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Thermo-Elasticity

Note

This HW set, especially the last question, summarizes the first part of the course, and demands
a working knowledge of linear elasticity. It also involves a small numeric calculation, allowing
you to practice solving a physical problem with computational tools. We consider it a “semi-
mid-term”, and it will be given a larger weight in the final grade than the other sets. You are
also given three weeks to complete it, so please start early and take it seriously.

1 Circular hole

Consider an infinite 2D material, from which a circular hole is taken out. The material is now heated
by some amount. Will the hole shrink or expand?

2 Temperature and displacements

Consider a static infinite 3D material with a given arbitrary distribution of temperature T (x, y, z),
that decays at infinity: T (r⃗) → T∞, as |r⃗| → ∞. Before reading further it might by nice to try to
estimate: if the temperature variation is localized, how does the displacement field decay at large r?
And the strain field?

Here’s a nice way to gain intuition as to what temperature gradients do in thermo-elasticity: Prove
that the displacement field is curl-free, i.e. is of the form u⃗ = ∇ϕ, and that ϕ satisfies Poisson’s
equation ∇2ϕ = T . Assuming you already have some intuition about electrostatics, this should help
you gain intuition about thermo-elasticity.

Guidance: Begin with Navier-Lamé equation (λ+ µ)∇ (∇ · u) + µ∇2u = Kα∇T . You can guess the correct form

for u, and if it works then you’re done because the solution is unique. Some vector-analysis identities might prove

useful.

3 Thermally induced fracture

In 1993, Yuse & Sano published a remarkable paper regarding instabilities of thermally induced
fracture (Yuse & Sano, Nature (362) 1993). They consider a strip of material which is pulled out of
an oven at a constant velocity and cools down as it moves. The gradients of the temperature field
induce fracture, as is seen in Figure 1.

To model the phenomenon, consider an infinite (in the x direction) 2D strip of width 2b. The strip
is subject to a y-independent temperature distribution T (x), and is free of tractions at its boundaries
y = ±b. Fracture will be considered later in this course. For now, we’ll limit ourselves to finding
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Figure 1: Left: Thermally induced fracture (from the paper). Right: the simplified model. Note the
position of the origin of axes, and that the plot is not to scale: we assume L ≫ b.

an expression for the stretching component σyy along the strip’s symmetry axis y = 0. This is the
driving force that induces fracture.

(a) We begin by finding the temperature distribution. Write the heat diffusion equation in both the
material (X) and laboratory (x) coordinates, and solve it in the laboratory coordinates for our
problem. Assume that the cooler and the oven are strong enough such that T (x>0)=Tc, and
T (x<−L)=Th. Assume also that L is much larger than any other length scale of the system.
The heat diffusion constant D is of course given. Remember that you can always shift T by a
global constant to get a simpler expression.

(b) Show that the equations of plane-stress combined with static thermo-elasticity are

εxx =
1

E
[σxx − νσyy] +

1

3
αT∆T,

εyy =
1

E
[σyy − νσxx] +

1

3
αT∆T,

εxy =
1 + ν

E
σxy

(1)

Guidance: Start with the known Hooke’s law derived in class, σ(ε, T ) = λ tr(ε)I + 2µ ε − αKTI, invert it to the compliance form ε(σ, T ), and use the

relations between λ, µ,K to E, ν (which are summarized in a nice table in Wikipedia).

(c) Prove the compatibility relation

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

, (2)

and use it together with the definition of the Airy potential χ and Eqs. (1) to show that χ
satisfies the equation

∇2∇2χ = −1

3
EαT∇2T (3)

What is the symmetry of χ with respect to y? What are the boundary conditions that χ
satisfies?
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(d) Solve Eq. (3) by Fourier transforming it in the x direction and imposing the boundary conditions.
Express σyy(x, y = 0) in an integral form. You should obtain an expression of the form

σyy(x, y = 0) =

∫ ∞

−∞
T (x′)Ψ(x− x′)dx′ ≡ T ∗Ψ , (4)

where ∗ denotes convolution, and Ψ(x) is the convolution kernel, for which you should have a
closed expression (as an integral of something).

(e) Calculate numerically σyy(x, y = 0) for three cases: b ≪ D/c (very narrow strip), b ≈ D/c
(intermediate) and b ≫ D/c (very wide strip). Is the scale of variation of σ determined by b or
by D/c?

(f) BONUS: Try to solve (e) by guessing an ansatz of the form χ(x, y) = f(y)g(x) where g has the
same x-dependence as T (x). Plugging it into Eq. (3) should give you a differential equation
on f(y) which is solvable. The solution is drastically different from the one you obtained in
(e), but is an exact solution of Eq. (3) in the region x > 0. How do you resolve this apparent
contradiction?
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