
Non-Equilibrium Continuum Physics HW set #2

TA: Avraham Moriel and Roy Wexler Submit to:groupbouchbinder@gmail.com

Due 17.05.2023 Submit as: NECP HW2 ⟨FirstName⟩ ⟨LastName⟩.pdf

Kinematics - Solution

1 Eulerian and Lagrangian frameworks

Consider the following 2D deformation:

x1(t) = cosh(t)X1 + sinh(t)X2 , x2(t) = sinh(t)X1 + cosh(t)X2 .

(i) Find the material velocity and the acceleration V,A and express their spatial forms v, a.
Remember to represent each field in the proper coordinates (i.e. V ,A in terms of X and v,a
in terms of x). Plot schematically V and v at t = −10, 0, 10. Note how vastly different V and
v are!

Solution

V =

(
ẋ1

ẋ2

)
=

(
sinh(t)X1 + cosh(t)X2

cosh(t)X1 + sinh(t)X2

)
.

Note that this can be simply expressed as

(
x2

x1

)
, so we also found v =

(
x2

x1

)
.

Similarly,

A =

(
ẍ1

ẍ2

)
=

(
cosh(t)X1 + sinh(t)X2

sinh(t)X1 + cosh(t)X2

)
, and a =

(
x1

x2

)
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Note that V changes exponentially in time while v is constant (!!). This goes to show how
different things may look like if they’re presented as a function of X or x.

(ii) The acceleration a can also be calculated as a material derivative of the velocity:

a =
∂v

∂t
+ v · ∇xv .

Calculate a using this expression, and show that the results coincide.
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Solution

∂v

∂t
+ v · ∇xv = 0⃗ + (v1∂x1 + v2∂x2)v = (x2∂x1 + x1∂x2)

(
x2

x1

)
=

(
x1

x2

)

(iii) Calculate F = ∂x
∂X

and J = detF .

Solution

F =

(
∂X1x1 ∂X2x1

∂X1x2 ∂X2x2

)
=

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
,

and clearly J = detF = 1.

(iv) Calculate the Green-Lagrange strain tensor E, and the Euler-Almansi strain tensor e, and
show that the results coincide.

Solution
We know that the Green-Lagrange strain tensor is expressed as E = 1

2

(
F TF − I

)
. Taking

F from the previous section, we obtain

E =

(
sinh2(t) sinh(t) cosh(t)

sinh(t) cosh(t) sinh2(t)

)
.

To obtain the Euler-Almansi strain tensor e, we can either express the X’s in terms of x’s,
giving X1 = cosh(t)x1 − sinh(t)x2, and X2 =− sinh(t)x1 + cosh(t)x2 — this is the inverse
mapping ϕ−1. Next, we define f to be the “equivalent” of F only in the Eulerian frame,
as f≡ ∂ϕ−1

∂x
. It takes the form

f =

(
cosh(t) − sinh(t)
− sinh(t) cosh(t)

)
=F−1 .

From here its rather easy to see that

e =
1

2

(
I − fTf

)
=

(
− sinh2(t) sinh(t) cosh(t)

sinh(t) cosh(t) − sinh2(t)

)
=

1

2

(
I − F−TF−1

)
.

Note that E is given in the Lagrangian frame in terms of X’s, while e is given in the
Eulerian frame in terms of the x’s (though the coordinates are absent for the motion given
in this question).

To finally convince ourselves that we have the same “objects” here, lets look at the eigenval-
ues Λ of E and e. For E, we have ΛE= 1

2
(e±2t − 1), while for e we have Λe=

1
2
(1− e±2t).

We expect ΛE = 1
2
(λ2 − 1) (Eq.(5) from TA 1), so that λ= e±t. Then for Λe we should

have Λe=
1
2
(1− λ−2) (Eq.(6) from TA 1) which is exactly the relation we have here.
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2 Apparent contradictions

Solve these apparent contradictions:

(i) One may claim that ∇xv ≡ 0 because

∇xv = ∇x
∂x

∂t
=

∂

∂xj

∂xi

∂t
=

∂

∂t

∂xi

∂xj

=
∂δij
∂t

= 0 ,

is this true (hint: no)? What is wrong with this reasoning?

Solution
∂t(·) is defined to be ∂(·)

∂t

∣∣∣
X
. Thus, ∂t and ∂x do not commute , but ∂t and ∂X do. To see

this more explicitly, note that the expression ∇xv is actually shorthand for

∇xv(x, t) = ∇x∂tφ(X(x, t), t)

so you see that x is also time dependent.

(ii) Throughout the course, we use the fact that Dtx = v. One may claim that there’s a factor of
2 missing, since

Dtx ≡ ∂tx+ v · ∇xx = v + vI = 2v .

Is this true (hint: no)? What is wrong with this reasoning?

Solution
Remind yourselves the derivation of the equation for the material derivative, Eqs. (3.7-8)
in Eran’s notes:

Df(x, t)

Dt
=

(
∂f(φ(X, t), t)

∂t

)
X=φ−1(x,t)

=

(
∂f(x, t)

∂t

)
x

+

(
∂f(x, t)

∂x

)
t

(
∂φ(X, t)

∂t

)
X=φ−1(x,t)

. (1)

That is, in the above we should interpret ∂tx as the time derivative of x when x is kept
constant. In other words, it is strictly zero.

3 Invertibility of the deformation gradient

We use quite freely in class F−1 and F−T and so on. What is the physical meaning of the assumption
that F is always an invertible matrix?
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Solution
detF is the ratio of an infinitesimal volume element in the material coordinates to its volume

in the deformed configuration. If F is non invertible, i.e. detF = 0, then the motion takes an
infinitesimal volume and “squishes” it to a plane (or a line, or a point). That is, if F is non-
invertible the motion maps a triad of basis vectors in the material coordinates {X1,X2,X3} to
a linearly dependent set {FX1,FX2,FX3} and the images of the basis vectors are co-planar
and do not span a volume. Since we do not allow such a situation (what would you do with mass
conservation then?), we assume that F is invertible.

Note that demanding that F is invertible is a stronger assumption than assuming that φ is
invertible. Consider the motion

x1 = X3
1 , x2 = X2 , x3 = X3 .

This is clearly an invertible motion but detF vanishes at X = 0.
A side note for the rigorous-mathematics-oriented students: We just saw that the fact that φ

is invertible does not imply that F is invertible. However, the other direction kind of works: the
inverse-function theorem says that if detF ̸= 0 then φ is locally invertible (i.e. that if detF ̸= 0
at a point then there’s a small environment around this point where φ is invertible).

4 Spherical cavity

Consider a material that fills the whole space, except for a spherical cavity of initial radius Q, centered
at the origin. At time t = 0 an explosive is detonated in the cavity and its radius varies as some
specified function q(t), resulting in a sphero-symmetric motion. That is, the motion is given by

x(t) =
r(t)

R
X =

f(R, t)

R
X ,

r(t) = f(R, t) = |x(R, t)| ,

R(X) = |X| ,

f(R = Q, t) = q(t) .

(i) Show that the deformation gradient is given by

F = ∇Xx =
∂f

∂R
r̂ ⊗ r̂ +

f

R
(ϕ̂⊗ ϕ̂+ θ̂ ⊗ θ̂) , (2)

where r̂ = R−1X = r−1x, and θ̂, ϕ̂ are the spherical unit vectors.
Hints:

• For a spherically symmetric function g(r), ∇Xg = ∂g
∂R

r̂.

• I =
∑

i ei ⊗ ei for any set {e1, e2, e3} of orthonormal vectors.
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Solution
Direct calculation gives simply

F = ∇Xx = ∇X
f(X, t)

R
X =

X

R
∇Xf + fX∇X

(
1

R

)
+

f

R
∇XX

=
X

R
⊗ ∂Rf r̂ + fX ⊗

(
− r̂

R2

)
+

f

R
I

= ∂Rf r̂ ⊗ r̂ + f r̂ ⊗
(
− r̂

R

)
+

f

R

(
r̂ ⊗ r̂ + ϕ̂⊗ ϕ̂+ θ̂ ⊗ θ̂

)
= ∇Xx =

∂f

∂R
r̂ ⊗ r̂ +

f

R
(ϕ̂⊗ ϕ̂+ θ̂ ⊗ θ̂)

Where the 3rd line is obtained by the definition r̂ ≡ X/R.

(ii) If the motion is isochoric (volume-preserving), show that

f(R, t) = 3
√
R3 + q(t)3 −Q3 .

You can show that either by using Eq.(2) to calculate the volume change, or by direct compu-
tation without going knowing the explicit form of F (doing both is better!).

Solution
If the motion is volume-preserving, then

detF =

(
∂f

∂R

)(
f

R

)2

= 1

which can be written as a differential equation for f :

f 2df = R2dR ⇒ f(R)3 = R3 + C

where C is an integration constant. Since f(R = Q) = q, we can get the value of C:

f(Q)3 = Q3 + C = q3 ⇒ C = q3 −Q3

and we conclude that
f(R) =

(
R3 + q3 −Q3

)1/3
.

The other way of doing this is as follows. Before the expansion, the volume inside a sphere
of radius R > Q was

4π

3

(
R3 −Q3

)
.

At time t, the volume is

4π

3

(
f(R, t)3 − f(Q, t)3

)
=

4π

3

(
f(R, t)3 − q3

)
Equating the two, we have

f 3 = R3 + q3 −Q3

as needed.
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(iii) Calculate v, expressed in terms of q and ∂tq(t).

Solution
Since x = f(R,t)

R
X, we have ∂tx = ∂tf

X
R

= ∂tf r̂. From our formula for f we have

∂tf =
1

3

(
R3 + q3 −Q3

)−2/3
(3q2) ∂tq = f−2q2∂tq

Substituting, we get
V (X, t) =

(
q

f(|X|, t)

)2

∂tqr̂

Switching to the spatial coordinates, we simply use |x| = f to get

v(x, t) =

(
q

|x|

)2

∂tqr̂

5 Acceleration, stress and force fields

Solve these two unrelated questions:

(i) Consider the following velocity field v in the Eulerian description:

v = Ce−at
(
x3 + xy2,−x2y − y3, 0

)T
, (3)

where C and a are constants. Find the acceleration a at point (1, 1, 0) at time t=0

Solution
As mentioned in the first question, we can calculate the accelaration from a = ∂v

∂t
+v ·∇xv .

Doing this, we get

a (x, t) = Ce−2at

−x (x2 + y2) [aeat + C (y2 − 3x2)]
y (x2 + y2) [aeat − C (x2 − 3y2)]

0

 .

Evaluating this at (1, 1, 0) at time 0 we get

a (x=1, y=1, z=0, t=0) = 2C

2C − a
2C + a

0

 .

(ii) If the stress field is given by the matrix:

σ = C

 x2y (a2 − y2)x 0
(a2 − y2)x 1

3
(y2 − 3a2y) 0

0 0 2az2

 , (4)
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find the body force field necessary for the stress field to be in equilibrium.

Solution
To satisfy the static momentum balance equation we demand ∇ · σ + b = 0, that is
b = −∇ · σ. We obtain

b =

 0
−y

3
(2− 3y)
−4az

 .
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