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Visco-Elasticity - Solution

1 Standard linear solid

Consider the one-dimensional Standard-Linear-Solid (SLS) model, described in the left panel of the
Fig. below. In this exercise we will explore its visco-elastic properties in much the same way that
we did in class for the Maxwell and Kelvin-Voigt models.

(a) The SLS model (b) The alternative model

Figure 1:

(i) Calculate GSLS(t) and JSLS(t).

Solution
We’ll denote the stresses in the upper and lower branches of Fig. 1(a) by σ1, σ2. The upper
branch is easy - we know that σ1(t) = E1ε(t). In the lower branch, the spring and dashpot
E2, η will behave like a Maxwell material. Let’s denote the strain of the spring by x and
that of the dashpot by y. Then

ẋ(t) + ẏ(t) = ε̇(t) , (1)

ẋ(t) =
σ̇2(t)

E2

, ẏ =
σ2

η
, (2)

σ = σ1 + σ2 ⇒ σ2 = σ − E1ε , (3)

σ2 = η ẏ(t) = η (ε̇(t)− ẋ) = η

(
ε̇(t)− σ̇2(t)

E2

)
. (4)

Plugging the expressions for ẋ, ẏ, σ2 in (??) gives

ε̇ =
σ̇2

E2

+
σ2

η
=

σ̇ − E1ε̇

E2

+
σ − E1ε

η
. (5)

This is more elegantly written as(
1 +

E1

E2

)
ε̇+

E1

η
ε =

1

E2

σ̇ +
1

η
σ . (6)
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This is the basic relation we work with. Suppose we impose a step strain ε(t) = ε0H(t).
For t > 0 we have ε̇ = 0, and therefore the relation reads τG σ̇ + σ = E1ε0, where τG ≡ η

E2
.

This is easily solved, and the initial condition is σ(0) = (E2 +E2)ε0, because at short time
scales the dashpot is passive. The result is

G(t) =
σ(t)

ε0
= E1 + E2 e−t/τG . (7)

Also, if you don’t like the way I “guessed” the initial conditions (although you should
be able to guess so yourselves) you can instead solve the full equation, by setting ε =
ε0H(t), ε̇ = ε0δ(t):

τG σ̇ + σ = E1ε0H(t) + η

(
1 +

E1

E2

)
ε0δ(t) , (8)

with the initial condition σ(t ≤ 0) = 0.

On the other hand, if we impose a step stress σ(t) = σ0H(t), then Eq. (??) reduces to (for
t > 0)

τJε̇+ ε =
σ0

E1

, (9)

with τJ = η
(

1
E1

+ 1
E2

)
= τG + η

E1
. As before, the initial condition is ε(0) = σ0

E1+E2
and is

obtained by neglecting the dashpot’s compliance. The solution is

J(t) =
ε(t)

σ0

=
1

E1

−
(

1

E1

− 1

E1 + E2

)
e−t/τJ . (10)

Note that both G and J should be multiplied by a step function, as they both obviously
vanish for negative arguments. I didn’t write the step function in the above but you should
know that it is always there.

There is also a different, more general, way to calculate G(t), somewhat analogous to
Kirchoff’s law for electrical circuits. The total stress in the material is the sum of the
stresses in both branches, and the strain is the same for both branches. Therefore, G(t) is
given by the sum of the G’s for each branch: for top branch it’s purely elastic (i.e. G = E1)
and for the bottom branch it’s a Maxwell material (i.e. G = E2e

−t/tG). Having obtained
G(t), J(t) can be calculated from G by using the Laplace-transform identity of Q2.

(ii) Calculate G∗(ω). Find the effective Young’s modulus for very short and very long time scales.
Denote these quantities by E0 and E∞, respectively. Check that your finding agrees with the
proper limits of the results of Q1(i). (writing J and G in terms of E0 and E∞ might prove to
be more elegant than with E1 and E2).

Solution

2



We denote ω̃ ≡ ωτG. From the definition of G∗(ω):

G∗(ω) = iω

∫ ∞

0

G(t)e−iωtdt = iω

∫ ∞

0

[
E1 e−iωt + E2 e−(iω+1/τG)t

]
dt

= iω

(
E1

iω
+

E2

iω + 1/τG

)
= E1 + E2

iω̃

1 + iω̃

= E1 + E2
ω̃2

1 + ω̃2︸ ︷︷ ︸
G′

+i E2
ω̃

1 + ω̃2︸ ︷︷ ︸
G′′

.

(11)

For ω̃ → 0 we have G∗ = E∞ ≡ E1 and for ω̃ → ∞ we have G∗ = E0 ≡ E1 + E2. Note
that with this notation we can rewrite J and G as

G(t) = E∞ − (E∞ − E0)e
−t/τG , J(t) = E−1

∞ −
(
E−1

∞ − E−1
0

)
e−t/τJ . (12)

(iii) QUALITATIVE QUESTION: Plot the loss and storage moduli G′(ω) and G′′(ω) on a logarithmic
ω scale for the case E1 = E2. If you were to transfer waves through an SLS material, which
frequencies would be transmitted and which attenuated?

Solution
As I try to stress time and again in this course, it is always a good habit to work in
dimensionless units, and especially to plot things in dimensionless units. What is the
natural time unit of ω that we need to use? There’s a single time scale in G(t) (or G∗(ω))
which is τG. So we’ll plot everything in as a function of the dimensionless quantity ωτG.
For non-dimensionalising G you can choose E1, E2, E0 or E∞, all of which make sense.
Here I chose E∞. Also, in this case it makes much more sense to plot the frequency in a
logarithmic axis.

1

2

G′ is plotted in blue and G′′ in yellow. It is seen that the loss modulus is non negligible only
for ωτG ≈ 1, so these are the frequencies that will be attenuated, and other frequencies,
either much faster or much slower, will be transmitted.
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(iv) Calculate ε(t) when the stress increases from 0 to σ0 over a time scale T . To make things
concrete, take the stress to be

σ(t) =

{
0 t < 0

σ0

(
1− e−t/T

)
t > 0

.

For simplicity, also set E1 = E2. Plot ε(t) for the cases that T is (i) much larger than, (ii)
much smaller than, and (iii) roughly equal to the relevant internal time-scale of the system (for

the two extreme cases you should know the answer without any further algebra!).

Solution
As always, one should start by non-dimensionalising the equations, and finding the impor-
tant dimensionless quantities. Since here we have a step stress it seems reasonable that τJ
will be the relevant time scale. Defining t̃ = t/τJ, α = τJ/T , Ẽi = Ei/E∞ and ε̃ = E∞

σ0
ε we

have

ε(t) =

∫ t

−∞
J(t− t′)σ̇(t′)dt′

=

∫ t

0

[
1

E∞
−

(
1

E∞
− 1

E0

)
e−(t−t′)/τJ

]
σ0

T
e−t′/Tdt′ ,

(13)

ε̃(t̃) = α

∫ t̃

0

[
1−

(
1− 1

Ẽ0

)
e−(t̃−t̃′)

]
e−αt̃′dt̃′ . (14)

I hope you see how simpler everything is when non-dimensional units are used. The integral
is trivial, and the result is

ε̃(t̃) = 1 +
α(Ẽ0 − 1)

(1− α)Ẽ0

e−t̃ +
α− Ẽ0

(1− α)Ẽ0

e−αt̃ . (15)

Sanity check: for all α, in the limit t̃ → ∞, we have ε̃ → 1, or in other words ε → σ0/E∞,
which is exactly as we (should) expect. In the opposite limit t̃ → 0 we have ε → 0, which
is also what we expect.

Now for numerical results: In our case we have E1 = E2 and thus Ẽ0 = 2. For α ≪ 1 (very
slow loading) we expect the dynamics to be quasi-static. That is, the strain should be given
by ε(t) = σ(t)/E∞. For α ≫ 1 (very fast loading) we effectively have σ = σ0H(t) and we
therefore expect to have ε = σ0J(t̃). Both these predictions are numerically verified:
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ε̃(t̃) is plotted in solid green, J(t̃)/E∞ in red and σ(t̃)/σ0 in blue. Note that J(t̃) does not
depend on α but σ(t̃) does.

(v) Consider an alternative model, defined in Fig. 1(b). Show that it is exactly equivalent to the
SLS model, but with renormalized visco-elastic constants. That is, show that one can choose
Ẽ1, Ẽ2, η̃ so that this model will have the same rheological properties as the SLS model with
parameters E1, E2, η.

Solution
Following the same procedure as before, we’ll denote the strain of the spring E1 by ε1, the
strain of the Kelvin-Voigt module by ε2, and the stresses in the spring and dashpot of the
KV module by x, y respectively. We have

ε1 =
σ

E1

, (16)

x = E2ε2, y = ηε̇2 , (17)

ε = ε1 + ε2 ⇒ ε2 = ε− σ

E1

, (18)

σ = x+ y = E2ε2 + ηε̇2 = E2

(
ε− σ

E1

)
+ η

(
ε̇− σ̇

E1

)
. (19)

Reorganizing the equation gives

ε̇+
E2

η
ε =

1

E1

σ̇ +

(
1 + E2

E1

)
η

σ . (20)

analogously to the Kirchoff law for the original SLS, here we have components attached in
a series and therefore, their J ’s should be additive. One is a spring, for which J = E1H(t),
and the other is a KV material for which J = E−1

2

(
1− e−E2t/η

)
. We therefore have

J = E−1
1 + E−1

2

(
1− e−E2t/η

)
.

The substitution E1 → E1 + E2, E2 → E1

E2
(E1 + E2) and η → η

(
1 + E1

E2

)2

makes this

equation coincide with Eq. (??). Since each of J or G carries all the information, it is
sufficient to show that the J coincide.

(vi) QUALITATIVE QUESTION: The name “SLS” model suggests that it describes a solid. What is
the basic property of solids that the SLS model possess but that Maxwell model doesn’t? And
what is the problem with Kelvin-Voigt model?
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Solution
The Maxwell model cannot statically hold stresses. That is, it has no elastic response at
long time scales. The Kelvin-Voigt model does not feature an elastic response at short time
scales. The SLS model features an elastic response at both limits, and shows dissipation
in the intermediate scales.

2 Creep compliance and stress relaxation moduli

Prove the general identity ∫ t

0

G(t− t′)J(t′)dt′ = t , (21)

and verify it explicitly for the KV and M models. Hint: Laplace transform.

Solution
For a function f(t), we’ll denote f̂(s) = L{f} =

∫∞
0

f(t)e−stdt. We’ll define

χ(t) ≡
∫ t

0

G(t− t′)J(t′)dt′ =

∫ ∞

−∞
G(t− t′)J(t′)dt′ .

One can integrate for all t because both J(t) and G(t) vanish for negative t. Then from the
properties of the Laplace transform, we know that χ̂(s) = Ĝ(s)Ĵ(s). But recall that G(t) is
defined by the equation

σ(t) =

∫ t

−∞
G(t− t′)ε̇(t′)dt′ . (22)

If we choose ε(t ≤ 0) = σ(t ≤ 0) = 0, this definition is exactly the truncated convolution that one
needs for the Laplace transform. So we have σ̂ = Ĝ · L{ε̇(t)} = Ĝ(s)·sε̂(s). Similarly, ε̂ = Ĵ · sσ̂.
Isolating Ĵ and Ĝ and plugging in the equation for χ, we get

χ̂(s) = Ĝ(s)Ĵ(s) =

(
σ̂

sε̂

)(
ε̂

sσ̂

)
=

1

s2
. (23)

Note that s−2 = L{t}, and thus the identity is proven.

3 Stored elastic energy

Define Wsto as the elastic energy stored in a quarter of an oscillatory cycle. Recall the definition of
the phase δ (Eqs. (9.39)-(9.40) in Eran’s lecture notes) and show that

Wdis

Wsto

∼ tan δ . (24)
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Solution
The total power, P tot, invested by the loading is calculated from

ε̇(t) = R
{
iωε0e

iωt
}
= −ωε0 sinωt , (25)

σ(t) = R
{
|G∗|eiδε0eiωt

}
= |G∗|ε0 cos(ωt+ δ) , (26)

P tot = σ : ε̇ = −ε20ω|G∗| sin(ωt) cos(ωt+ δ) , (27)

The energy invested after at time t is thus

E =

∫ t

0

P tot(t)dt =

∫ t

0

−ε20ω|G∗| sin(ωt) cos(ωt+ δ)dt

= −ε20ω|G∗|
2

[ωt sin(δ) + sin(ωt) sin(ωt+ δ)] .

(28)

The first term is a linear function of t, which we already identified in class as the dissipative part.
The second term is therefore the stored part. For a quarter cycle, ωt = π/2, we the ratio between
them is

π
2
sin δ

sin
(
π
2

)
sin

(
π
2
+ δ

) =
π

2

sin δ

cos δ
=

π

2
tan δ . (29)

4 Distribution of relaxation times

For some systems which exhibit a wide distribution of relaxation times the stress relaxation modulus
can be written as a weighted sum of exponential decays with different decay rates:

G(t) =

∫
τ

f(τ)e−
t
τ dτ , (30)

where f(τ) is the relaxation times distribution function. If the relaxation times depend on some
energy barrier ∆, this can be written as

G(t) = G0

∫
∆

P (∆)e−
t

τ(∆)d∆ , (31)

where P is the energy barrier distribution function. When the transitions are thermally–activated
and the energy barriers are much larger than the thermal energy scale (∆ ≫ kBT ) the rate of escape
times varies exponentially with the barrier height:

τ(∆) ≃ τ0e
∆

kBT . (32)

This is a fundamental result, derived by Arrhenius (1889, for chemical reactions) Eyring (1935) and

Kramers (1940, for Brownian motion under an external potential) and the factor e
∆

kBT is usually
termed “Arrhenius factor” or “rate factor”.

(i) Assume that ∆ is uniformly distributed between ∆min and ∆max, and calculate G(t). Express
your answer using rate variable ν(∆) ≡ 1/τ(∆). You might find that the exponential integral
function, E1(x) ≡

∫∞
1

e−xy

y
dy, is useful.
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Solution
Defining ν0 = 1/τ0 we have

ν(∆) =
1

τ(∆)
= ν0e

− ∆
kT , (33)

dν = −ν(∆)

kT
d∆ . (34)

Also, we know that P (∆) = 1
∆max−∆min

for ∆min ≤ ∆ ≤ ∆max and it vanishes elsewhere.
Therefore,

G(t) =
G0

∆max −∆min

∫ ∆max

∆min

e−ν(∆)td∆ (35)

= −G̃0

∫ νmax

νmin

e−νt

ν
dν = −G̃0

(∫ ∞

νmin

−
∫ ∞

νmax

)
e−νt

ν
dν (36)

= G̃0 [E1(νmaxt)− E1(νmint)] , (37)

where we defined G̃0 ≡ G0
kT

∆max−∆min
.

(ii) Choose νmin ≡ ν(∆min) and νmax ≡ ν(∆max) to be well separated and plot G(t). What is
special about this result? How does it differ from standard relaxation?

Solution
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Figure S1: G(t)/G̃0 (in blue) and −γ − log(νmaxt) (in red). I chose νmin = 102 and
νmax = 10−2. Time axis is logarithmic.

This is fundamentally different from (and much slower than) usual relaxation because the
relaxation is logarithmic in time.

(iii) Obtain an analytic expression (you are allowed to be wrong by an additive constant) for G(t)
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for an intermediate asymptotic regime, ν−1
min ≪ t ≪ ν−1

max. This is a simple mathematical model
for slow/glassy relaxation emerging from a broad distribution of relaxation times (activation
barriers in this case).
For the interested, such a model has been proposed already by Primak, Phys. Rev. 100, 1677
(1955), and later on by Kimmel and Uhlmann, J. Appl. Phys. 40, 4254 (1969). This model
has been revisited by Ariel Amir, Yuval Oreg and Joe Imry from the institute. See for example
Amir, Oreg and Imry, PNAS 109, 1850–1855 (2012).

Solution
Since obviously lim

x→∞
E1(x) = 0, and since νmint ≫ 1, we can neglect the term E1(νmint).

The Taylor series of E1(x) is given by E1(x) = −γ − log(x) + O(x), where γ is the Euler-
Mascheroni constant, and we therefore have

G(t)

G̃0

≈ −γ − log (νmaxt) . (38)

Comment: If you don’t know the Taylor expansion of E1(x), you can do it yourself. Defining
u = xy, we have du

u
= dy

y
and

E1(x) =

∫ ∞

1

e−xy dy

y
=

∫ ∞

x

e−udu

u
=

∫ ∞

1

e−u

u
du+

∫ 1

x

e−u

u
du =

E1(1) +

∫ 1

x

e−u

u
du = E1(1) +

∫ 1

x

1

u
du−

∞∑
n=0

(−1)n

(n+ 1)!

∫ 1

x

undu

= E1(1)− log(x) +
∞∑
n=1

(−1)n (1− xn)

nn!

= E1(1) +
∞∑
n=1

(−1)n

n n!
− log(x)−

∞∑
n=1

(−1)nxn

n n!
.

(39)

So we see that indeed we have the − log(x) term, and then an infinite polynomial which
we may neglect at small x. We are left with showing that

E1(1) +
∞∑
n=1

(−1)n

n n!
= −γ , (40)

which is true according to Mathematica, and you may can try to achieve from any of the
identities regarding this constant. There are all kind of identities regarding the connection
between the E1 and Γ functions of all kinds of sorts, knock yourself out. You can find more
details in chapter 13.6 in Arfken’s ”Mathematical methods for physicists”
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