv \frac{\partial \boldsymbol{\phi}^{-1}}{\partial \boldsymbol{x}}$. It takes the form

$$
\boldsymbol{f}=\left(\begin{array}{cc}
\cosh (t) & -\sinh (t) \\
-\sinh (t) & \cosh (t)
\end{array}\right)=\boldsymbol{F}^{-1}
$$

From here its rather easy to see that

$$
\boldsymbol{e}=\frac{1}{2}\left(\boldsymbol{I}-\boldsymbol{f}^{T} \boldsymbol{f}\right)=\left(\begin{array}{cc}
-\sinh ^{2}(t) & \sinh (t) \cosh (t) \\
\sinh (t) \cosh (t) & -\sinh ^{2}(t)
\end{array}\right)=\frac{1}{2}\left(\boldsymbol{I}-\boldsymbol{F}^{-T} \boldsymbol{F}^{-1}\right) .
$$

Note that \boldsymbol{E} is given in the Lagrangian frame in terms of X 's, while \boldsymbol{e} is given in the Eulerian frame in terms of the x 's (though the coordinates are absent for the motion given in this question).
To finally convince ourselves that we have the same "objects" here, lets look at the eigenvalues Λ of \boldsymbol{E} and \boldsymbol{e}. For \boldsymbol{E}, we have $\Lambda_{\boldsymbol{E}}=\frac{1}{2}\left(e^{ \pm 2 t}-1\right)$, while for \boldsymbol{e} we have $\Lambda_{\boldsymbol{e}}=\frac{1}{2}\left(1-e^{ \pm 2 t}\right)$. We expect $\Lambda_{\boldsymbol{E}}=\frac{1}{2}\left(\lambda^{2}-1\right)$ (Eq.(5) from TA 1), so that $\lambda=e^{ \pm t}$. Then for Λ_{e} we should have $\Lambda_{e}=\frac{1}{2}\left(1-\lambda^{-2}\right)$ (Eq.(6) from TA 1) which is exactly the relation we have here.

2 Apparent contradictions

Solve these apparent contradictions:
(i) One may claim that $\nabla_{x} \boldsymbol{v} \equiv 0$ because

$$
\nabla_{x} \boldsymbol{v}=\nabla_{x} \frac{\partial \boldsymbol{x}}{\partial t}=\frac{\partial}{\partial x_{j}} \frac{\partial x_{i}}{\partial t}=\frac{\partial}{\partial t} \frac{\partial x_{i}}{\partial x_{j}}=\frac{\partial \delta_{i j}}{\partial t}=0,
$$

is this true (hint: no)? What is wrong with this reasoning?

Solution

$\partial_{t}(\cdot)$ is defined to be $\left.\frac{\partial(\cdot)}{\partial t}\right|_{\boldsymbol{X}}$. Thus, ∂_{t} and ∂_{x} do not commute, but ∂_{t} and ∂_{X} do. To see this more explicitly, note that the expression $\nabla_{x} \boldsymbol{v}$ is actually shorthand for

$$
\nabla_{\boldsymbol{x}} \boldsymbol{v}(\boldsymbol{x}, t)=\nabla_{\boldsymbol{x}} \partial_{t} \boldsymbol{\varphi}(\boldsymbol{X}(\boldsymbol{x}, t), t)
$$

so you see that \boldsymbol{x} is also time dependent.
(ii) Throughout the course, we use the fact that $D_{t} \boldsymbol{x}=\boldsymbol{v}$. One may claim that there's a factor of 2 missing, since

$$
D_{t} \boldsymbol{x} \equiv \partial_{t} \boldsymbol{x}+\boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} \boldsymbol{x}=\boldsymbol{v}+\boldsymbol{v} \boldsymbol{I}=2 \boldsymbol{v} .
$$

Is this true (hint: no)? What is wrong with this reasoning?

Solution

Remind yourselves the derivation of the equation for the material derivative, Eqs. (3.7-8) in Eran's notes:

$$
\begin{align*}
\frac{D f(\boldsymbol{x}, t)}{D t} & =\left(\frac{\partial f(\boldsymbol{\varphi}(\boldsymbol{X}, t), t)}{\partial t}\right)_{\boldsymbol{X}=\boldsymbol{\varphi}^{-1}(\boldsymbol{x}, t)} \\
& =\left(\frac{\partial f(\boldsymbol{x}, t)}{\partial t}\right)_{\boldsymbol{x}}+\left(\frac{\partial f(\boldsymbol{x}, t)}{\partial \boldsymbol{x}}\right)_{t}\left(\frac{\partial \boldsymbol{\varphi}(\boldsymbol{X}, t)}{\partial t}\right)_{\boldsymbol{X}=\boldsymbol{\varphi}^{-1}(\boldsymbol{x}, t)} \tag{1}
\end{align*}
$$

That is, in the above we should interpret $\partial_{t} \boldsymbol{x}$ as the time derivative of \boldsymbol{x} when \boldsymbol{x} is kept constant. In other words, it is strictly zero.

3 Invertibility of the deformation gradient

We use quite freely in class \boldsymbol{F}^{-1} and \boldsymbol{F}^{-T} and so on. What is the physical meaning of the assumption that \boldsymbol{F} is always an invertible matrix?

Solution

det \boldsymbol{F} is the ratio of an infinitesimal volume element in the material coordinates to its volume in the deformed configuration. If \boldsymbol{F} is non invertible, i.e. $\operatorname{det} \boldsymbol{F}=0$, then the motion takes an infinitesimal volume and "squishes" it to a plane (or a line, or a point). That is, if \boldsymbol{F} is noninvertible the motion maps a triad of basis vectors in the material coordinates $\left\{\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \boldsymbol{X}_{3}\right\}$ to a linearly dependent set $\left\{\boldsymbol{F} \boldsymbol{X}_{1}, \boldsymbol{F} \boldsymbol{X}_{2}, \boldsymbol{F} \boldsymbol{X}_{3}\right\}$ and the images of the basis vectors are co-planar and do not span a volume. Since we do not allow such a situation (what would you do with mass conservation then?), we assume that \boldsymbol{F} is invertible.

Note that demanding that \boldsymbol{F} is invertible is a stronger assumption than assuming that $\boldsymbol{\varphi}$ is invertible. Consider the motion

$$
x_{1}=X_{1}^{3}, \quad x_{2}=X_{2}, \quad x_{3}=X_{3}
$$

This is clearly an invertible motion but $\operatorname{det} \boldsymbol{F}$ vanishes at $\boldsymbol{X}=0$.
A side note for the rigorous-mathematics-oriented students: We just saw that the fact that $\boldsymbol{\varphi}$ is invertible does not imply that \boldsymbol{F} is invertible. However, the other direction kind of works: the inverse-function theorem says that if $\operatorname{det} \boldsymbol{F} \neq 0$ then $\boldsymbol{\varphi}$ is locally invertible (i.e. that if $\operatorname{det} \boldsymbol{F} \neq 0$ at a point then there's a small environment around this point where $\boldsymbol{\varphi}$ is invertible).

4 Spherical cavity

Consider a material that fills the whole space, except for a spherical cavity of initial radius Q, centered at the origin. At time $t=0$ an explosive is detonated in the cavity and its radius varies as some specified function $q(t)$, resulting in a sphero-symmetric motion. That is, the motion is given by

$$
\begin{aligned}
& \boldsymbol{x}(t)=\frac{r(t)}{R} \boldsymbol{X}=\frac{f(R, t)}{R} \boldsymbol{X}, \\
& r(t)=f(R, t)=|\boldsymbol{x}(R, t)|, \\
& R(\boldsymbol{X})=|\boldsymbol{X}|, \\
& f(R=Q, t)=q(t) .
\end{aligned}
$$

(i) Show that the deformation gradient is given by

$$
\begin{equation*}
\boldsymbol{F}=\nabla_{\boldsymbol{X}} \boldsymbol{x}=\frac{\partial f}{\partial R} \hat{\boldsymbol{r}} \otimes \hat{\boldsymbol{r}}+\frac{f}{R}(\hat{\boldsymbol{\phi}} \otimes \hat{\boldsymbol{\phi}}+\hat{\boldsymbol{\theta}} \otimes \hat{\boldsymbol{\theta}}), \tag{2}
\end{equation*}
$$

where $\hat{\boldsymbol{r}}=R^{-1} \boldsymbol{X}=r^{-1} \boldsymbol{x}$, and $\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}$ are the spherical unit vectors. Hints:

- For a spherically symmetric function $g(r), \nabla_{\boldsymbol{X}} g=\frac{\partial g}{\partial R} \hat{\boldsymbol{r}}$.
- $\boldsymbol{I}=\sum_{i} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{i}$ for any set $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ of orthonormal vectors.

Solution

Direct calculation gives simply

$$
\begin{aligned}
\boldsymbol{F} & =\nabla_{\boldsymbol{X}} \boldsymbol{x}=\nabla_{\boldsymbol{X}} \frac{f(\boldsymbol{X}, t)}{R} \boldsymbol{X}=\frac{\boldsymbol{X}}{R} \nabla_{\boldsymbol{X}} f+f \boldsymbol{X} \nabla_{\boldsymbol{X}}\left(\frac{1}{R}\right)+\frac{f}{R} \nabla_{\boldsymbol{X}} \boldsymbol{X} \\
& =\frac{\boldsymbol{X}}{R} \otimes \partial_{R} f \hat{\boldsymbol{r}}+f \boldsymbol{X} \otimes\left(-\frac{\hat{\boldsymbol{r}}}{R^{2}}\right)+\frac{f}{R} \boldsymbol{I} \\
& =\partial_{R} f \hat{\boldsymbol{r}} \otimes \hat{\boldsymbol{r}}+f \hat{\boldsymbol{r}} \otimes\left(-\frac{\hat{\boldsymbol{r}}}{R}\right)+\frac{f}{R}(\hat{\boldsymbol{r}} \otimes \hat{\boldsymbol{r}}+\hat{\boldsymbol{\phi}} \otimes \hat{\boldsymbol{\phi}}+\hat{\boldsymbol{\theta}} \otimes \hat{\boldsymbol{\theta}}) \\
& =\nabla_{\boldsymbol{X}} \boldsymbol{x}=\frac{\partial f}{\partial R} \hat{\boldsymbol{r}} \otimes \hat{\boldsymbol{r}}+\frac{f}{R}(\hat{\boldsymbol{\phi}} \otimes \hat{\boldsymbol{\phi}}+\hat{\boldsymbol{\theta}} \otimes \hat{\boldsymbol{\theta}})
\end{aligned}
$$

Where the 3 rd line is obtained by the definition $\hat{\boldsymbol{r}} \equiv \boldsymbol{X} / R$.
(ii) If the motion is isochoric (volume-preserving), show that

$$
f(R, t)=\sqrt[3]{R^{3}+q(t)^{3}-Q^{3}} .
$$

You can show that either by using Eq.(2) to calculate the volume change, or by direct computation without going knowing the explicit form of \boldsymbol{F} (doing both is better!).

Solution

If the motion is volume-preserving, then

$$
\operatorname{det} \boldsymbol{F}=\left(\frac{\partial f}{\partial R}\right)\left(\frac{f}{R}\right)^{2}=1
$$

which can be written as a differential equation for f :

$$
f^{2} d f=R^{2} d R \quad \Rightarrow \quad f(R)^{3}=R^{3}+C
$$

where C is an integration constant. Since $f(R=Q)=q$, we can get the value of C :

$$
f(Q)^{3}=Q^{3}+C=q^{3} \quad \Rightarrow \quad C=q^{3}-Q^{3}
$$

and we conclude that

$$
f(R)=\left(R^{3}+q^{3}-Q^{3}\right)^{1 / 3}
$$

The other way of doing this is as follows. Before the expansion, the volume inside a sphere of radius $R>Q$ was

$$
\frac{4 \pi}{3}\left(R^{3}-Q^{3}\right)
$$

At time t, the volume is

$$
\frac{4 \pi}{3}\left(f(R, t)^{3}-f(Q, t)^{3}\right)=\frac{4 \pi}{3}\left(f(R, t)^{3}-q^{3}\right)
$$

Equating the two, we have

$$
f^{3}=R^{3}+q^{3}-Q^{3}
$$

as needed.
(iii) Calculate \boldsymbol{v}, expressed in terms of q and $\partial_{t} q(t)$.

Solution

Since $\boldsymbol{x}=\frac{f(R, t)}{R} \boldsymbol{X}$, we have $\partial_{t} x=\partial_{t} f \frac{\boldsymbol{X}}{R}=\partial_{t} f \hat{\boldsymbol{r}}$. From our formula for f we have

$$
\partial_{t} f=\frac{1}{3}\left(R^{3}+q^{3}-Q^{3}\right)^{-2 / 3}\left(3 q^{2}\right) \partial_{t} q=f^{-2} q^{2} \partial_{t} q
$$

Substituting, we get

$$
\boldsymbol{V}(\boldsymbol{X}, t)=\left(\frac{q}{f(|\boldsymbol{X}|, t)}\right)^{2} \partial_{t} q \hat{\boldsymbol{r}}
$$

Switching to the spatial coordinates, we simply use $|\boldsymbol{x}|=f$ to get

$$
\boldsymbol{v}(\boldsymbol{x}, t)=\left(\frac{q}{|\boldsymbol{x}|}\right)^{2} \partial_{t} q \hat{\boldsymbol{r}}
$$

5 Acceleration, stress and force fields

Solve these two unrelated questions:
(i) Consider the following velocity field \boldsymbol{v} in the Eulerian description:

$$
\begin{equation*}
\boldsymbol{v}=C e^{-a t}\left(x^{3}+x y^{2},-x^{2} y-y^{3}, 0\right)^{T} \tag{3}
\end{equation*}
$$

where C and a are constants. Find the acceleration \boldsymbol{a} at point $(1,1,0)$ at time $t=0$

Solution

As mentioned in the first question, we can calculate the accelaration from $\boldsymbol{a}=\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \cdot \nabla_{x} \boldsymbol{v}$. Doing this, we get

$$
\boldsymbol{a}(\boldsymbol{x}, t)=C e^{-2 a t}\left(\begin{array}{c}
-x\left(x^{2}+y^{2}\right)\left[a e^{a t}+C\left(y^{2}-3 x^{2}\right)\right] \\
y\left(x^{2}+y^{2}\right)\left[a e^{a t}-C\left(x^{2}-3 y^{2}\right)\right] \\
0
\end{array}\right) .
$$

Evaluating this at $(1,1,0)$ at time 0 we get

$$
\boldsymbol{a}(x=1, y=1, z=0, t=0)=2 C\left(\begin{array}{c}
2 C-a \\
2 C+a \\
0
\end{array}\right) .
$$

(ii) If the stress field is given by the matrix:

$$
\boldsymbol{\sigma}=C\left(\begin{array}{ccc}
x^{2} y & \left(a^{2}-y^{2}\right) x & 0 \tag{4}\\
\left(a^{2}-y^{2}\right) x & \frac{1}{3}\left(y^{2}-3 a^{2} y\right) & 0 \\
0 & 0 & 2 a z^{2}
\end{array}\right)
$$

find the body force field necessary for the stress field to be in equilibrium.

Solution

To satisfy the static momentum balance equation we demand $\nabla \cdot \boldsymbol{\sigma}+\boldsymbol{b}=0$, that is $\boldsymbol{b}=-\nabla \cdot \boldsymbol{\sigma}$. We obtain

$$
\boldsymbol{b}=\left(\begin{array}{c}
0 \\
-\frac{y}{3}(2-3 y) \\
-4 a z
\end{array}\right)
$$

