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Visco-Elasticity

1 Standard linear solid

Consider the one-dimensional Standard-Linear-Solid (SLS) model, described in the left panel of the
Fig. below. In this exercise we will explore its visco-elastic properties in much the same way that
we did in class for the Maxwell and Kelvin-Voigt models.

(a) The SLS model (b) The alternative model

Figure 1:

(i) Calculate GSLS(t) and JSLS(t).

(ii) Calculate G∗(ω). Find the effective Young’s modulus for very short and very long time scales.
Denote these quantities by E0 and E∞, respectively. Check that your finding agrees with the
proper limits of the results of Q1(i). (writing J and G in terms of E0 and E∞ might prove to
be more elegant than with E1 and E2).

(iii) QUALITATIVE QUESTION: Plot the loss and storage moduli G′(ω) and G′′(ω) on a logarithmic
ω scale for the case E1 = E2. If you were to transfer waves through an SLS material, which
frequencies would be transmitted and which attenuated?

(iv) Calculate ε(t) when the stress increases from 0 to σ0 over a time scale T . To make things
concrete, take the stress to be

σ(t) =

{
0 t < 0

σ0

(
1− e−t/T

)
t > 0

.

For simplicity, also set E1 = E2. Plot ε(t) for the cases that T is (i) much larger than, (ii)
much smaller than, and (iii) roughly equal to the relevant internal time-scale of the system (for

the two extreme cases you should know the answer without any further algebra!).

(v) Consider an alternative model, defined in Fig. 1(b). Show that it is exactly equivalent to the
SLS model, but with renormalized visco-elastic constants. That is, show that one can choose
Ẽ1, Ẽ2, η̃ so that this model will have the same rheological properties as the SLS model with
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parameters E1, E2, η.

(vi) QUALITATIVE QUESTION: The name “SLS” model suggests that it describes a solid. What is
the basic property of solids that the SLS model possess but that Maxwell model doesn’t? And
what is the problem with Kelvin-Voigt model?

2 Creep compliance and stress relaxation moduli

Prove the general identity ∫ t

0

G(t− t′)J(t′)dt′ = t , (1)

and verify it explicitly for the KV and M models. Hint: Laplace transform.

3 Stored elastic energy

Define Wsto as the elastic energy stored in a quarter of an oscillatory cycle. Recall the definition of
the phase δ (Eqs. (9.39)-(9.40) in Eran’s lecture notes) and show that

Wdis

Wsto

∼ tan δ . (2)

4 Distribution of relaxation times

For some systems which exhibit a wide distribution of relaxation times the stress relaxation modulus
can be written as a weighted sum of exponential decays with different decay rates:

G(t) =

∫
τ

f(τ)e−
t
τ dτ , (3)

where f(τ) is the relaxation times distribution function. If the relaxation times depend on some
energy barrier ∆, this can be written as

G(t) = G0

∫
∆

P (∆)e−
t

τ(∆)d∆ , (4)

where P is the energy barrier distribution function. When the transitions are thermally–activated
and the energy barriers are much larger than the thermal energy scale (∆ ≫ kBT ) the rate of escape
times varies exponentially with the barrier height:

τ(∆) ≃ τ0e
∆

kBT . (5)

This is a fundamental result, derived by Arrhenius (1889, for chemical reactions) Eyring (1935) and

Kramers (1940, for Brownian motion under an external potential) and the factor e
∆

kBT is usually
termed “Arrhenius factor” or “rate factor”.
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(i) Assume that ∆ is uniformly distributed between ∆min and ∆max, and calculate G(t). Express
your answer using rate variable ν(∆) ≡ 1/τ(∆). You might find that the exponential integral
function, E1(x) ≡

∫∞
1

e−xy

y
dy, is useful.

(ii) Choose νmin ≡ ν(∆min) and νmax ≡ ν(∆max) to be well separated and plot G(t). What is
special about this result? How does it differ from standard relaxation?

(iii) Obtain an analytic expression (you are allowed to be wrong by an additive constant) for G(t)
for an intermediate asymptotic regime, ν−1

min ≪ t ≪ ν−1
max. This is a simple mathematical model

for slow/glassy relaxation emerging from a broad distribution of relaxation times (activation
barriers in this case).
For the interested, such a model has been proposed already by Primak, Phys. Rev. 100, 1677
(1955), and later on by Kimmel and Uhlmann, J. Appl. Phys. 40, 4254 (1969). This model
has been revisited by Ariel Amir, Yuval Oreg and Joe Imry from the institute. See for example
Amir, Oreg and Imry, PNAS 109, 1850–1855 (2012).
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