Kinematics

1 Eulerian and Lagrangian frameworks

Consider the following 2D deformation：

$$
x_{1}(t)=\cosh (t) X_{1}+\sinh (t) X_{2}, \quad x_{2}(t)=\sinh (t) X_{1}+\cosh (t) X_{2}
$$

（i）Find the material velocity and the acceleration $\boldsymbol{V}, \boldsymbol{A}$ and express their spatial forms $\boldsymbol{v}, \boldsymbol{a}$ ． Remember to represent each field in the proper coordinates（i．e． $\boldsymbol{V}, \boldsymbol{A}$ in terms of \boldsymbol{X} and $\boldsymbol{v}, \boldsymbol{a}$ in terms of $\boldsymbol{x})$ ．Plot schematically \boldsymbol{V} and \boldsymbol{v} at $t=-10,0,10$ ．Note how vastly different \boldsymbol{V} and \boldsymbol{v} are！
（ii）The acceleration \boldsymbol{a} can also be calculated as a material derivative of the velocity：

$$
\boldsymbol{a}=\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} \boldsymbol{v} .
$$

Calculate \boldsymbol{a} using this expression，and show that the results coincide．
（iii）Calculate $\boldsymbol{F}=\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{X}}$ and $J=\operatorname{det} \boldsymbol{F}$ ．
（iv）Calculate the Green－Lagrange strain tensor \boldsymbol{E} ，and the Euler－Almansi strain tensor \boldsymbol{e} ，and show that the results coincide．

2 Apparent contradictions

Solve these apparent contradictions：
（i）One may claim that $\nabla_{x} \boldsymbol{v} \equiv 0$ because

$$
\nabla_{x} \boldsymbol{v}=\nabla_{x} \frac{\partial \boldsymbol{x}}{\partial t}=\frac{\partial}{\partial x_{j}} \frac{\partial x_{i}}{\partial t}=\frac{\partial}{\partial t} \frac{\partial x_{i}}{\partial x_{j}}=\frac{\partial \delta_{i j}}{\partial t}=0
$$

is this true（hint：no）？What is wrong with this reasoning？
（ii）Throughout the course，we use the fact that $D_{t} \boldsymbol{x}=\boldsymbol{v}$ ．One may claim that there＇s a factor of 2 missing，since

$$
D_{t} \boldsymbol{x} \equiv \partial_{t} \boldsymbol{x}+\boldsymbol{v} \cdot \nabla_{\boldsymbol{x}} \boldsymbol{x}=\boldsymbol{v}+\boldsymbol{v} \boldsymbol{I}=2 \boldsymbol{v} .
$$

Is this true（hint：no）？What is wrong with this reasoning？

3 Invertibility of the deformation gradient

We use quite freely in class \boldsymbol{F}^{-1} and \boldsymbol{F}^{-T} and so on．What is the physical meaning of the assumption that \boldsymbol{F} is always an invertible matrix？

4 Spherical cavity

Consider a material that fills the whole space, except for a spherical cavity of initial radius Q, centered at the origin. At time $t=0$ an explosive is detonated in the cavity and its radius varies as some specified function $q(t)$, resulting in a sphero-symmetric motion. That is, the motion is given by

$$
\begin{aligned}
& \boldsymbol{x}(t)=\frac{r(t)}{R} \boldsymbol{X}=\frac{f(R, t)}{R} \boldsymbol{X}, \\
& r(t)=f(R, t)=|\boldsymbol{x}(R, t)|, \\
& R(\boldsymbol{X})=|\boldsymbol{X}| \\
& f(R=Q, t)=q(t) .
\end{aligned}
$$

(i) Show that the deformation gradient is given by

$$
\begin{equation*}
\boldsymbol{F}=\nabla_{\boldsymbol{X}} \boldsymbol{x}=\frac{\partial f}{\partial R} \hat{\boldsymbol{r}} \otimes \hat{\boldsymbol{r}}+\frac{f}{R}(\hat{\boldsymbol{\phi}} \otimes \hat{\boldsymbol{\phi}}+\hat{\boldsymbol{\theta}} \otimes \hat{\boldsymbol{\theta}}), \tag{1}
\end{equation*}
$$

where $\hat{\boldsymbol{r}}=R^{-1} \boldsymbol{X}=r^{-1} \boldsymbol{x}$, and $\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}$ are the spherical unit vectors.
Hints:

- For a spherically symmetric function $g(r), \nabla_{\boldsymbol{X}} g=\frac{\partial g}{\partial R} \hat{\boldsymbol{r}}$.
- $\boldsymbol{I}=\sum_{i} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{i}$ for any set $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ of orthonormal vectors.
(ii) If the motion is isochoric (volume-preserving), show that

$$
f(R, t)=\sqrt[3]{R^{3}+q(t)^{3}-Q^{3}} .
$$

You can show that either by using Eq.(1) to calculate the volume change, or by direct computation without going knowing the explicit form of \boldsymbol{F} (doing both is better!).
(iii) Calculate \boldsymbol{v}, expressed in terms of q and $\partial_{t} q(t)$.

5 Acceleration, stress and force fields

Solve these two unrelated questions:
(i) Consider the following velocity field \boldsymbol{v} in the Eulerian description:

$$
\begin{equation*}
\boldsymbol{v}=C e^{-a t}\left(x^{3}+x y^{2},-x^{2} y-y^{3}, 0\right)^{T}, \tag{2}
\end{equation*}
$$

where C and a are constants. Find the acceleration \boldsymbol{a} at point $(1,1,0)$ at time $t=0$
(ii) If the stress field is given by the matrix:

$$
\boldsymbol{\sigma}=C\left(\begin{array}{ccc}
x^{2} y & \left(a^{2}-y^{2}\right) x & 0 \tag{3}\\
\left(a^{2}-y^{2}\right) x & \frac{1}{3}\left(y^{2}-3 a^{2} y\right) & 0 \\
0 & 0 & 2 a z^{2}
\end{array}\right),
$$

find the body force field necessary for the stress field to be in equilibrium.

