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Plasticity - Solution

1. An incompressible elastic-perfect-plastic cylindrical rod, of Young’s modulus E, yield stress σY ≪
E, length L and cross section A is compressed/pulled under uniaxial stress along its axis until its
length is multiplied by a factor λ. How much work did the external loading preform? How much
of it was dissipated? Work in the regime that |λ− 1| ≪ 1, but plastic deformation does occur.

Solution
The work done by the loading is∫

F (x)dx = A

∫
σzzd(ϵzzL) = AL

∫
σzzdϵzz .

This is simply the volume AL times the area under the stress-strain curve:

Stress-strain for elastic-perfect plastic material. The dashed purple line is an unloading curve.

It has two contributions: the elastic part (blueish in the figure) equals 1
2
σY ϵY = σ2

Y /2E and
the plastic part (brownish in the figure) equals (ϵ− ϵY )σY . Of course, we need to use ϵ=λ−1.
All the plastic part is dissipated, and all the elastic part is stored.

In the next question we will need to use the rest-length of the unloaded rod. Upon unloading,
the response is elastic, and therefore the slope of the stress-strain curve is again E, as shown
in the above figure (dashed purple line). The residual plastic strain upon unloading would
therefore be ϵ = ϵul − σY /E where ϵul is the strain at which the unloading began. The new
rest length will therefore be L(1 + ϵul − σY /E).

Note that we don’t take into account the fact that the area A changes during defor-
mation. This change will be first-order (A ∼ A(t = 0)(1 − 2νϵzz) and since all the
strains/stresses/energies/everything is already at least first order, this contribution is of a
higher order and should be neglected. This is generally true for all linear problems, like
we stressed many times in the course.

2. Consider the setting shown in Fig 1a: three elastic-perfect-plastic rods with cross sectional area
A are connected with pins that can transfer only axial forces but no torques, and a vertical force
F is exerted on them. The top pins are held at fixed positions to the ceiling (but not at a fixed
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angle). All rods have Young’s modulus E and yield stress σY ≪ E. When F = 0 the system is
stress-free. Assume small deformations.

(a) Three rod setup (b) Bonus question setup

Figure 1: n-rods setup.

(a) Denote the vertical displacement of the loading point by ∆. Calculate and plot ∆(F ) (choose
some values for the parameters you need). What is the maximal force FE for which the
response is elastic? What is the maximal force FU that can be applied?

Solution
We begin by calculating the elastic solution. Let’s denote the middle bar by 1 and the
side bars by 2. We’ll also denote the initial rest-lengths of the bars by L0

1, L
0
2, and thus

the force exerted by each bear is given by |Fi| = EA
Li−L0

i

L0
i

. For the middle bar, this is
easy:

F1 = EA
∆

L0
1

. (1)

For the side bars, we need to use

L2(∆) =
√

(L0
2 cos θ +∆)2 + (L0

2 sin θ)
2 = L0

2 +∆cos θ +O(∆2) (2)

F2(∆) = EA
∆

L0
2

cos θ = EA
∆

L0
1

cos2 θ (3)

Again, note that F is (obviously) linear in ∆, so for all calculations we don’t need to take
into account the change in θ, because this will give a contribution of order ∆2. The total
force is given by

F (∆) = F1 + 2F2 cos θ = EA
∆

L0
1

(
1 + 2 cos3 θ

)
∆(F ) = L0

1

F

EA (1 + 2 cos3 θ)
.

(4)

Avoiding direct reference to the rest-length, we can write (4) as

F1 = F
1

1 + 2 cos3 θ
F2 = F

cos2 θ

1 + 2 cos3 θ
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The stress (∝ force) in the middle bar is larger, and therefore the system will yield when
F1 ≥ AσY . That is, the response will be elastic as long as

F ≤ FE ≡ σYA(1 + 2 cos3 θ)

∆ ≤ ∆E ≡ σY

E
L0
1 = ϵYL

0
1 ,

where we introduced the notation ϵY ≡ σY /E. For F > FE the stress in the middle
bar equals σY and the force is thus σYA. Static considerations still tell us that F =
F1 + 2F2 cos θ, which means

F2 =
F − F1

2 cos θ
=

F − σYA

2 cos θ
. (5)

Of course, this holds only as long as this value is lower than σYA. Otherwise, the other
beams yield too. This occurs when

F = FU ≡ σYA(1 + 2 cos θ) , ∆ = ∆U ≡ ∆E

cos2 θ
. (6)

FU is the ultimate possible force that can be exerted on the system.

DE DE �cos2Θ

FU

F
HDL

When ∆E ≤ ∆ ≤ ∆U , the elastic deformation of the outer rods constrains the plastic
deformation of the middle one. When ∆>∆U , the outer ones yield too, and the motion
is unconstrained.

(b) Calculate the residual strains and stresses if the force is removed after the displacement was
∆.

Solution
Imagine that after we unload the system, we disconnect the rods. What would be their
new rest-lengths? If ∆ < ∆E, clearly there are no residual stresses/strains. If ∆E ≤
∆ ≤ ∆U then the outer beams responded elastically, and therefore their rest-lengths did
not change. Using the answer to Q1, the new rest-length of the middle beam, which we
denote by L̃0

1, is

L̃0
1 = L0

1(1 + ϵul − ϵY ) = L0
1

(
1 +

∆

L0
1

− ϵY

)
= L0

1 +∆−∆E (7)
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Let’s denote the residual displacement of the loading point by δ. We assume that during
the unloading everything is elastic and does not re-enter the plastic regime (we will check
this assumption a posteriori). We need to find the value δ such that the system will be in
mechanical equilibrium. The length of the middle rod in equilibrium is δ + L0

1 and thus
the force it exerts is

F1 = EA
L0
1 + δ − L̃0

1

L0
1

= EA
δ − (∆−∆E)

L0
1

.

The outer rods are simply elastic, so it follows Eq. (3):

F2 = EA
δ

L0
1

cos2 θ .

Note that we expect F1 to be negative (compression) and F2 to be positive (extension).
That is, we expect to find 0≤δ≤(∆−∆E). We seek a static solution, i.e. F1+2F2 cos θ =
0, which is solved for δ:

δ =
∆−∆E

1 + 2 cos3 θ
. (8)

We see that our expectations were fulfilled. From this the stresses and strains are easily
calculated:

F1 =
EA

L0
1

(
∆−∆E

1 + 2 cos3 θ
− (∆−∆E)

)
= −EA

L0
1

(∆−∆E)
2 cos3 θ

1 + 2 cos3 θ
,

F2 =
EA

L0
1

(∆−∆E)
cos2 θ

1 + 2 cos3 θ
.

Is this solution elastic? For the stress in rod 1 to be plastic we need to have|F1| > σYA.
Plugging that into the expression for F1 and solving for ∆ gives

∆ > ∆E
1 + 4 cos3 θ

2 cos3 θ
(9)

However, simple algebra shows that it is impossible to satisfy this condition while re-
specting the assumption ∆ < ∆U (cf. Eq. (6)). That is, this solution is always elastic as
far as F1 is concerned. Similar analysis shows that F2 cannot be plastic neither.

Now consider the case that we stretched the material to the ultimate force, i.e. ∆ ≥ ∆U .
In this case all rods have changed their rest-lengths. The middle rod’s rest-length is still
given by (7). From Eq. (2) we understand that the strain of the outer rods is ϵ = ∆

L0
2
cos θ

and therefore their rest-length upon unloading will be

L̃0
2 = L0

2

(
1 +

∆

L0
2

cos θ − ϵY

)
. (10)

The forces in the rods after unloading are thus given by

F1 = EA
δ − (∆−∆E)

L0
1

,

F2 = EA
L2 − L̃0

2

L0
2

= EA
L0
2 + δ cos θ − L0

2

(
1 + ∆

L0
2
cos θ − ϵY

)
L0
2

= EA
cos2 θ(δ −∆) +∆E

L0
1

.
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As before, solving F1 + 2F2 cos θ = 0 for δ we obtain

δ = ∆−∆E
1 + 2 cos θ

1 + 2 cos3 θ
. (11)

Plugging this back in to calculate the forces, we get

F1 = −σYA
2 sin2(θ) cos(θ)

2 cos3(θ) + 1
F2 = σYA

2 sin2(θ)

2 cos3(θ) + 1
(12)

Simple algebra again shows that |F1/A| and |F2/A| are smaller than σY so the assumption
that everything was elastic is OK. Note that the residual stresses are independent of ∆
but the residual strains are not. Does this surprise you?

(c) Suppose no force is applied, but the temperature is increased (or decreased) by ∆T . Calculate
the minimal temperature difference ∆TE that causes plastic deformation (assume αT , σY , E
are T -independent).

Solution
Following the same philosophy, the rest-lengths of the rods are now

L̃0
1 = L0

1

(
1 +

αT

3
∆T

)
L̃0
2 = L0

2

(
1 +

αT

3
∆T

)
=

L̃0
1

cos θ
(13)

If the displacement of the bottom point is δ, then the forces are

F1 = EA
(L0

1 + δ)− L0
1

(
1 + αT

3
∆T

)
L0
1

= EA
δ − L0

1
αT∆T

3

L0
1

F2 = EA
(L0

2 + δ cos θ)− L0
2

(
1 + αT

3
∆T

)
L0
2

= EA
δ cos θ − L0

2
αT

3
∆T

L0
2

= EA
δ cos2 θ − L0

1
αT

3
∆T

L0
1

.

(14)

Again, we solve for equilibrium F1 + 2F2 cos θ = 0 to get

δ = L0
1

αT∆T

3

(
1 + 2 cos θ

1 + 2 cos3 θ

)
(15)

Plugging this solution back in the expressions for the forces, we get that

F1 = −2 cos(θ)F2 F2 = −αT∆T

3
EA

sin2(θ)

2 cos3(θ) + 1
(16)
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One sees that we need to divide to two cases. If θ < 60◦ then |F1| > |F2| so the middle
rod will yield first. Solving the above equation with F1 = AσY for ∆T , we obtains

∆T =
3

αT

σY

E

1 + 2 cos3(θ)

2 sin2 θ cos θ
(17)

Note that this diverges when θ → 0, do you understand why?

If θ > 60◦ then you need to solve F2 = σYA. From (16) it’s clear that you get the same
∆T as before, but multiplied by 2 cos θ.

(d) Bonus: repeat (a) for the case where there are 5 bars, or better yet, 2n + 1. The setup is
shown in Figure 1b. Assume the system is symmetric with respect to horizontal reflection.

Solution
See Plasticity Theory, Jacob Lubliner, 1990 section 4.1.4 (pg. 185). The solution is not
as detailed as the one I gave above, but it suffices for you to complete the the details.
The bottom line is that you get a piecewise-linear stress-strain curve such that first the
middle rod yields, then the closest-to-the-middle, then the second-closest-to-the-middle
and so on. Between two successive yield events the function is linear. An example is
plotted here:

●

●

●

●

●

●
● ●

3. In class, we’ve found the elasto-plastic solution for a spherical shell. We now look at some
interesting aspects of the results.

(a) Examine numerically Eq. (11.38) from the lecture notes. For the case that b = 10a, plot c
as a function of p. Can you analytically explain what happens when p → pU? (hint: yes you
can).

Solution
The equation is

p =
2σy

3

[
1− c3

b3
+ 3 log

( c
a

)]
.

As always, we should non-dimensionalize the equation. Measuring stresses in terms of σY
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and lengths in terms of a, the equation becomes

p =
2

3

[
1− c3

b3
+ 3 log(c)

]
, (18)

where all quantities should have tildes. In these units, b = 10a actually means b = 10.
Inverting this relation numerically gives the following dependence:

0 1 2 3 4 5 6 7
0

2

4

6

8

10

The slope of the curve is

∂c

∂p
=

(
∂p

∂c

)−1

=
1

2c2

(
1

c3
− 1

b3

)−1

(19)

As p→pU , we have c→b so the term in parentheses vanishes and the slope diverges (but
the curve reaches the finite value b/a). This happens when p

σY
= 2 log

(
b
a

)
.

(b) For the case that p = σY , plot c/a as a function of b/a. What is the asymptotic value of c
when b/a → ∞?

Solution
The dimensionless pressure is 1, so our equation takes the form

1 =
2

3

[
1− c3

b3
+ 3 log(c)

]
, (20)

and the solution is shown here:
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c

When b/a = b̃ → ∞ Eq. (20) reduces to

1 =
2

3
(1 + 3 log(c)) , (21)

which is solved by c = e1/6 ≈ 1.18.

(c) Find the displacement field ur(r) (from symmetry, u⃗ is a function of r only and other com-
ponents vanish). Is the stress/strain/displacement field continuous/differentiable across the
elasto-plastic boundary?
Guidance: In the elastic region, there’s a particularly simple relation between ur and some of the strain components. In the

plastic region, the volumetric part of the deformation is still elastic - we still have trσ = K tr ϵ, where K is the bulk modulus.

Solution
In the elastic domain we have ϵθθ = ϵϕϕ = ur/r (that’s a general kinematic formula for
radial motion). Since ϵθθ=E−1[σθθ−ν(σrr+σϕϕ)], we obtain

ur =
r

E
((1− ν)σθθ − νσrr) . (22)

Plugging in Eqs. (11.28)-(11.29) we get

ur =
r

E

pc
b3/c3 − 1

(
1− 2ν + (1 + ν)

b3

2r3

)
(23)

In the plastic regime, the volumetric response is elastic, that is trσ = 3K tr ϵ, with
K = E

3(1−2ν)
:

tr ϵ = ϵθθ + ϵϕϕ + ϵrr =
∂ur

∂r
+ 2

u

r
=

1

r2
∂

∂r
(r2ur) (24)

trσ = σrr + 2σθθ = (3σrr + 2σY ) (25)

Where we used the fact that in the plastic zone we have σθθ = σrr + σY (Eq. (11.37)).
Plugging in the expression for σrr (Eq. (11.36)) we arrive at

1

r2
∂

∂r
(r2ur) =

2(1− 2ν)σY

E

[
c3

b3
− 3 log

(c
r

)]
(26)
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Which is solved by

ur =
A

r2
+

2(1− 2ν)σY r

E

[
1

3

(
c3

b3
− 1

)
− log

(c
r

)]
(27)

The integration constant A is determined form continuity at r = c. The stress field
is continuous across the boundary. This is because σrr must be continuous for static
equilibrium to exist, and the other components of the stress depend continuously on σr

(remember that σθθ = σrr + σY ). The strain is not continuous, and neither the stress nor
the strain are differentiable.

4. Continuing our TA session, consider an elastic-perfect-plastic 2D annulus with internal and exter-
nal radii a, b, subject to internal pressure p and zero outer pressure, under plane-stress conditions.
Use the Tresca yield criterion, and preform the analysis that was done in class:

(a) Find the stress field σij(r), the minimal internal pressure that induces plastic flow (pE),
the ultimate pressure for which the entire annulus is plastic pU , and give an equation that
determines the radius of the elasto-plastic boundary c. Try and solve this in a different
method than the one showed in the TA session.

Solution
The purpose of this exercise was that you redo the algebra in a slightly different setting.
The calculations are practically the same, so I will only give hints here. The full thing is
derived in Lubliner’s book (section 4.3.5).

Elastic solution
The elastic solution is obtained in the following way. In 2D the force balance equation
(11.14) takes the form

∂σr

∂r
+

σr − σθ

r
= 0 . (28)

As in 3D, we use Hooke’s law, combined with the compatibility equation, to obtain the
equivalent of Eq. (11.18):

∂

∂r
(σr + σθ) = 0 (29)

This is solved under the proper boundary conditions to yield

σr = − p

b2/a2 − 1

[
b2

r2
− 1

]
(30)

σθ =
p

b2/a2 − 1

[
b2

r2
+ 1

]
(31)

The maximal value of σθ − σr is obtained at r = a where it equals 2p
1−a2/b2

and therefore
the system will begin to yield when

p = pE ≡ σY

(
1− a2

b2

)
. (32)
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Elasto-Plastic solution
The elastic part of the elasto-plastic solution is obtained by substituting b with c and p
with pc in the above equations. The plastic part is obtained by assuming that

σr < σz = 0 < σθ (33)

(this will be checked later for consistency) and therefore the Tresca criterion reads

|σθ − σr| =
2p

1− c2/b2
= 2σY ⇒ pc = σY

(
1− c2

b2

)
(34)

pE is obtained by plugging c → a in the above. Eq. (28) can then be integrated to give

σr = −p+ σY log
r2

a2
. (35)

Continuity of stresses then yields the transcendental equation for c:

p = σY

(
1− c2

b2
+ log

c2

a2

)
(36)

pU = 2σY log b
a
is the solution of this equation for c = b. Plugging (36) into (35), and

using σθ = σr + 2σY in the plastic zone, we get the stress field:

σr = σY

(
c2

b2
− log

c2

r2
− 1

)
(37)

σθ = σY

(
c2

b2
− log

c2

r2
+ 1

)
(38)

(b) Show that your solution is valid only if

1 +
c2

b2
− log

c2

a2
≥ 0 . (39)

What happens if this criterion is not satisfied? Why is this problem not present in plane
strain conditions?

Solution
Take a look at Eq. (38) and remind yourself that we assumed σθ > 0. If this is not the
case, then σz = 0>σθ and then the form of the Tresca criterion changes and everything
we did is invalid. The smallest value of σθ occurs on r = a so in order for our solution to
be valid we need to demand σθ(r=a)>0, and this is exactly the condition (39).
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In plane-strain conditions, we have σz = ν(σr + σθ). At r = c we have

σr =
pc

(b/c)2 − 1

(
−b2

c2
+ 1

)
σθ =

pc
(b/c)2 − 1

(
b2

c2
+ 1

)
σz = 2ν

pc
(b/c)2 − 1

(40)

and since 1− b2

c2
< 2ν < 1+ b2

c2
our assumption is always valid (remember that 0 < ν < 1

2
).

(c) Considering this, what is the condition on a/b that ensures that pU exists? Give an equation
that describes, for a given value of a/b, the maximal possible value of c/a. What is this value
when b/a → ∞?

Solution
pU describes the situation that the entire disk can become plastic, that is, c=b. plugging
that in the condition, we get 1− log(b/a) ≥ 0, or more nicely b/a ≤ e. For larger values
of b/a our solution breaks down before the entire disk have flowed.

The maximal possible value of c is obtained by turning the condition (39) into an equality.
In the limit b ≫ a (a hole in an infinite plane), this turns to be 1 − 2 log(c/a), and the
limiting value is therefore c = a

√
e.
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