Non-Equilibrium Continuum Physics

HW set #2

TA: Avraham Moriel and Roy Wexler

Submit to:groupbouchbinder@gmail.com

Due 17.05.2023

Submit as: $NECP_HW2_{\text{rirstName}}_{\text{lastName}}$.pdf

Kinematics

1 Eulerian and Lagrangian frameworks

Consider the following 2D deformation:

$$x_1(t) = \cosh(t)X_1 + \sinh(t)X_2$$
, $x_2(t) = \sinh(t)X_1 + \cosh(t)X_2$.

- (i) Find the material velocity and the acceleration V, A and express their spatial forms v, a. Remember to represent each field in the proper coordinates (i.e. V, A in terms of X and v, a in terms of x). Plot schematically V and v at t = -10, 0, 10. Note how vastly different V and v are!
- (ii) The acceleration \boldsymbol{a} can also be calculated as a material derivative of the velocity:

$$oldsymbol{a} = rac{\partial oldsymbol{v}}{\partial t} + oldsymbol{v} \cdot
abla_{oldsymbol{x}} oldsymbol{v} \ .$$

Calculate a using this expression, and show that the results coincide.

- (iii) Calculate $\mathbf{F} = \frac{\partial \mathbf{x}}{\partial \mathbf{X}}$ and $J = \det \mathbf{F}$.
- (iv) Calculate the Green-Lagrange strain tensor \boldsymbol{E} , and the Euler-Almansi strain tensor \boldsymbol{e} , and show that the results coincide.

2 Apparent contradictions

Solve these apparent contradictions:

(i) One may claim that $\nabla_x v \equiv 0$ because

$$\nabla_{\boldsymbol{x}}\boldsymbol{v} = \nabla_{\boldsymbol{x}}\frac{\partial \boldsymbol{x}}{\partial t} = \frac{\partial}{\partial x_j}\frac{\partial x_i}{\partial t} = \frac{\partial}{\partial t}\frac{\partial x_i}{\partial x_j} = \frac{\partial \delta_{ij}}{\partial t} = 0 ,$$

is this true (hint: no)? What is wrong with this reasoning?

(ii) Throughout the course, we use the fact that $D_t \mathbf{x} = \mathbf{v}$. One may claim that there's a factor of 2 missing, since

$$D_t x \equiv \partial_t x + v \cdot \nabla_x x = v + v I = 2v$$
.

Is this true (hint: no)? What is wrong with this reasoning?

3 Invertibility of the deformation gradient

We use quite freely in class \mathbf{F}^{-1} and \mathbf{F}^{-T} and so on. What is the physical meaning of the assumption that \mathbf{F} is always an invertible matrix?

4 Spherical cavity

Consider a material that fills the whole space, except for a spherical cavity of initial radius Q, centered at the origin. At time t=0 an explosive is detonated in the cavity and its radius varies as some specified function q(t), resulting in a sphero-symmetric motion. That is, the motion is given by

$$\mathbf{x}(t) = \frac{r(t)}{R} \mathbf{X} = \frac{f(R, t)}{R} \mathbf{X} ,$$

$$r(t) = f(R, t) = |\mathbf{x}(R, t)| ,$$

$$R(\mathbf{X}) = |\mathbf{X}| ,$$

$$f(R = Q, t) = q(t) .$$

(i) Show that the deformation gradient is given by

$$\mathbf{F} = \nabla_{\mathbf{X}} \mathbf{x} = \frac{\partial f}{\partial R} \hat{\mathbf{r}} \otimes \hat{\mathbf{r}} + \frac{f}{R} (\hat{\boldsymbol{\phi}} \otimes \hat{\boldsymbol{\phi}} + \hat{\boldsymbol{\theta}} \otimes \hat{\boldsymbol{\theta}}) , \qquad (1)$$

where $\hat{\boldsymbol{r}} = R^{-1}\boldsymbol{X} = r^{-1}\boldsymbol{x}$, and $\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}$ are the spherical unit vectors. Hints:

- For a spherically symmetric function g(r), $\nabla_{\mathbf{X}}g = \frac{\partial g}{\partial B}\hat{\mathbf{r}}$.
- $I = \sum_i e_i \otimes e_i$ for any set $\{e_1, e_2, e_3\}$ of orthonormal vectors.
- (ii) If the motion is isochoric (volume-preserving), show that

$$f(R,t) = \sqrt[3]{R^3 + q(t)^3 - Q^3} .$$

You can show that either by using Eq.(1) to calculate the volume change, or by direct computation without going knowing the explicit form of \mathbf{F} (doing both is better!).

(iii) Calculate \boldsymbol{v} , expressed in terms of q and $\partial_t q(t)$.

5 Acceleration, stress and force fields

Solve these two *unrelated* questions:

(i) Consider the following velocity field v in the Eulerian description:

$$\mathbf{v} = Ce^{-at} \left(x^3 + xy^2, -x^2y - y^3, 0 \right)^T$$
, (2)

where C and a are constants. Find the acceleration a at point (1,1,0) at time t=0

(ii) If the stress field is given by the matrix:

$$\boldsymbol{\sigma} = C \begin{pmatrix} x^2 y & (a^2 - y^2) x & 0 \\ (a^2 - y^2) x & \frac{1}{3} (y^2 - 3a^2 y) & 0 \\ 0 & 0 & 2az^2 \end{pmatrix} , \tag{3}$$

find the body force field necessary for the stress field to be in equilibrium.