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Thermo-Elasticity - Solution

Note

This HW set, especially the last question, summarizes the first part of the course, and demands
a working knowledge of linear elasticity. It also involves a small numeric calculation, allowing
you to practice solving a physical problem with computational tools. We consider it a “semi-
mid-term”, and it will be given a larger weight in the final grade than the other sets. You are
also given three weeks to complete it, so please start early and take it seriously.

1 Circular hole

Consider an infinite 2D material, from which a circular hole is taken out. The material is now heated
by some amount. Will the hole shrink or expand?

Solution
If a material is heated by ∆T and all its boundaries are free, then the displacement field

r → (1 + αT∆T
3

)r, a simple homogeneous dilation, is a solution of the equations. Intuitively,
this is so because αT is nothing but the thermal expansion coefficient. I urge you to plug this
solution into the equations and check that this is so: under the supposed deformation we have
ε = αT∆T

3
δij. Simply plug that it in Hooke’s law to get

σij = −KαT∆Tδij +K tr εδij + 2µ

(
εij −

1

3
tr εδij

)
= −KαT∆Tδij +KαT∆Tδij + 2µ

(
αT∆T

3
δij −

αT∆T

3
δij

)
= 0

(1)

Therefore, when heated and free of external forces, materials simply expand by homogeneous
dilation and everything will be stress free. The same goes for the hole - it will expand.

Another way to think about it - consider the piece of material that was taken out. If you heat
it by the same amount as the rest, it should fit perfectly.

2 Temperature and displacements

Consider a static infinite 3D material with a given arbitrary distribution of temperature T (x, y, z),
that decays at infinity: T (r⃗) → T∞, as |r⃗| → ∞. Before reading further it might by nice to try to
estimate: if the temperature variation is localized, how does the displacement field decay at large r?
And the strain field?
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Here’s a nice way to gain intuition as to what temperature gradients do in thermo-elasticity: Prove
that the displacement field is curl-free, i.e. is of the form u⃗ = ∇ϕ, and that ϕ satisfies Poisson’s
equation ∇2ϕ = T . Assuming you already have some intuition about electrostatics, this should help
you gain intuition about thermo-elasticity.

Guidance: Begin with Navier-Lamé equation (λ+ µ)∇ (∇ · u) + µ∇2u = Kα∇T . You can guess the correct form

for u, and if it works then you’re done because the solution is unique. Some vector-analysis identities might prove

useful.

Solution
Since the “driving force” for the deformation is ∇T , i.e. a curl-free vector field, it is very

reasonable to guess that u⃗ will also be curl-free. Otherwise this would mean that a chiral sym-
metry is broken. So we assume that u⃗ is curl-free, i.e. u = ∇ϕ. Before we plug that into the
Navier-Lamé equation, we use the identity ∇2A = ∇(∇ ·A)−∇× (∇×A). We get

Kα∇T = (λ+ µ)∇ (∇ · u) + µ∇2u = (λ+ 2µ)∇ (∇ · u)− µ∇×∇× u

We now plug in u = ∇ϕ, and the last term vanishes. We are left with

Kα∇T = (λ+ 2µ)∇
(
∇2ϕ

)
⇓

0 = ∇
[
KαT − (λ+ 2µ)∇2ϕ

]
.

This means that the term in brackets is constant, i.e. ϕ satisfies Poisson’s equation:

∇2ϕ =
Kα

λ+ 2µ
T + C .

We see that C is a meaningless constant that can be swallowed into T , and since anyhow the
only relevant feature of T is its gradient, we can safely set C = 0.

The solution of this equation you should be known from your undergrad. It is

ϕ(r) ∼
∫

T (r′)

|r − r′|
d3r′ .

If T (r) is localized, say a δ-function, then ϕ decays as r−1, u as r−2 and ε as r−3.

3 Thermally induced fracture

In 1993, Yuse & Sano published a remarkable paper regarding instabilities of thermally induced
fracture (Yuse & Sano, Nature (362) 1993). They consider a strip of material which is pulled out of
an oven at a constant velocity and cools down as it moves. The gradients of the temperature field
induce fracture, as is seen in Figure 1.

To model the phenomenon, consider an infinite (in the x direction) 2D strip of width 2b. The strip
is subject to a y-independent temperature distribution T (x), and is free of tractions at its boundaries
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Figure 1: Left: Thermally induced fracture (from the paper). Right: the simplified model. Note the
position of the origin of axes, and that the plot is not to scale: we assume L ≫ b.

y = ±b. Fracture will be considered later in this course. For now, we’ll limit ourselves to finding
an expression for the stretching component σyy along the strip’s symmetry axis y = 0. This is the
driving force that induces fracture.

(a) We begin by finding the temperature distribution. Write the heat diffusion equation in both the
material (X) and laboratory (x) coordinates, and solve it in the laboratory coordinates for our
problem. Assume that the cooler and the oven are strong enough such that T (x>0)=Tc, and
T (x<−L)=Th. Assume also that L is much larger than any other length scale of the system.
The heat diffusion constant D is of course given. Remember that you can always shift T by a
global constant to get a simpler expression.

Solution
In the material coordinates {X, Y, τ}, The diffusion equation is

∂τT = D

(
∂2

∂X2
+

∂2

∂Y 2

)
T

The change of variables from the material coordinates to the lab coordinates {x, y, t}, is
defined by

x = X + cτ, t = τ, y = Y ,

and we find that the differentiation operators transform as

∂

∂τ
=

∂t

∂τ

∂

∂t
+

∂x

∂τ

∂

∂x
+

∂y

∂τ

∂

∂y
=

∂

∂t
+ c

∂

∂x

∂

∂X
=

∂t

∂X

∂

∂t
+

∂x

∂X

∂

∂x
+

∂y

∂X

∂

∂y
=

∂

∂x

∂

∂Y
=

∂t

∂Y

∂

∂t
+

∂x

∂Y

∂

∂x
+

∂y

∂Y

∂

∂y
=

∂

∂y
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Therefore, the diffusion equation takes the form

∂tT = D∇2
xT − c ∂xT (2)

Assuming T is y-independent and the boundary conditions T (x = 0) = Tc, T (x = −L) = Th

the steady-state solution for −L ≤ x ≤ 0 is

T =

(
e

c
D
(L+x) − 1

)
Tc − e

cL
D

(
e

c
D
x − 1

)
Th

e
cL
D − 1

(3)

We now define the diffusive length d = D/c, and use the fact that L ≫ d to simplify the
above solution,

T ≈ Th + e
x
d (Tc − Th) . (4)

We set the zero of temperature at Tc, and denote ∆T ≡ Th−Tc. Incorporating the fact that
∆T = 0 for x > 0 we obtain the temperature distribution

T (x) = −∆T
(
1− e

x
d

)
Θ(−x) . (5)

Θ is Heaviside’s theta function. Note that we don’t care that T is not exactly constant for
x < −L, because the correction is roughly e−L/d, which we assume is a very small number.

(b) Show that the equations of plane-stress combined with static thermo-elasticity are

εxx =
1

E
[σxx − νσyy] +

1

3
αT∆T,

εyy =
1

E
[σyy − νσxx] +

1

3
αT∆T,

εxy =
1 + ν

E
σxy

(6)

Guidance: Start with the known Hooke’s law derived in class, σ(ε, T ) = λ tr(ε)I + 2µ ε − αKTI, invert it to the compliance form ε(σ, T ), and use the

relations between λ, µ,K to E, ν (which are summarized in a nice table in Wikipedia).

Solution
The thermo-elastic Hooke’s law was derived in class and it reads

σij = λ tr(ϵ)I + 2µεij − αKTI (7)

In what follows, we’d like to invert this relation, so we want to write everything in matrix
form. Also, in the end we’d like to have relations of the form ε(σ) (compliance form), so it
is more natural to work with ν and E, rather than µ and λ. Using the conversions between
µ, λ → E, ν, Eq. (7) is written as:

σxx + αKT
σyy + αKT
σzz + αKT

σxy

σxz

σyz

 =
E

(1 + ν)(1− 2ν)


1− ν ν ν
ν 1− ν ν
ν ν 1− ν

1− 2ν
1− 2ν

1− 2ν




εxx
εyy
εzz
εxy
εxz
εyz

 (8)
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Inverting, we get
εxx
εyy
εzz
εxy
εxz
εyz

 =
1

E


1 −ν −ν
−ν 1 −ν
−ν −ν 1

1 + ν
1 + ν

1 + ν




σxx

σyy

σzz

σxy

σxz

σyz

+
αT

3


1
1
1
0
0
0

 (9)

Where we used the fact K = E
3(1−2ν)

. The assumptions of plane stress are that σzz =σxz =
σyz=0. Thus, if we delete the 3rd, 5th and 6th rows of this equation, it reduces toεxx

εyy
εxy

 =
1

E

 1 −ν 0
−ν 1 0
0 0 1 + ν

σxx

σyy

σxy

+
αT

3

1
1
0

 , (10)

which is exactly the set of equations that we needed to derive. Exactly like the plane-
stress/plane-strain discussion we had in class, note that this compliance matrix is obtained
by deleting entries from the 3D compliance matrix (Eq. (9), but if we invert this relation in
its 2D form (setting for a moment T =0), we getσxx

σyy

σxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1− ν

εxx
εyy
εxy

 (11)

which cannot be obtained by deleting entries from the 3D stiffness matrix (Eq. (8)).

(c) Prove the compatibility relation

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

, (12)

and use it together with the definition of the Airy potential χ and Eqs. (6) to show that χ
satisfies the equation

∇2∇2χ = −1

3
EαT∇2T (13)

What is the symmetry of χ with respect to y? What are the boundary conditions that χ
satisfies?

Solution
The compatibility relation, Eq. (12), is a trivial identity that follows from the definition
ϵij ≡ 1

2
(∂iuj + ∂jui). If we substitute ϵij by Hookes law, Eq. (10), and then substitute σij by
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derivatives of χ we get

0 =
∂2εxx
∂y2

+
∂2εyy
∂x2

− 2
∂2εxy
∂x∂y

=
∂2

∂y2

(
σxx − νσyy

E
+

αTT

3

)
+

∂2

∂x2

(
σyy − νσxx

E
+

αTT

3

)
− 2

1 + ν

E

∂2

∂x∂y
σxy

∝ ∂2

∂y2
(∂yyχ− ν∂xxχ) +

∂2

∂x2
(∂xxχ− ν∂yyχ) + 2 (1 + ν)

∂2

∂y∂x
∂xyχ+

αTE

3
∇2T

= (∂4
y + 2∂xx∂yy + ∂4

x)χ+
αT

3
∇2T = ∇2∇2χ+

αTE

3
∇2T

(14)

(d) Solve Eq. (13) by Fourier transforming it in the x direction and imposing the boundary con-
ditions. Express σyy(x, y = 0) in an integral form. You should obtain an expression of the
form

σyy(x, y = 0) =

∫ ∞

−∞
T (x′)Ψ(x− x′)dx′ ≡ T ∗Ψ , (15)

where ∗ denotes convolution, and Ψ(x) is the convolution kernel, for which you should have a
closed expression (as an integral of something).

Solution
We need to solve Eq. (14) under the conditions

σyy|y=±b = σxy|y=±b = 0 . (16)

Fourier-transforming the equation with respect to x gives(
k4 − 2k2 ∂2

∂y2
+

∂4

∂y4

)
χ(k, y) = −Eαk2T̂ (k) (17)

A particular solution of this nonhomogeneous problem is clearly χ=−EαT (k)
k2

. The homo-
geneous equation admits four independent solutions: χ = e±ky, χ = ye±ky. Note that the
y-independence of T was used (and was crucial!). Because σyy = ∂xxχ is an even function of
y, χ must also be even in y. So we use even combinations of the solutions we found to get

χ(k, y) = A(k) cosh(ky) + yB(k) sinh(ky)− Eα

k2
T̂ (k) , (18)

The boundary conditions (16) translate to

∂xxχ|y=b = 0 ⇒ A cosh(kb) +Bb sinh(kb)− Eα
T̂ (k)

k2
= 0 , (19)

∂xyχ|y=b = 0 ⇒ Ak sinh(kb) +B sinh(kb) +Bbk cosh(kb) = 0 . (20)
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This is a set of linear equations which is solved by

A(k) = Eα
T̂ (k)

k2
2
bk cosh(bk) + sinh(bk)

2bk + sinh(2bk)︸ ︷︷ ︸
≡Φ̂(k)

= Eα
T̂ (k)

k2
Φ̂(k) (21)

B(k) = −2Eα
T̂ (k)

k

sinh(bk)

2bk + sinh(2bk)
(22)

Note the definition of Φ, the use of which will become clear immediately. σyy along the
symmetry line y = 0 is given by

σyy(x, y = 0) = ∂xxχ(x, y = 0) = F−1
{
−k2χ(k, y = 0)

}
= F−1

{
−k2

(
A(k)− EαT̂ (k)

k2

)}
= F−1

{
EαT̂ (k)

(
1− Φ̂(k)

)}
Where F−1 is the inverse Fourier transform. We now define Ψ̂(k) ≡ 1 − Φ̂(k) and use the
convolution theorem to finally obtain

σyy(x, y = 0) = F−1
{
EαT̂ (k)Ψ̂(k)

}
= EαT (x) ∗Ψ(x) (23)

where ∗ denotes convolution and Ψ(x) = 1
2π

∫
e−ikxΨ(k)dk.

In order to proceed, we non-dimensionalise our equations. We renormalize lengths by b, that
is, we define k̃ ≡ bk, x̃ ≡ x/b, and also σ̃ ≡ σ/E, T̃ ≡ αT/∆T . We thus obtain

Ψ̂(k̃) = 1− 2
k̃ cosh(k̃) + sinh(k̃)

2k̃ + sinh(2k̃)
(24)

Ψ(x̃) =

∫
e−ik̃x̃Ψ̂(k̃)

dk̃

2π
= δ(x̃)−

∫
2 cos

(
k̃x̃
) k̃ cosh(k̃) + sinh(k̃)

2k̃ + sinh(2k̃)

dk̃

2π︸ ︷︷ ︸
=Φ(x̃)

(25)

σ̃yy(x̃, y = 0) =
1

b
T̃ (x̃) ∗Ψ(x̃) =

1

b
T̃ (x̃) ∗ [δ(x̃)− Φ(x̃)] =

1

b
[T (x̃)− T (x̃) ∗ Φ(x̃)] (26)

In Eq. (25) the eik̃x̃ was replaced with cos(k̃x̃) since the integrand is even. Also, note that
since Ψ(x) has a δ-function singularity, the convolution is done by convolving with Φ and
subtracting T , as is shown in Eq. (26).

We see that Ψ(x̃) is a “universal” function that can be computed once, and then the stress
field resulting from an arbitrary temperature distribution can be obtained by convolving the
temperature with the kernel Ψ(x) (a different terminology would be that Ψ(x) is the Green’s
function of the problem).

Note also how useful is the non-dimensionalization: The kernel as a function of x̃ will not
change when b or D/c change. This will come in only through the temperature profile:

T (x̃) = T
(x
b

)
= ∆T

(
1− e

b
d
x̃
)
θ(−x) .

7



So the only numeric value we have to use is the dimensionless ratio b/d. Other than that,
all the functions can be pre-calculated.

A sanity check: if T (x) = const then σyy should be zero. According to Eq. (23), the stress will be

σyy ∝
∫

Ψ(x)dx ∝ Ψ̂(k = 0)

Indeed, it is easily seen that Ψ̂(k = 0) = 0.

(e) Calculate numerically σyy(x, y = 0) for three cases: b ≪ D/c (very narrow strip), b ≈ D/c
(intermediate) and b ≫ D/c (very wide strip). Is the scale of variation of σ determined by b or
by D/c?

Solution
The function Ψ(x) cannot be computed analytically. On the website there’s a Mathematica
notebook with very detailed explanations about the numerics. I also wrote a MATLAB
script that does the numerics, but without explanations. The results are shown in Fig. S1.
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Figure S1: The functions Ψ̂(k̃) and Φ(x̃) (one can’t really plot Ψ(x) as it contains a δ
function). Note that the width of Ψ(x̃) is roughly 1, or in other words, the width of Ψ(x)
is roughly b. The stress is numerically obtained by substracting T (x) from the convolution
T (x) ∗Ψ(x)

To obtain the solution for σyy, we need to convolve Ψ(x) with T (x). Note that the width of
T (x) is d, while the width of Ψ(x) is b. Therefore, for b ≫ d, T (x) essentially looks like a
step-function. So,

σyy(x, y = 0) =

∫ ∞

−∞
Ψ(y)T (x− y)dy ∝

∫ x

−∞
Ψ(y)dy

The numerical calculation of this integral is shown in Fig S2. Note the discontinuity at x = 0
which is due to the δ(x) term in Ψ. For b ≈ d and b ≪ d, one needs to numerically convolve.
The result is also shown in Fig S2. Note that the length scale of the stress variation is always
b – the width of the kernel – and not d.
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Figure S2: Numerical solution of σyy(x, y = 0) for various conditions. Note that the stress
increase as d/b decreases. This is because the stresses are roughly proportional to ∂x̃x̃T and
when b is small the derivative with respect to x̃ is large.

(f) BONUS: Try to solve (e) by guessing an ansatz of the form χ(x, y) = f(y)g(x) where g has the
same x-dependence as T (x). Plugging it into Eq. (13) should give you a differential equation
on f(y) which is solvable. The solution is drastically different from the one you obtained in
(e), but is an exact solution of Eq. (13) in the region x > 0. How do you resolve this apparent
contradiction?
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