
Non-Equilibrium Continuum Physics

Extended lecture notes by Eran Bouchbinder
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This course is intended to introduce graduate students to the essentials of

modern continuum physics, with a focus on non-equilibrium phenomena in solids

and within a thermodynamic perspective. Special focus is given to emergent

phenomena, where collective many-body systems reveal physical principles that

cannot be inferred from the microscopic physics of a small number of degrees of

freedom. General concepts and principles — such as conservation laws, symmetries,

material frame-indifference, dissipation inequalities and non-equilibrium behaviors,

spatiotemporal symmetry-breaking instabilities and configurational forces — are

emphasized. Examples cover a wide range of physical phenomena and applications

in diverse disciplines. The power of field theory as a mathematical structure

that does not make direct reference to microscopic length scales well below those

of the phenomenon of interest is highlighted. Some basic mathematical tools

and techniques are introduced. The course highlights essential ideas and basic

physical intuition. Together with courses on fluid mechanics and soft condensed mat-

ter, a broad background and understanding of continuum physics will be established.

The course will be given within a framework of 12-13 two-hour lectures and 12-13

two-hour tutorial sessions with a focus on problem-solving. No prior knowledge

of the subject is assumed. Basic knowledge of statistical thermodynamics, vector

calculus, partial differential equations, dynamical systems and complex analysis is

required.

These extended lecture notes (book draft) are self-contained and in principle no

other materials are needed.
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General Principles and Concepts

I. INTRODUCTION: BACKGROUND AND MOTIVATION

We start by considering the course’s title. By ‘non-equilibrium’ we refer to physical phenomena

that cannot be properly treated in the framework of equilibrium thermodynamics. That is, we

refer to phenomena that involve irreversible processes and dissipation. We will, however, make

an effort to adhere as much as possible to thermodynamic formulations (i.e. we will not focus on

purely dynamical systems) and also devote time to reversible phenomena (both because they are

often missing from current physics education and because they set the stage for discussing irre-

versible phenomena). By ‘continuum’ we refer to the scientific approach that treats macroscopic

phenomena without making explicit reference to the discreteness of matter or more generally to

microscopic length and time scales. This also implies that we focus on collective phenomena

that involve spatially extended systems and a macroscopic number of degrees of freedom (atoms,

molecules, grains etc.). We therefore treat materials as continua and use the language of field

theory to describe the phenomena of interest. A crucial concept in this context is that of emer-

gent phenomena, which refers to the fundamental idea that collective many-body systems reveal

laws/behavior that cannot be inferred from microscopic laws of physics and a small number of

degrees of freedom; that is, “More is Different”, adopting the famous title of Philip W. Anderson

(see Science 177, 393 (1972)).

‘Physics’ is surely a bit too broad here, yet it represents the idea that the tools and concepts

that will be discussed have a very broad range of applications in different branches of physics.

In addition, the topics considered can be discussed from various perspectives — such as applied

mathematics, engineering sciences and materials science —, but we will adopt a physicist perspec-

tive. To make ‘physics’ even more specific in the present context, we note that we will mainly focus

on thermal and mechanical phenomena, rather than electrical, magnetic or chemical phenomena.

By ‘thermal’ and ‘mechanical’ — or ‘thermomechanical’ we refer to material phenomena that

involve deformation, material and heat flow and failure, and where the driving forces are thermal

and mechanical in nature. ‘Classical continuum mechanics’ typically refers to ‘solid mechanics’

and ‘fluid mechanics’ from a classical (i.e. non-quantum) physics perspective. In this course we

will mainly focus on solids in the broadest sense of the word.

The word ‘solid’ is not easily defined. The most intricate aspect of such a definition is that it
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involves an observation timescale (at least if we do not consider single crystals). However, for the

purpose of this course, it will be sufficient to define a solid as a material that can support shear

forces over sufficiently long timescales. We therefore do not focus on Newtonian fluids and very

soft materials (though we certainly mention them), both of which are discussed in complementary

courses. Nevertheless, we will discuss solid phenomena such as visco-elasticity and nonlinear

elasticity.

Why should one study the subjects taught in this course? Well, there are many (good) reasons.

Let us mention a few of them. First, macroscopic physics deals with emergent phenomena that

cannot be understood from microscopic laws applied to a small number of constituent elements

(degrees of freedom). That is, macroscopic systems feature new qualitative coarse-grained prop-

erties and dynamics. This is a deep conceptual, to some extent even philosophical, issue that

should be systematically introduced. Second, many of the macroscopic phenomena around us are

both non-equilibrium and thermomechanical in nature. This course offers tools to understand

some of these phenomena. Third, continuum physics phenomena, and solid-related phenomena

in particular, are ubiquitous in many branches of science and therefore understanding them may

be very useful for researchers in a broad range of disciplines. Fourth, the conceptual and math-

ematical tools of non-equilibrium thermodynamics and field theory are extremely useful in many

branches of science, and thus constitute an important part of scientific education. Finally, some

of the issues discussed in this course are related to several outstanding unsolved problems. Hence,

the course will expose students to the beauty and depth of a fundamental and active field of

research. It would be impossible to even scratch the surface of the huge ongoing solid-related

activity. Let us mention a few examples: (i) It has been quite recently recognized that the

mechanics of living matter, cells in particular, plays a central role in biology. For example, it

has been discovered that the stiffness of the substrate on which stem cells grow can significantly

affect their differentiation. (ii) Biomimetics: researchers have realized that natural/biological

systems exhibit superior mechanical properties, and hence aim at mimicking the design principles

of these systems in man-made ones. For example, people have managed to build superior adhe-

sives based on Gecko’s motion on a wall. People have succeeded in synthesizing better composite

materials based on the structures observed in hard tissues, such as cortical bone and dentin. (iii)

The efforts to understand the physics of driven disordered systems (granular materials, molecular

glasses, colloidal suspensions etc.) are deeply related to one of the most outstanding questions in

non-equilibrium statistical physics. (iv) People have recently realized there are intimate relations
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between geometry and mechanics. For example, by controlling the intrinsic metric of materials,

macroscopic shapes can be explained and designed. (v) The rupture of materials and interfaces

has a growing influence on our understanding and control of the world around us. For example,

there are exciting developments in understanding Earthquakes, the failure of interfaces between

two tectonic plates in the Earth’s crust (vi) Developments in understanding the plastic defor-

mation of amorphous and crystalline solids offer deep new insights about strongly nonlinear and

dissipative systems, and open the way to new and exciting applications.

Unfortunately, due to time limitations, the course cannot follow a historical perspective which

highlights the evolution of the developed ideas. These may provide very important scientific,

sociological and psychological insights, especially for research students and young researchers.

Whenever possible, historical notes will be made.
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II. MATHEMATICAL PRELIMINARIES: TENSOR ANALYSIS

The fundamental assumption of continuum physics is that under a wide range of conditions

we can treat materials as continuous in space and time, disregarding their discrete structure and

time-evolution at microscopic length and time scales, respectively. Therefore, we can ascribe to

each point in space-time physical properties that can be described by continuous functions, i.e.

fields. This implies that derivatives are well defined and hence that we can use the powerful

tools of differential calculus. In order to understand what kind of continuous functions, hereafter

termed fields, should be used, we should bear in mind that physical laws must be independent

of the position and orientation of an observer, and the time of observation (note that we restrict

ourselves to classical physics, excluding the theory of relativity). We are concerned here, however,

with the mathematical objects that allow us to formulate this and related principles. Most

generally, we are interested in the language that naturally allows a mathematical formulation of

continuum physical laws. The basic ingredients in this language are tensor fields, which are the

major focus on the opening part of the course.

Tensor fields are characterized, among other things, by their order (sometimes also termed

rank). Zero-order tensors are scalars, for example the temperature field T (x, t) within a body,

where x is a 3-dimensional Euclidean space and t is time. First-order tensors are vectors, for

example the velocity field v(x, t) of a fluid. Why do we need to consider objects that are

higher-order than vectors? The best way to answer this question is through an example.

Consider a material areal element and the force acting on it (if the material areal element is a

surface element, then the force is applied externally and if the material areal element is inside

the bulk material, then the force is exerted by neighboring material). The point is that both the

areal element and the force acting on it are basically vectors, i.e. they both have an orientation

(the orientation of the areal element is usually quantified by the direction of the normal to it).

Therefore, in order to characterize this physical situation one should say that a force in the ith

direction is acting on a material areal element whose normal points in the jth direction. The

resulting object is defined using two vectors, but it is not a vector itself. We need a higher-order

tensor to describe it.

Our main interest here is second-order tensors, which play a major role in continuum physics.

A second-order tensor A can be viewed as a linear operator or a linear function that maps a

vector, say u, to a vector, say v,

v = Au . (2.1)
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Linearity implies that

A(αu+ v) = αAu+Av , (2.2)

for every scalar α and vectors u and v. For brevity, second-order tensors will be usually referred

to simply as tensors (zero-order tensors will be termed scalars, first-order tensors will be termed

vectors and higher than second-order tensors will be explicitly referred to according to their order).

The most natural way to define (or express) tensors in terms of vectors is through the dyadic

(or tensor) product of orthonormal base vectors {ei}

A = Aij ei ⊗ ej , (2.3)

where Einstein summation convention is adopted, {Aij} is a set of numbers and {i, j} run over

space dimensions. For those who feel more comfortable with Dirac’s Bra-Ket notation, the dyadic

product above can be also written as A = Aij |ei><ej|. In general, the dyad u⊗ v is defined as

u⊗ v = uvT , (2.4)

where vectors are assumed to be represented by column vectors and the superscript T denotes

the transpose operation. If {ei} is an orthonormal set of Cartesian base vectors, we have (for

example)

e2 ⊗ e3 = e2e
T
3 =


0

1

0

(0 0 1
)

=


0 0 0

0 0 1

0 0 0

 . (2.5)

Therefore, second-order tensors can be directly represented by matrices. Thus, tensor algebra

essentially reduces to matrix algebra. It is useful to note that for every three vectors u, v and w

we have

u⊗ vw = (v ·w)u . (2.6)

where · is the usual inner (dot) product of vectors. In the Bra-Ket notation the above simply

reads |u><v|w> This immediately allows us to rewrite Eq. (2.1) as

viei = v = Au = (Aijei ⊗ ej)(ukek) = Aijuk(ej · ek) ei = Aijujei , (2.7)

which shows that the matrix representation preserves known properties of matrix algebra (vi =

Aijuj). The matrix representation allows us to define additional tensorial operators. For example,
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we can define

tr(A) ≡ ek · (Aijei ⊗ ej) ek = Aij <ek|ei><ej|ek>= Aijδikδjk = Akk , (2.8)

AT = (Aijei ⊗ ej)T = Aijej ⊗ ei = Ajiei ⊗ ej , (2.9)

AB = (Aijei ⊗ ej)(Bklek ⊗ el) = AijBklδjkei ⊗ el = AijBjlei ⊗ el . (2.10)

We can define the double dot product (or the contraction) of two tensors as

A : B = (Aijei ⊗ ej) : (Bklek ⊗ el) ≡ AijBkl(ei · ek)(ej · el)

= AijBklδikδjl = AijBij = tr(ABT ) . (2.11)

This is a natural way of generating a scalar out of two tensors, which is the tensorial general-

ization of the usual vectorial dot product (hence the name). It plays an important role in the

thermodynamics of deforming bodies. Furthermore, it allows us to project a tensor on a base

dyad

(ei ⊗ ej) :A=(ei ⊗ ej) : (Aklek ⊗ el)=Akl(ei · ek)(ej · el)=Aklδikδjl = Aij , (2.12)

i.e. to extract a component of a tensor.

We can now define the identity tensor as

I = δij(ei ⊗ ej) , (2.13)

which immediately allows to define the inverse of a tensor (when it exists) following

AA−1 = I . (2.14)

The existence of the inverse is guaranteed when detA 6= 0, where the determinant of a tensor

is defined using the determinant of its matrix representation. Note also that one can decompose

any second-order tensor to a sum of symmetric and skew-symmetric (antisymmetric) parts as

A = Asym +Askew =
1

2
(A+AT ) +

1

2
(A−AT ) . (2.15)

Occasionally, physical constraints render the tensors of interest symmetric, i.e. A=AT . In

this case, we can diagonalize the tensor by formulating the eigenvalue problem

Aai = λiai , (2.16)

where {λi} and {ai} are the eigenvalues (principal values) and the orthonormal eigenvectors

(principal directions), respectively. This problem is analogous to finding the roots of

det(A− λI) = −λ3 + λ2I1(A)− λI2(A) + I3(A) = 0 , (2.17)
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where the principal invariants {Ii(A)} are given by

I1(A) = tr(A), I2(A) =
1

2

[
tr2(A)− tr(A2)

]
, I3(A) = det(A) . (2.18)

Note that the symmetry of A ensures that the eigenvalues are real and that an orthonormal set

of eigenvectors can be constructed. Therefore, we can represent any symmetric tensor as

A = λi ai ⊗ ai , (2.19)

assuming no degeneracy. This is called the spectral decomposition of a symmetric tensor A. It is

very useful because it represents a tensor by 3 real numbers and 3 unit vectors. It also allows us

to define functions of tensors. For example, for positive definite tensors (λi > 0), we can define

ln(A) = ln(λi)ai ⊗ ai , (2.20)
√
A =

√
λi ai ⊗ ai . (2.21)

In general, one can define functions of tensors that are themselves scalars, vectors or tensors.

Consider, for example, a scalar function of a tensor f(A) (e.g. the energy density of a deforming

solid). Consequently, we need to consider tensor calculus. For example, the derivative of f(A)

with respect to A is a tensor which takes the form

∂f

∂A
=

∂f

∂Aij
ei ⊗ ej . (2.22)

The differential of f(A) is a scalar and reads

df =
∂f

∂A
: dA =

∂f

∂Aij
dAij . (2.23)

Consider then a tensorial function of a tensor F (A), which is encountered quite regularly in

continuum physics. Its derivative D is defined as

D=
∂F

∂A
=

∂F

∂Aij
⊗ ei ⊗ ej =

∂Fkl
∂Aij

ek ⊗ el ⊗ ei ⊗ ej ,

=⇒ Dklij =
∂Fkl
∂Aij

, (2.24)

which is a fourth-order tensor.

We will now define some differential operators that either produce tensors or act on tensors.

First, consider a vector field v(x) and define its gradient as

∇v =
∂v

∂x
=

∂v

∂xj
⊗ ej =

∂vi
∂xj

ei ⊗ ej , (2.25)
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which is a second-order tensor. Then, consider the divergence of a tensor

∇·A =
∂A

∂xk
ek =

∂Aij
∂xk

ei ⊗ ejek =
∂Aij
∂xj

ei , (2.26)

which is a vector. The last two objects are extensively used in continuum physics.

The tensorial version of Gauss’ theorem for relating volume integrals to surface integrals reads∫
V

∇·A dV =

∮
S

An dS , (2.27)

where V and S are the volume and the enclosing surface, respectively, and n is the outward unit

normal to the surface. Obviously, the theorem is satisfied for scalars and vectors as well. It would

be useful to recall also Stokes’ theorem for relating line integrals to surface integrals∫
S

(∇×v) · ndS =

∮
l

v ·dl , (2.28)

where S and l are the surface and its bounding curve, respectively, and n is the outward unit

normal to the surface.

Finally, we should ask ourselves how do tensors transform under a coordinate transformation

(from x to x′)

x′ = Qx , (2.29)

where Q is a proper (detQ=1) orthogonal transformation matrix QT =Q−1 (note that it is not

a tensor). In order to understand the transformation properties of the orthonormal base vectors

{ei} we first note that

x′ = Qx =⇒ x = QTx′ =⇒ xi = QT
ijx
′
j = Qjix

′
j . (2.30)

A vector is an object that retains its (geometric) identity under a coordinate transformation. For

example, a general position vector r can be represented using two different base vectors sets {ei}

and {e′i} as

r = xiei = x′je
′
j . (2.31)

Using Eq. (2.30) we obtain

xiei = (Qjix
′
j)ei = x′j(Qjiei) = x′je

′
j , (2.32)

which implies

e′i = Qijej . (2.33)
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In order to derive the transformation law for tensors representation we first note that tensors, like

vectors, are objects that retain their (geometric) identity under a coordinate transformation and

therefore we must have

A = Aijei ⊗ ej = A′ije
′
i ⊗ e′j . (2.34)

Using Eq. (2.33) we obtain

A = A′ije
′
i ⊗ e′j = A′ijQikek ⊗Qjlel = (A′ijQikQjl)ek ⊗ el . (2.35)

which implies

Akl = A′ijQikQjl . (2.36)

This is the transformation law for the components of a tensor and in many textbooks it serves as

a definition of a tensor. Eq. (2.36) can be written in terms of matrix representation as

[A] = QT [A]′Q =⇒ [A]′ = Q[A]QT , (2.37)

where [·] is the matrix representation of a tensor with respect to a set of base vectors. Though

we did not make the explicit distinction between a tensor and its matrix representation earlier, it

is important in the present context; [A] and [A]′ are different representations of the same object,

the tensor A, but not different tensors. An isotropic tensor is a tensor whose representation is

independent of the coordinate system, i.e.

Aij = A′ij or [A] = [A]′ . (2.38)

We note in passing that in the present context we do not distinguish between covariant and

contravariant tensors, a distinction that is relevant for non-Cartesian tensors (a Cartesian tensor

is a tensor in three-dimensional Euclidean space for which a coordinate transformation x′=Qx

satisfies ∂x′i/∂xj =∂xj/∂x
′
i).



14

III. MOTION, DEFORMATION AND STRESS

Solid materials are deformed under applied driving forces. In order to describe the deformation

of solids, consider a body at a given time and assign to each material point a position vector X

with respect to some fixed coordinate system (i.e. we already use the continuum assumption). For

simplicity, set t=0. At t>0 the body experiences some external forcing that deforms it to a state

in which each material point is described by a position vector x. We then define the motion as

the following mapping

x = x(X, t) = ϕ(X, t) . (3.1)

The vector function ϕ(·) maps each point in the initial state X to a point in the current state x

at t>0. This immediately implies that X = ϕ(X, t = 0), i.e. at time t = 0 ϕ(·) is the identity

vector. The initial state X is usually termed the reference/undeformed configuration and the

current state is termed the deformed configuration. We assume that ϕ(·) is a one-to-one mapping,

i.e. that it can be inverted

X = ϕ−1(x, t) . (3.2)

The inverse mapping ϕ−1(·) tells us where a material point, that is currently at x, was at time

t = 0. It is important to note that we can describe physical quantities either by X, which is called

the material (Lagrangian) description, or by x, which is called the spatial (Eulerian) description.

The choice between these descriptions is a matter of convenience. For a given physical phenomenon

under consideration, one description may be more convenient than the other. We will discuss this

issue later in the course.

A quantity of fundamental importance is the displacement field defined as

U(X, t) = x(X, t)−X . (3.3)

This material description can be converted into a spatial description following

U(X, t) = x(X, t)−X = x−X(x, t) = U (ϕ−1(x, t), t) = u(x, t) . (3.4)

Note that U and u are different functions of different arguments, though their values are the

same. The velocity and acceleration fields are defined as

V (X, t) = ∂tU(X, t) = v(x, t) and A(X, t) = ∂ttU (X, t) = a(x, t) . (3.5)

The corresponding spatial descriptions can be easily obtained using ϕ(·).
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The material time derivative D/Dt, which we abbreviate by Dt, is defined as the partial

derivative with respect to time, keeping the Lagrangian coordinate X fixed. For a material field

F(X, t) (scalar or vector. For a tensor, see the discussion of objectivity/frame-indifference later

in the course) we have

DtF(X, t) ≡ (∂tF(X, t))X , (3.6)

where we stress that X is held fixed here. This derivative represents the time rate of change of

a field F , as seen by an observer moving with a particle that was at X at time t = 0. We can

then ask ourselves what happens when we operate with the material derivative on an Eulerian

field f(x, t). Using the definition in Eq. (3.6), we obtain

Df(x, t)

Dt
=

(
∂f(ϕ(X, t), t)

∂t

)
X=ϕ−1(x,t)

=

(
∂f(x, t)

∂t

)
x

+

(
∂f(x, t)

∂x

)
t

(
∂ϕ(X, t)

∂t

)
X=ϕ−1(x,t)

. (3.7)

The last term in the above expression is the velocity field, cf. Eq. (3.5), implying that

D(· · ·)
Dt

=
∂(· · ·)
∂t

+ vk
∂(· · ·)
∂xk

. (3.8)

The second contribution on the right hand side of the above equation is termed the convective rate

of change and hence the material derivative of an Eulerian field is sometimes called the convective

derivative. Finally, note that since the material derivative of an Eulerian field is just the total

time derivative of the Eulerian field, viewing x(t) as a function of time, it is sometimes denoted

by a superimposed dot, i.e. ḟ(x, t) = Dtf(x, t). If f(x, t) is the velocity field we obtain

Dtv(x, t) = ∂tv(x, t) + v(x, t) · ∇xv(x, t) . (3.9)

The latter nonlinearity is very important in fluid mechanics, though it appears also in the context

of elasto-plasticity. Note that we distinguish between the spatial gradient ∇x and the material

gradient ∇X , which are different differential operators. Fluid flows are usually described using an

Eulerian description. Nevertheless, Lagrangian formulations can be revealing, see for example the

Lagrangian turbulence simulation at: http://www.youtube.com/watch?v=LHIIn72dRPk

In order to discuss the physics of deformation we need to know how material line elements

change their length and orientation. Therefore, we define the deformation gradient F that maps

an infinitesimal line element in the reference configuration dX to an infinitesimal line element in

the deformed configuration

dx = F (X, t)dX . (3.10)

http://www.youtube.com/watch?v=LHIIn72dRPk
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Hence,

F (X, t) = ∇Xϕ(X, t) . (3.11)

As will become apparent later in the course, F is not a proper tensor, but rather a two-point

tensor, i.e. a tensor that relates two configurations. We can further define the displacement

gradient tensor as

H(X, t) = ∇XU(X, t) , (3.12)

which implies

F = I +H . (3.13)

Here and elsewhere I is the identity tensor. The deformation gradient F describes both the

rotation and the stretching of a material line element, which also implies that it is not symmetric.

From a basic physics perspective, it is clear that interaction potentials are sensitive to the relative

distance between particles, but not to local rigid rotations. Consequently, we are interested in

separating rotations from stretching, where the latter quantifies the change in length of material

elements. We can, therefore, decompose F as

F = RU = V R , (3.14)

where R is a proper rotation tensor, detR = +1, and U (should not be confused with the

displacement field) and V are the right and left stretch tensors, respectively (which are of course

symmetric). This is the so-called polar decomposition. Note that

RRT = I, U = UT , V = V T , V = RURT . (3.15)

Therefore, U and V have the same eigenvalues (principal stretches), but different eigenvectors

(principal directions). Hence, we can write the spectral decomposition as

V = λiNi ⊗Ni, (3.16)

U = λiMi ⊗Mi, (3.17)

with

λi > 0, Ni ⊗Ni = RMi ⊗RMi . (3.18)
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A. Strain measures

At this stage, we are interested in constructing quantities that are based on the stretch tensors

discussed above in order to be able, eventually, to define the energy of deformation. For this

aim, we need to discuss strain measures. Unlike displacements and stretches, which are directly

measurable quantities (whether it always make physical sense and over which timescales, will be

discussed later), strain measures are concepts that are defined based on displacements/stretches,

and may be conveniently chosen differently in different physical situations. The basic idea is

simple; we would like to come up with a measure of the relative change in length of material line

elements. Consider first the scalar (one-dimensional) case. If the reference length of a material

element is `0 and its deformed length is ` = λ`0, then a simple strain measure is constructed by

g(λ) =
`− `0

`0

= λ− 1 . (3.19)

This definition follows our intuitive notion of strain, i.e. (i) It is a monotonically increasing

function of the stretch λ (ii) It vanishes when λ=1. It is, however, by no means unique. In fact,

every monotonically increasing function of λ which reduces to the above definition when λ is close

to unity, i.e. satisfies g(1) = 0 and g′(1) = 1, would qualify. These conditions ensure that upon

linearization, all strain measures agree. For example,

g(λ) =

∫ `

`0

d`′

`′
= ln

(
`

`0

)
= lnλ , (3.20)

g(λ) =
`2 − `2

0

2`2
0

=
1

2

(
λ2 − 1

)
. (3.21)

Obviously, there are infinitely many more. The three possibilities we presented above, however,

are well-motivated from a physical point of view. Before explaining this, we note that the scalar

(one-dimensional) definitions adopted above can be easily generalized to rotationally invariant

tensorial forms as

EB = (λi − 1)Mi ⊗Mi = U − I, (3.22)

EH = (lnλi)Mi ⊗Mi = lnU , (3.23)

E =
1

2
(λ2

i − 1)Mi ⊗Mi =
1

2

(
U 2 − I

)
=

1

2

(
F TF − I

)
. (3.24)

EB is the Biot (extensional) strain tensor. It is the most intuitive strain measure. Its main

disadvantage is that it cannot be directly expressed in terms of the deformation gradient F , but

rather has to be calculated from it by a polar decomposition. EH is the Hencky (logarithmic)
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strain (which is also not expressible in terms of F alone). Its one-dimensional form, Eq. (3.20),

clearly demonstrates that dEH is an incremental strain that measures incremental changes in the

length of material line elements relative to their current length. Finally, E is the Green-Lagrange

(metric) strain. While it is difficult to motivate its one-dimensional form, Eq. (3.21), its tensorial

form has a clear physical meaning. To see this, consider infinitesimal line elements of size d` and

d`′ in the reference and deformed configurations respectively and construct the following measure

of the change in their length

(d`′)2 − (d`)2 = dxidxi − dXidXi = FijdXjFikdXk − dXjδjkdXk = (3.25)

2dXj

[
1

2
(FijFik − δjk)

]
dXk = 2dXj

[
1

2

(
F T
jiFik − δjk

)]
dXk ≡ 2dXjEjkdXk .

Therefore,

E =
1

2

(
F TF − I

)
=

1

2
(C − I) =

1

2

(
U 2 − I

)
=

1

2
(H +HT +HTH) , (3.26)

where C≡F TF is the right Cauchy-Green deformation tensor. So E is indeed a material metric

strain tensor. Further note that E is quadratically nonlinear in the displacement gradient H .

The linear part of E

ε ≡ 1

2
(H +HT ) (3.27)

is the linear (infinitesimal) strain tensor, which is not a true strain measure (as it is not rotationally

invariant), but nevertheless is the basic object in the linearized field theory of elasticity (to be

discussed later in the course). We can easily derive the spatial counterpart of E, by having

(d`′)2 − (d`)2≡2dxjejkdxk, with (prove)

e =
1

2

(
I − F−TF−1

)
=

1

2

(
I − b−1

)
. (3.28)

b≡ FF T is the left Cauchy-Green deformation tensor (also termed the Finger tensor, which is

sometimes denoted by B). e, known as the Euler-Almansi strain tensor, is a spatial metric strain

tensor.

The deformation gradient F maps objects from the undeformed to the deformed configuration.

For example, consider a volume element in the deformed configuration (assume F has already

been diagonalized)

dx3 = dx1dx2dx3 = F11dX1F22dX2F33dX3 = J(X, t)dX3 , (3.29)

where

J(X, t) = detF (X, t) . (3.30)
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Consider then a surface element in the undeformed configuration dS = dSN , where dS an

infinitesimal area and N is a unit normal. The corresponding surface element in the deformed

configuration is ds = dsn. To relate these quantities, we consider an arbitrary line element dX

going through dS and express the spanned volume element by a dot product dX3 = dS · dX.

dX maps to dx, which spans a corresponding volume element in the deformed configuration

dx3 = ds · dx. Using Eq. (3.29), the relation ds ·F dX=F Tds · dX (i.e. dsiFijdXj =F T
jidsidXj)

and the fact that dX is an arbitrary line element, we obtain

dS = J−1F Tds . (3.31)

The spatial velocity gradient L(x, t) is defined as

L ≡ ∂v(x, t)

∂x
= Ḟ F−1 . (3.32)

The symmetric part of L, D = 1
2
(L + LT ), is an important quantity called the rate of defor-

mation tensor. The anti-symmetric part of L,W = 1
2
(L−LT ), is called the spin (vorticity) tensor.

B. The concept of stress

As was mentioned at the beginning of this section, material deformation is induced by forces.

In order to describe and quantify forces at the continuum level we need the concept of stress

(sketched earlier in section II to motivate the need for tensors). Consider a surface element

ds in the deformed configuration. It is characterized by an outward normal n and a unit area

ds. The surface element can be a part of the external boundary of the body or a part of an

imaginary internal surface. The force acting on it, either by external agents in the former case

or by neighboring material in the latter case, is denoted by df . We postulate, following Cauchy,

that we can define a traction vector t such that

df = t(x, t,n) ds . (3.33)

Cauchy proved that there exists a unique symmetric second-order tensor σ(x, t) (i.e. σ=σT , the

physical meaning of which will be discussed later) such that

t(x, t,n) = σ(x, t)n . (3.34)

The spatial tensor σ is called the Cauchy stress. Its physical meaning becomes clear when we

write Eq. (3.34) in components form, ti = σijnj. Therefore, σij is the force per unit area in the
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ith direction, acting on a surface element whose outward normal has a component nj in the jth

direction. A corollary of Eq. (3.34)

t(x, t,−n) = −t(x, t,n) , (3.35)

is nothing but Newton’s third law (action and reaction).

As σ is defined in terms of the deformed configuration, which is not known a priori (one

should solve for it using the stresses themselves), σ is not always a useful quantity (it is the

only relevant quantity in the linearized field theory of elasticity, where we do not distinguish

between the deformed and undeformed configurations). To overcome this difficulty, we can define

alternative stress measures that are useful for calculations. In general, we will show later that

thermodynamics allows us to define for any strain measure a work-conjugate stress measure. Here,

we define one such mechanically-motivated stress measure. Let us define a (fictitious) reference

configuration traction vector T (X, t,N ) as

df = t(x, t,n) ds = T (X, t,N ) dS , (3.36)

where N and dS are the reference outward normal and unit area, respectively, whose images in

the deformed configuration are n and ds, respectively. Following Cauchy, there exists a tensor

P (X, t) such that

T (X, t,N ) = P (X, t)N . (3.37)

P (X, t) is called the first Piola-Kirchhoff stress tensor. In fact, it is not a true tensor (it relates

quantities from the deformed and undeformed configuration and hence, like F , is a two-point

tensor) and is not symmetric. Using the above properties, it is straightforward to show that it is

related to the Cauchy stress σ by

P = JσF−T . (3.38)

The concepts of strain and stress will allow us to formulate physical laws, such as conservation

laws and the laws of thermodynamics, and constitutive laws which describe material behaviors,

in the rest of this course.
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IV. EQUATIONS OF MOTION, THE LAWS OF THERMODYNAMICS AND

OBJECTIVITY

A. Conservation laws

We first consider the mass density in the reference configuration ρ0(X, t). The conservation of

mass simply implies that

M =

∫
Ω0

ρ0(X, t)dX3 (4.1)

is time-independent (Ω0 is the region occupied by the body in the reference configuration), i.e.

DM

Dt
=

D

Dt

∫
Ω0

ρ0(X, t)dX3 =
D

Dt

∫
Ω

ρ(x, t)dx3 = 0 , (4.2)

where Ω is the region occupied by the body in the deformed configuration. The integral form

can be easily transformed into a local form. In the reference (Lagrangian) configuration it simply

reads
Dρ0

Dt
=
∂ρ0(X, t)

∂t
= 0 =⇒ ρ0(X, t) = ρ0(X) . (4.3)

To obtain the local form in the Eulerian description, note that (by the definition of J , cf. Eq.

(3.29)) ρ0(X)=ρ(x, t)J(X, t) and J̇=J ∇x · v (prove). Therefore,

Dρ0

Dt
=

D

Dt

[
ρ(x, t)J(X, t)

]
= J

Dρ

Dt
+ Jρ∇x · v = 0 , (4.4)

which implies

Dρ(x, t)

Dt
+ ρ(x, t)∇x · v(x, t) =

∂ρ(x, t)

∂t
+∇x ·

(
ρ(x, t)v(x, t)

)
= 0 . (4.5)

This expression of local mass conservation (continuity equation) takes the general form of a local

conservation law
∂(field)

∂t
+∇x · (field flux) = source . (4.6)

Let us now discuss a theorem that will be very useful in formulating and manipulating other

conservation laws. Consider the following 1D integral

I(t) =

∫ ϕ(X2,t)

ϕ(X1,t)

ψ(x, t)dx . (4.7)

Note that X1,2 are fixed here. Taking the time derivative of I(t) (Leibnitz’s rule) we obtain

İ(t) =

∫ ϕ(X2,t)

ϕ(X1,t)

∂tψ(x, t)dx+ ψ
(
ϕ(X2, t), t

)
∂tϕ(X2, t)− ψ

(
ϕ(X1, t), t

)
∂tϕ(X1, t) . (4.8)
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First recall that (generally in 3D)

V (X, t) = ∂tϕ(X, t) = v(x, t) . (4.9)

Then note that since X1 and X2 are fixed in the integral we can interpret the time derivative as

a material time derivative D/Dt. Therefore, we can rewrite Eq. (4.8) as

D

Dt

∫ ϕ(X2,t)

ϕ(X1,t)

ψ(x, t)dx =

∫ ϕ(X2,t)

ϕ(X1,t)

[
∂tψ(x, t) + ∂x

(
ψ(x, t)v(x, t)

)]
dx . (4.10)

The immediate generalization of this result to volume integrals over a time dependent domain Ω

reads
D

Dt

∫
Ω

ψ(x, t)dx3 =

∫
Ω

[
∂tψ(x, t) +∇x ·

(
ψ(x, t)v(x, t)

)]
dx3 . (4.11)

This is the Reynolds’ transport theorem which is very useful in the context of formulating conser-

vation laws. This is the same Osborne Reynolds (1842-1912), who is known for his studies of the

transition from laminar to turbulent fluid flows, and who gave the Reynolds number its name.

Using mass conservation, we obtain (prove)

D

Dt

∫
Ω

ρ(x, t)ψ(x, t)dx3 =

∫
Ω

ρ(x, t)
Dψ(x, t)

Dt
dx3 . (4.12)

This is very useful when we choose ψ(x, t) to be a quantity per unit mass. In particular, setting

ψ=1 we recover the conservation of mass.

Linear momentum balance (Newton’s second law) reads

Ṗ (t) =
D

Dt

∫
Ω0

ρ0(X)V (X, t)dX3 =
D

Dt

∫
Ω

ρ(x, t)v(x, t)dx3 = F (t) , (4.13)

where F (t) is the total force acting on a volume element Ω (do not confuse P with the first

Piola-Kirchhoff stress tensor of Eq. (3.37)). To obtain a local form of this law note that the total

force is obtained by integrating local tractions (surface forces) t(x, t) and body (volume) forces

b(x, t), i.e.

F (t) =

∫
∂Ω

t(x, t,n)ds+

∫
Ω

b(x, t)dx3 , (4.14)

where ∂Ω is the boundary of the volume element. Use Cauchy’s stress theorem of Eq. (3.34) and

the divergence (Gauss) theorem of Eq. (2.27) to obtain∫
∂Ω

t(x, t,n)ds =

∫
∂Ω

σ(x, t)nds =

∫
Ω

∇x ·σ(x, t)dx3 . (4.15)

Use then Reynold’s transport theorem of Eq. (4.12), with ψ replaced by the spatial velocity field

v, to transform the linear momentum balance of Eq. (4.13) into∫
Ω

[∇x · σ(x, t) + b(x, t)− ρ(x, t)v̇(x, t)] dx3 = 0 . (4.16)
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Since this result is valid for an arbitrary material volume, we obtain the following spatial (Eulerian)

local form of linear momentum conservation

∇x · σ + b = ρ v̇ = ρ (∂tv + v ·∇xv) . (4.17)

Note that this equation does not conform with the structure of a general conservation law in Eq.

(4.6). This can be achieved (prove), yielding

∂(ρv)

∂t
−∇x · (ρv ⊗ v − σ) = b . (4.18)

A similar analysis can be developed for the angular momentum. However, the requirement that

the angular acceleration remains finite implies that angular momentum balance, at the continuum

level, is satisfied if the Cauchy stress tensor σ is symmetric, i.e.

σ = σT , (4.19)

to be derived in the tutorial. We note that the symmetry of the Cauchy stress tensor emerges from

the conservation of angular momentum if the continuum assumption is valid at all lengthscales.

Real materials, however, may possess intrinsic lengthscales associated with their microstructure

(e.g. grains, fibers and cellular structures). In this case, we need generalized theories which

endow each material point with translational and rotational degrees of freedom, describing the

displacement and rotation of the underlying microstructure. One such theory is known as Cosserat

(micropolar) continuum, which is a continuous collection of particles that behave like rigid bodies.

Under such circumstances one should consider a couple-stress tensor (which has the dimensions

of stress × length) as well, write down an explicit angular momentum balance equation and recall

that the ordinary stress tensor is no longer symmetric.

The local momentum conservation laws can be expressed in Lagrangian forms. For example,

the linear momentum balance, Eq. (4.17), translates into (prove)

∇X · P +B = ρ0V̇ , (4.20)

where P is the first Piola-Kirchhoff stress tensor of Eq. (3.37) and B(X, t) = J(X, t)b(x, t).

This equation is extremely useful because it allows calculations to be done in a fixed undeformed

coordinate system X. It is important to note that one should also transform the boundary

conditions of a given problem from the deformed configuration (where they are physically imposed)

to the underformed configuration.
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B. The laws of thermodynamics

Equilibrium thermodynamics is a well-established branch of physics, whose modern incarnation

is deeply rooted in statistical mechanics. This framework, known as statistical thermodynamics,

builds on systematic coarse-graining of statistical descriptions of microscopic dynamics. It gives

rise to an effective macroscopic description of large physical systems through a small set of state

variables. In the spirit of this course, we do not follow the microscopic route of statistical mechanics

(a topic covered in complementary courses), but rather focus on a macroscopic perspective.

Let us consider the balance of mechanical energy (thermal energy is excluded here and will be

discussed soon). The external mechanical power Pext is simply the rate at which mechanical work

is being done by external forces, either boundary traction t or body forces b. It reads

Pext =

∫
∂Ω

t · vds+

∫
Ω

b · vdx3 . (4.21)

The external mechanical work is transformed into kinetic energy K and internal mechanical power

Pint. These are expressed as

K =

∫
Ω

1

2
ρv2 dx3 (4.22)

and

Pint =

∫
Ω

σ :L dx3 =

∫
Ω

σ :D dx3 . (4.23)

Therefore, mechanical energy balance reads

Pext = Pint + K̇ . (4.24)

It can be easily proven using Eqs. (4.17) and (4.21).

To arrive at the first law of thermodynamics we need to consider another form of energy —

thermal energy. This form of energy accounts for the random (microscopic) motion of particles,

which was excluded from the previous discussion. To properly describe this form of energy we

need two concepts, that of an internal energy U and that of thermal power Q. The internal energy

accounts for all microscopic forms of energy. Here we focus on mechanical and thermal energies,

but in general electric, magnetic, chemical and other forms of energy can be included. U can be

associated with a density u (per unit mass) and hence

U =

∫
Ω

ρ(x, t)u(x, t) dx3 . (4.25)
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Note that the total energy is the sum of kinetic and internal energies K+ U . The thermal (heat)

power Q is expressed, as usual, in terms of fluxes and sources

Q = −
∫
∂Ω

q ·n ds+

∫
Ω

r dx3 . (4.26)

q is the heat flux and r is a (volumetric) heat source (e.g. radiation). For simplicity we exclude r

from the discussion below. Finally, we note that the rate of change of internal energy is the sum

of rate of change of internal mechanical energy and thermal power

U̇ = Pint +Q , (4.27)

which can be regarded as a statement of the first law of thermodynamics. Alternatively, by

eliminating Pint between Eqs. (4.24) and (4.27) we obtain

K̇ + U̇ = Pext +Q , (4.28)

which is yet another statement of the same law. It has a clear physical meaning: external

mechanical work and heat supply are transformed into kinetic and internal energies. An important

point to note is that this law only tells us that one form of energy can be transformed into another

form, but does not tell us anything about the direction of such processes. This global law can be

readily transformed into a local form (prove), which reads

ρ u̇ = σ :D −∇x ·q . (4.29)

It is well known that many physical processes feature a well-defined direction, e.g. heat flows

from a higher temperature to a lower one. This is captured by the second law of thermodynamics.

To formulate the law we need two additional concepts, entropy and temperature. The total

entropy S is a measure of microscopic “disorder” and is well defined in the framework of statistical

mechanics. The absolute temperature T (a non-negative scalar), which is also a well defined

statistical mechanical concept, is introduced such that the entropy increase associated with a

thermal power Q is Q/T . The second law then reads

Ṡ ≥ −
∫
∂Ω

q ·n
T

ds+

∫
Ω

r

T
dx3 =

Q
T
, (4.30)

where the last equality is valid for space-independent T (otherwise, T is part of the integrands

and one cannot globally separate the heat power Q and the temperature T in the second law).

The inequality in (4.30) states that the increase in the entropy of a system is larger than (or
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equals to) the influx of entropy by heat (thermal power). When the system under consideration

is closed (e.g. the universe) the second law states that the entropy is an increasing function of

time (or constant), i.e. Ṡ ≥ 0. Note that sometimes the entropy production rate Σ is defined as

Σ= Ṡ − Q/T , which is non-negative.

Every macroscopic physical system, and consequently every theory of such systems, cannot

violate the non-negativity of the entropy production rate Σ. This is a serious and very useful

constraint on developing continuum theories of non-equilibrium phenomena. Yet, applying the

second law constraint to arbitrarily far from equilibrium phenomena is not trivial (e.g. it might

raise questions about the validity of the entropy concept itself) and will be further discussed later

in the course.

The most well-developed application, however, of the second law constraint emerges in the

context of Linear Response Theory describing systems that deviate only slightly from equilibrium

(i.e. when driving forces are weak). In this case, the entropy production rate Σ can be expressed

as a bilinear form in the deviation from equilibrium, defining a set of linear response coefficients.

These linear response coefficients must satisfy various constraints to ensure consistency with the

second law of thermodynamics. In fact, by invoking microscopic time reversibility Lars Onsager

showed that these coefficients possess additional symmetries that go beyond the second law of

thermodynamics, known as Onsager’s reciprocal relations. The Nobel Prize in Chemistry in 1968

was awarded to Onsager for this fundamental contribution (the prize citation referred to “the

discovery of the reciprocal relations bearing his name, which are fundamental for the thermo-

dynamics of irreversible processes”). It is worth mentioning in the context of linear irreversible

thermodynamics that Prigogine showed in 1945 that Onsager’s reciprocal relations imply that

the entropy production rate Σ attains a minimum under non-equilibrium steady-state conditions

(which was one of the major reasons for awarding him the Nobel prize in 1977). Prigogine’s

principle of minimum entropy production generated considerable excitement at the beginning,

but later on it was realized that this result (like Onsager’s reciprocal relations) is specific to small

deviations from equilibrium (linear response).

Let us consider a simple example of the implications of the second law of thermodynamics for

an isolated system that is composed of two subsystems of different temperatures T1 > T2. The

subsystems are separated by a wall that allows heat transport, but not mass or mechanical work

transport. Since the system as a whole is isolated and no mechanical work is involved, the first
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and second laws of thermodynamics read

Ṡ = Ṡ1 + Ṡ2 ≥ 0 and U̇ = U̇1 + U̇2 = 0 . (4.31)

While heat cannot flow into the system from the outer world, heat can possibly flow through the

wall separating the two subsystems, the rate of which is denoted as Q1→2. We assume that the

entropy and energy changes of each subsystem is a result of the heat transfer across the wall, i.e.

Ṡ1 = −Q1→2

T1

=
U̇1

T1

and Ṡ2 =
Q1→2

T2

=
U̇2

T2

. (4.32)

Substituting this in the second law we obtain

Ṡ = Q1→2

(
1

T2

− 1

T1

)
≥ 0 , (4.33)

which can be satisfied by

Q1→2 = A(T1 − T2) with A ≥ 0 (4.34)

to leading order in the temperature difference (resulting in Newton’s cooling law). Therefore, heat

flows from a higher temperature to a lower one.

To obtain a local version of the second law define an entropy density s(x, t) (per unit mass)

such that

S =

∫
Ω

ρ(x, t) s(x, t) dx3 , (4.35)

which immediately leads to (recall Eq. (4.30))

ρ ṡ+∇x ·(q/T ) ≥ 0 . (4.36)

Eliminating ∇x ·q between the first and second laws in Eqs. (4.29) and (4.36) we obtain

σ :D − ρ u̇+ Tρ ṡ− q ·∇xT

T
≥ 0 . (4.37)

Usually this inequality is split into two stronger inequalities

σ :D − ρ u̇+ Tρ ṡ ≥ 0 and q ·∇xT ≤ 0 . (4.38)

The second inequality is satisfied by choosing

q = −κ∇xT , (4.39)

where κ ≥ 0 is the thermal conductivity. This is Fourier’s law of heat conduction. The first

inequality in (4.38) is known as the dissipation inequality (or the Clausius-Planck inequality) and
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will play an important role later in the course. Any physical theory must satisfy this inequality.

We note that the dissipation inequality can be also expressed in terms of the Helmholtz free-

energy density f = u− Ts (per unit mass) as

σ :D − ρ ḟ − ρ s Ṫ ≥ 0 . (4.40)

Under isothermal conditions, Ṫ = 0, we have

σ :D − ρ ḟ ≥ 0 . (4.41)

C. Heat equations

Heat equations are manifestations of the first law of thermodynamic. To see this, substitute

Fourier’s law of Eq. (4.39) into the first law of Eq. (4.29) to obtain

ρ u̇ = σ :D + κ∇2
xT . (4.42)

This equation is transformed into a heat equation once we consider a constitutive law (see below)

for the rate of deformation D and the internal energy density u. In the simplest case, which

you know very well, we consider a non-deforming body D=0 such that the local internal energy

changes only due to heat flow. Therefore, we define the specific heat capacity through c Ṫ ≡ ρ u̇

and obtain

Ṫ = D∇2
xT , (4.43)

where here D ≡ κ/c is the thermal diffusion coefficient (the ratio of thermal conductivity and the

specific heat capacity). This is just the ordinary heat diffusion equation, which in fact remains

valid also for elastically deforming materials. Later in the course we will encounter more general

heat equations that emerge in the present of more complicated constitutive laws.

A small digression

Diffusion equations possess an interesting feature, which is not always appreciated and which

will teach us an important lesson about continuum physics. The modern microscopic theory of

diffusion (and Brownian motion) is one of the most well-understood problems in physics and one of

the greatest successes of statistical mechanics. To make things as simple and concrete as possible,

we focus here on particle diffusion in 1d. Within this theory, diffusion is described by a particle
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which makes a random walk along the x-axis, starting at x=0 when the clock is set to t=0. At

each time interval ∆t= 1 (in this discussion all quantities are dimensionless) the particle makes

a jump of size |∆x|=1 to the right or the left, with equal probability. Statistical mechanics tells

us (through the central limit theorem) that after a sufficiently long period of time (i.e. number

of jumps), the probability distribution function p(x, t) reads

p(x, t) =
e−

x2

2t

√
2πt

, (4.44)

i.e. a normal distribution with zero mean and variance which is just the time t. This continuous

probability distribution function is the solution of a diffusion equation of the form

∂tp(x, t) =
1

2
∂xxp(x, t) , (4.45)

which is a 1d version of Eq. (4.43) (with D= 1/2 and recall that it is dimensionless here), with

the initial condition

p(x, t=0) = δ(x) . (4.46)

This appears to be a strong result of continuum physics where we describe a physical system

on timescales and lengthscales much larger than atomistic, forgetting about the discreteness of

matter (think of this equation as describing the time evolution of an ink droplet spreading inside

a water tank, where p represents for the mass density of the ink). Is there actually a problem

here? Well, there is. Eq. (4.44) tells us that at time t after the initiation of the process, when the

probability was localized at x=0 (cf. Eq. (4.46)), there is a finite probability to find the particle

(e.g. an ink molecule) at an arbitrarily large x. The fact that this probability is exponentially

small is beside the point. The crucial observation is that it is non-zero, implying that information

propagated from x = 0 (at t = 0) infinitely fast. This violates fundamental physics (causality,

relativity theory or whatever).

On the other hand, we know from the microscopic description of the problem that

p(x, t) = 0 for |x| > t , (4.47)

i.e. that at most the particle could have made all of the jumps in one direction. That means that

in fact the probability propagates at a finite speed (in our dimensionless units the propagation

speed is 1), as we expect from general considerations.

So what went wrong in the transition from the microscopic description to macroscopic one?

The answer is that Eq. (4.44) is wrong when |x| becomes significantly larger than O(
√
t). A more
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careful microscopic analysis (not discussed here) actually gives rise to the following continuum

evolution equation for p(x, t)

∂tp(x, t) +
1

2
∂ttp(x, t) =

1

2
∂xxp(x, t) , (4.48)

which is a combination of a wave equation and a diffusion equation. The fastest propagation

of probability is limited by ordinary wave propagation of speed 1, exactly as we expect from

microscopic considerations. This equation reconciles the apparent contradiction discussed above,

showing that both Eqs. (4.44) and (4.47) are valid, just on different ranges of x for a given time

t. This shows that the continuum limit should be taken carefully and critically. Beware. And

you can also relax, the diffusion equation is in fact a very good approximation in most physical

situations of interest.

We note that Eq. (4.48) is another equation of continuum physics, known as the telegrapher’s

equation. It was originally derived in a completely different context, that of electric transmission

lines with losses, by Oliver Heaviside (1850-1925). This is the guy who invented the Heaviside

step function and formulated Maxwell’s equations using vector calculus in the form known to us

today (the original ones were much uglier). He also independently discovered the Poynting vector

(which is named after John Henry Poynting).

As noted above, the telegrapher’s equation in Eq. (4.48) contains in it a 1d scalar wave equation

(here for the probability distribution function p(x, t)). We will soon see that in the context

of reversible deformation, and when higher dimensions are considered, the tensorial nature of

deformation implies even more interesting and richer wave equations, and associated phenomena.

Stay tuned.

D. Objectivity (frame - indifference)

To conclude this part of the course we consider the important notion of objectivity or frame-

indifference. To quantify this idea we consider two observers that move (rotationally and trans-

lationally) one with respect to the other. For simplicity we assume that their watches are syn-

chronized and that at time t= 0 they agree on the reference configuration X of the body under

consideration. The motions observed by the two observers are related by the following change-of-

observer transformation

ϕ∗(X, t) = Q(t)ϕ(X, t) + y(t) , (4.49)
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where Q(t) is a proper time-dependent rotation matrix

QQT = I and det(Q) = +1 (4.50)

and y(t) is a time-dependent translation vector. A scalar ψ is classified as objective (frame-

indifferent) if it satisfies ψ∗=ψ. A spatial vector u is objective if u∗=Qu and a spatial tensor

a is objective if a∗=QaQT (we will try, for notational consistency, to denote spatial tensor by

lowercase symbols). Material/Lagrangian objective vectors and tensors remain unchanged under

change-of-observer transformation. Hybrid quantities, such as two-point tensors (which have a

mixed spatial-material nature), have other objectivity criteria (see below).

To see how this works, consider the spatial velocity field v = ∂tϕ. Then we have

v∗ = ∂tϕ
∗ = Q∂tϕ+ Q̇ϕ+ ẏ = Qv + Q̇ϕ+ ẏ . (4.51)

Therefore, the velocity field is in general not objective. It can be made objective if we restrict

ourselves to time-independent rigid transformation in which Q̇ = ẏ = 0. Likewise, the spatial

acceleration field a = v̇ is not an objective vector. This means that the linear momentum balance

equation (i.e. Newton’s second law) is not objective under the transformation in Eq. (4.49). This

happens because time-dependent Q(t) and y(t) generate additional forces (centrifugal, Coriolis

etc.). This is well-known to us: classical physics is invariant only under Galilean transformations,

i.e. when Q̇ = 0 and ÿ = 0. The classical laws of nature are the same in all inertial frames (and

we know how to account for forces that emerge in non-inertial frames).

The important point to note is that for constitutive laws, i.e. physical laws that describe

material behaviors, people sometimes demand something stronger: they insist that these laws

remain unchanged under the change-of-observer transformation of Eq. (4.49) for general Q(t) and

y(t). That is, even though Newton’s second law is objective only under Galilean transformations,

one usually demands constitutive laws to be objective under a more general transformation. This

is called “The principle of material frame-indifference”. To see how this works, consider then the

deformation tensor F . We have

F ∗=∇Xϕ
∗(X, t)=Q∇Xϕ(X, t)=QF . (4.52)

Therefore, F does not transform like an objective tensor, but rather like an objective vector. This

is because it is not a true tensor, but rather a two-point tensor (a tensor that connects two spaces,

X and x in this case). Two-point tensors (i.e. tensors of mixed spatial-material nature), that
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satisfy A∗=QA under a change-of-observer transformation, are regarded as objective. Hence, F

is regarded as an objective two-point tensor.

To see the difference between material and spatial objective tensors, consider the right Cauchy-

Green deformation tensor C (see Eq. (3.26)) and the left Cauchy-Green deformation (Finger)

tensor b (see Eq. (3.28)). For the former, we have

C∗ = F ∗TF ∗ = F TQTQF = F TF = C , (4.53)

i.e. C is an objective material tensor. For the latter, we have

b∗ = F ∗F ∗T = QFF TQT = QbQT , (4.54)

i.e. b is an objective spatial tensor.

The Cauchy stress σ is an objective tensor, i.e. σ∗ = QσQT . This can be easily shown by

using Eq. (3.34), t=σn, and by noting that both t and n are objective vectors. Consider then

the velocity gradient, L=∂v/∂x= Ḟ F−1, for which we have

L∗F ∗ = Ḟ ∗ =⇒ L∗QF = QḞ + Q̇F =⇒ L∗ = QLQT + Q̇QT . (4.55)

Therefore, L is not an objective tensor and hence if one adopts “The principle of material frame-

indifference” then L cannot be used to formulate physical laws. However, by noting thatQQT = I

implies Q̇QT = −QQ̇T , we immediately conclude that the rate of deformation tensor D is

objective. Many physical theories involve the time rate of change of a tensor, for example a stress

rate. However, it is immediately observed that σ̇ is not an objective tensor. To see this, note

that Eq. (4.55) implies Q̇QT =W ∗−QWQT =⇒ Q̇=W ∗Q−QW and write

σ̇∗ = Q̇σQ
T

+Qσ̇QT +QσQ̇
T

= (W ∗Q−QW )σQT +Qσ̇QT +Qσ
(
QTW ∗T −W TQT

)
= W ∗σ∗ + σ∗W ∗T +Q

(
σ̇−Wσ− σW T

)
QT . (4.56)

Use now W T = −W to rewrite the last relation as

σ̇∗ + σ∗W ∗ −W ∗σ∗ = Q (σ̇+ σW −Wσ)QT , (4.57)

or equivalently as

σ̇∗ + [σ∗,W ∗] = Q (σ̇ + [σ,W ])QT , (4.58)
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where [·] is the commutator of two tensors. This result shows that indeed σ̇ is not an objective

tensor, but also suggests that
4
σ ≡ σ̇ + [σ,W ] (4.59)

is an objective stress rate tensor. This derivative is called Jaumann derivative and is extensively

used in solid mechanics. It is important to note that there is no unique way to define an objective

tensorial time derivative, and in fact there are infinitely many others (some of which are rather

common). The Jaumann derivative, as well as other objective stress rates, can be used to formulate

physical theories.

What is the basic status of objectivity? Is it a fundamental principle of classical physics or

is it just a very useful approximation (that, by definition, has limitations)? Since macroscopic

constitutive laws should ultimately result from systematic coarse-graining of microscopic physics,

and since the latter obviously satisfy Newton’s second law, there must exist situations in which

objectivity is violated. In particular, in situations in which centrifugal and Coriolis forces cannot

be neglected at the molecular level, objectivity cannot be fully satisfied. On the other hand,

in many situations this is a very useful approximation that allows us to further constrain the

structure of constitutive laws. So we must conclude that objectivity cannot be a “principle” of

physics, rather an approximation (possibly a very useful/fruitful one).

While objectivity is widely invoked, its basic status has been the subject of many heated

debates. An example from the 1980’s can be found at: Physical Review A 32, 1239 (1985),

and the subsequent comment and reply. See also some insightful comments made by de Gennes,

Physica A 118, 43 (1983).
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Constitutive laws

Up to now we considered measures of deformation and the concept of stress, conservation laws,

the laws of thermodynamics and symmetry principles. These are not enough to describe the

behavior of materials. The missing piece is a physical theory for the response of the material to

external forces, the so-called constitutive relations/laws. To see the mathematical necessity of

constitutive laws, consider the momentum balance equations of (4.17) in 2D, in the quasi-static

limit (no inertia) and neglecting body forces

∂xσxx + ∂yσxy = 0 and ∂xσyx + ∂yσyy = 0 . (4.60)

These are two equations for 3 fields. Additional information about how stresses are related to the

state of deformation of a body is required.

In the rest of the course we will consider physical theories for the behavior of materials. These

must be consistent with the laws of thermodynamics discussed above and to comply with the

principle of objectivity (frame-indifference, in its either weak or strong form). While thermody-

namics, objectivity and symmetry principles seriously limit and constrain physical theories and

are very useful, to understand material behaviors we need additional physical input.

Reversible processes: non-dissipative constitutive behav-
iors

The simplest response of a solid to mechanical driving forces is elastic. By elastic we mean

that the response is reversible, i.e. that when the driving forces are removed the system relaxes

back to its original state. Put in other words, elasticity means that the system “remembers” its

undeformed state, which can serve as a reference configuration. Later in the course we will discuss

irreversible deformation processes in which the internal state of a physical system evolves, and no

recovery of the original state is observed when external constraints are removed. When an elastic

system is deformed, energy is being stored in it. Suppose that the deformation is described by

the Green-Lagrange strain measure E, cf. Eq. (3.26), then the elastic energy density is described

by the functional u(E, s). All of the physics of elasticity is encapsulated in this strain-energy

functional.
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V. THE LINEARIZED FIELD THEORY OF ELASTICITY

A. General derivation for anisotropic and isotropic materials

In many situations solids deform only slightly within the range of relevant driving forces. Think,

for example, about your teeth when you eat a nut or about all metal objects around you. This is

true for “hard” solids. However, things are different when we consider “soft” solids like rubbers

(e.g. your car tire), gels or various biological materials (e.g. your skin). While they also deform

elastically, they require a finite deformation description, as will be explained later in the course.

If the deformation remains small, we can focus on situations in which the displacement gradient

is small |H| � 1 (in fact we also require small rotations, see below). Under these conditions,

we can linearize the Green-Lagrange strain E ' ε = 1
2
(H +HT ), cf. Eq. (3.27), and use only

the infinitesimal strain tensor ε. This will make our life much easier (but please do not relax, it

will be still quite tough nonetheless). But there is a price; first, as we already discussed, ε is not

rotationally invariant. A corollary of this lack of rotational invariance is that a constitutive law

formulated in terms of ε will not be objective. To see this, note that

E∗ =
1

2
(C∗ − I) =

1

2
(C − I) = E . (5.1)

That is, E is an objective material tensor, which immediately implies that ε is not. So already

in our first discussion of a constitutive relation we violate objectivity. We can easily adhere to it

formally, but the practical price will be high as it will force us to go nonlinear. In a huge range

of problems, though, rotations remain small and ε does a remarkable job in properly describing

the relevant physics.

Another great advantage of the linearity assumption is that we should no longer distinguish

between the undeformed X and deformed x configurations. The reason is that while these

configurations are of course distinct in the presence of deformation, and as the displacements

themselves can be large the difference can be large itself, gradients remain small and all physical

quantities are indistinguishable to linear order. Moreover, the convective term in the material

derivative plays no role as it is intrinsically nonlinear. The linearized strain tensor takes the form

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(5.2)

and we can also identify D with ε̇. Finally, since in the context of the linearized theory of

elasticity mass density variations are small (the mass density appears only as a multiplicative
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factor in products and hence effectively contributes only to higher orders), we can use quantities

per unit volume rather than quantities per unit mass. In particular, we define ρ u≡ ū and ρ s≡ s̄,

and for the ease of notation drop the bars.

Under these conditions, the dissipation inequality of the second law of thermodynamics of Eq.

(4.38) reads σ : ε̇− u̇ + T ṡ ≥ 0. To proceed, we express u̇(ε, s) in terms of variations in ε and s

and substitute in the above inequality to get(
σ − ∂u

∂ε

)
: ε̇+

(
T − ∂u

∂s

)
ṡ ≥ 0 . (5.3)

Since elastic response is reversible, we expect an equality to hold. Moreover, the strain and the

entropy can be varied independently. Therefore, the second law analysis implies

σ =
∂u

∂ε
and T =

∂u

∂s
. (5.4)

There is a related, more formal, approach to derive these relations. We focus on (5.3), without

assuming an equality. However, we do note that u and σ are independent of ε̇. That is a basic

property of an elastic response: the rate at which a state is reached makes no difference. Therefore,

the only way to avoid violating the inequality under all circumstances is to set the brackets to zero

(the same argument holds for the entropy term). This is termed the Coleman-Noll procedure.

The resulting relations are thermodynamic identities that are derived from the second law

of thermodynamics. The first one says that the stress σ is thermodynamically conjugate to the

strain ε. The strain energy functional takes the form (we assume that the entropy does not change

with deformation and hence is irrelevant here)

u =
1

2
σij εij , (5.5)

where linearity implies a tensorial linear relation between the stress and the strain σ = Cε (also

explaining the appearance of 1/2 in the expression above for the strain energy density) or in

components

σij = Cijklεkl . (5.6)

The response coefficients, Cijkl, known as the elastic constants (the forth order tensor C is known

as the stiffness tensor), are given by

Cijkl =
∂2u

∂εij∂εkl
. (5.7)

Equation (5.6) is a constitutive relation, i.e. a relation between the stress (driving force) and the

strain (response), which is a generalization of Hooke’s relation for an elastic spring (F = −k x).



37

How many independent numbers are needed to describe C? Naively, one would think that

34 = 81 independent numbers are needed. However, C possesses various general symmetries that

significantly reduce the amount of independent numbers, even before considering any specific

material symmetries. First, the symmetry of the Cauchy stress tensor implies, through Eq. (5.6),

that

Cijkl = Cjikl . (5.8)

Furthermore, the symmetry of the infinitesimal strain tensor, ε = εT , implies

Cijkl = Cijlk . (5.9)

These two symmetries imply that we need only 36 independent numbers (6 for the first two

indices and 6 for the last two). Furthermore, since C is obtained through a second-order tensorial

derivative of the energy density u, see Eq. (5.7), interchanging the order of differentiation suggests

an additional symmetry of the form

Cijkl = Cklij . (5.10)

The latter imposes 15 additional constraints (6×5
2

), which leaves us with 21 independent numbers.

Therefore, in the most general case C contains 21 independent elastic coefficients (in fact, C can

be represented as a 6 by 6 symmetric matrix — which depends on 21 independent numbers —,

where the components of σ and ε are represented as vectors with 6 components).

This is the extreme anisotropic case. However, usually materials exhibit some symmetries that

further reduce the number of independent elastic constants. For example, composite materials (e.g.

fiberglass, a glass-fiber reinforced plastic) may be invariant with respect to various translations

and rotations. Here we focus on isotropic materials. Since the energy functional is a scalar, it

depends only on invariants of ε, which can be written as tr ε, tr ε2 and tr ε3 (sometimes people

use other invariants that are linearly dependent on these). Since in a linear theory the energy

must be quadratic in the strain, only two combinations, (tr ε)2 and tr ε2, can appear and hence

u(ε) =
λ

2
(tr ε)2 + µ tr ε2 . (5.11)

It is important to note that we can replace ε by E in this energy functional to obtain the simplest

possible nonlinear elastic material model

u(E) =
λ

2
(trE)2 + µ trE2 . (5.12)

This constitutive law, termed the Saint Venant-Kirchhoff material model, is both rotationally

invariant and objective. Alas, it is also nonlinear due to the inherent geometric nonlinearity in
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E. This constitutive law is the simplest nonlinear elastic model because it is constitutively linear,

i.e. u(E) is quadratic in E, but is geometrically nonlinear (due to the nonlinear dependence of E

on H). Here we adhere to a constitutive law which is linear in H , and hence use Eq. (5.11).

Equation (5.11) shows that isotropic linear elastic materials are characterized by only two

elastic constants, the Lamé constants. µ is also known as the shear modulus (can we say something

about the sign of λ and µ at this stage?). Using the following differential tensorial relation

d trAn

dA
= n(An−1)T , (5.13)

the constitutive law (Hooke’s law) can be readily obtained

σ = λ tr ε I + 2µ ε (5.14)

or in components

σij = λεkk δij + 2µ εij . (5.15)

The stiffness tensor can be written as Cijkl = λδijδkl + µ(δikδjl + δilδjk). It is important to stress

that Hooke’s law is simply a perturbation theory based on a gradient expansion. This is entirely

analogous to the constitutive law for Newtonian fluids, which is based on a velocity gradient

expansion (µ in Hooke’s law plays the role of shear viscosity and λ the role of bulk viscosity).

Let us first consider a few homogeneous deformation situations. Consider a solid that is strained

uniaxially (say in the x-direction) by an amount εxx = ε. The stress state of the solid is described

by σxx = σ and all of the other components vanish (because the lateral boundaries are free).

Symmetry implies that the strain response is εij = 0 for i 6= j and εyy = εzz = ε⊥. Our goal is to

calculate the response σ and ε⊥ in terms of the driving ε. Using Eq. (5.15) we obtain

0 = λ(ε+ 2ε⊥) + 2µε⊥ and σ = λ(ε+ 2ε⊥) + 2µε . (5.16)

Solving for the response functions σ(ε) and ε⊥(ε) we obtain

ε⊥ = − λ

2(λ+ µ)
ε ≡ −ν ε and σ =

µ(3λ+ 2µ)

λ+ µ
ε ≡ E ε . (5.17)

E is known as Young’s modulus and ν as Poisson’s ratio. These response coefficients are most

easily measured experimentally and are therefore extensively used. In many cases, Hooke’s law is

expressed in terms of them (derive). The latter analysis immediately tells us something about ν

in a certain limit.
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Let us then consider an isotropic compression of a solid. In this case we have σxx = σyy =

σzz = −p, where p is the hydrostatic pressure, and εxx = εyy = εzz = ε (all other components of

the stress and strain tensors vanish). We then have

− p =
3λ+ 2µ

3
tr ε ≡ K tr ε . (5.18)

Noting that the relative change in volume is given by δV/V = detF − 1 = (1 + εxx)(1 + εyy)(1 +

εzz) − 1 ' tr ε, we see that K is the bulk modulus, which we are already familiar with from

thermodynamics, K = −V ∂p/∂V . Using the bulk modulus we can express the energy functional

of Eq. (5.11) as

u(ε) =
1

2
K(tr ε)2 + µ

(
εij −

1

3
trε δij

)2

. (5.19)

The components in the second brackets are the components of the deviatoric strain tensor, εdev ≡

ε − 1
3

trε I, where tr εdev = 0. The representation in Eq. (5.19) shows that the total strain

energy can be associated with a deviatoric (shear-like) part, weighted by the shear modulus

µ, and a volumetric (dilatational) part, weighted by the bulk modulus K. Another important

implication of this representation is that µ and K multiply terms which are positive definite and

independently variable. The importance of this observation is that thermodynamics implies that

at (stable) equilibrium the (free) energy attains a minimum and hence u must be positive under

all circumstances. Since the deformation can be either volume conserving, tr ε = 0, or isotropic,

ε ∝ I, we must have

µ,K > 0 . (5.20)

This has interesting implications for other elastic constants. For example, it tells us that λ ≥

−2µ/3, which shows that λ is not necessarily positive. Taking the two extreme cases, λ = −2µ/3

and λ� µ, we obtain the following constraint on Poisson’s ratio

− 1 ≤ ν ≤ 1

2
. (5.21)

Therefore, while a negative ν might appear counterintuitive (as it implies that a solid expands in

the directions orthogonal to the uniaxial stretch direction), it does not violate any law of physics.

An example for a natural material with a Poisson’s ratio of nearly zero is cork, used as a stopper

for wine bottles.

In the last few decades there has been an enormous interest in materials with unusual values

of Poisson’s ratio. In particular, materials with a negative Poisson’s ratio were synthesized (they

are termed auxetic materials), see the review article in Nature Materials, “Poisson’s ratio and
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modern materials”, Nature Materials 10, 823–837 (2011) (see http://www.nature.com/nmat/

journal/v10/n11/pdf/nmat3134.pdf). You may also want to look at: http://silver.neep.

wisc.edu/~lakes/Poisson.html. Such materials are a subset of a larger class of materials known

as “Metamaterials”. Metamaterials are artificial materials designed to provide properties which

may not be readily available in nature, and can be very interesting and useful.

The power and limitations of the continuum assumption can be nicely illustrated through

a discussion of the evolution of the concept of Poisson’s ratio, from Poisson’s original paper

in 1827, which based on the molecular hypothesis, through the subsequent development based

on the competing continuum hypothesis, to the explosion of research in this direction in recent

decades based on a better microscopic/mesoscopic understanding of the structure of materials

and computational capabilities.

The upper bound of ν also have a clear physical meaning. In a uniaxial test we have

tr ε = (1− 2ν)ε , (5.22)

which immediately tells us that incompressible materials, i.e. materials for which tr ε = 0, have

ν = 1/2. In fact, the incompressibility limit is a bit subtle. To see this, recall Eq. (5.18),

−p = K tr ε. Obviously, a finite pressure can be applied to an incompressible material. This

means that in the incompressibility limit we have tr ε → 0 and K → ∞, while their product is

finite. It is also clear that no work is invested in applying a pressure to an incompressible material

and no energy is being stored. Indeed, in the incompressibility limit we have K(tr ε)2 → 0. Note

also that while K ∝ (1 − 2ν)−1 diverges in the incompressibility limit, the shear modulus µ and

Young’s modulus E remain finite. Finally, we stress that the bounds on Poisson’s ratio in Eq.

(5.21) are valid for isotropic materials. Anisotropic materials can, and actually do, violate these

bounds.

Before we move on to derive the equations of motion for a linear elastic solid, we note a few

properties of the linearized (infinitesimal) strain tensor ε. First, as we stressed several times above,

it is not invariant under finite rotations (prove). That means that even if the relative distance

change between material points remains small, ε cannot be used when rotations are not small. In

that sense it is not a true strain measure. Second, the components of ε are not independent. The

reason for this is that ε is derived from a continuously differentiable displacement field u. The

resulting relations between the different components of ε, ensuring that the different parts of a

material fit together after deformation, are termed “compatibility conditions”. In 3D there are 6

such conditions, making a problem formulated in terms of strain components very complicated,

http://www.nature.com/nmat/journal/v10/n11/pdf/nmat3134.pdf
http://www.nature.com/nmat/journal/v10/n11/pdf/nmat3134.pdf
http://silver.neep.wisc.edu/~lakes/Poisson.html
http://silver.neep.wisc.edu/~lakes/Poisson.html
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and in 2D there is only one compatibility condition, which reads

∂yyεxx + ∂xxεyy = 2∂xyεxy . (5.23)

Finally, note that compatibility is automatically satisfied if the displacement field is used directly.

The equation of motion describing linear elastic solids is readily obtained by substituting the

constitutive relation (Hooke’s law) of Eq. (5.15) into the momentum balance equation of (4.17),

taking the form

(λ+ µ)∇ (∇ · u) + µ∇2u+ b = ρ∂ttu . (5.24)

It is called the Navier-Lamé equation. It accounts for a huge range of physical phenomena and

can easily serve as the basis for a two-semester course. In spite of its linearity, its solutions in 3D

and/or under dynamic situations might be very complicated and require (sometimes non-trivial)

numerical methods.

There are, however, many situations in which analytical tools can be employed. One typical

situation is when we are not interested in the exact solution, with all the π’s 2’s etc., but rather

in the way the solution depends on the material’s parameters, loading and geometry of a given

problem. In this case we invoke everything we have at hand: physical considerations, symmetries,

dimensional analysis etc. Let us demonstrate this in two examples (both are fully analytically

tractable, but they will serve our purpose here).

Example: Surface Green’s function

Consider a linear elastic, isotropic, half-space which is loaded at the flat surface by a concen-

trated force. We assume that the force is applied to an area which is small compared to the

scales of interest (this will be a recurring theme later in the course), hence the pressure at the

surface (z = 0) takes the form pz(x, y, z = 0) = Fzδ(x)δ(y), where the x − y plane is parallel

to the surface and z is perpendicular to it (note that pz = −σzz). Focus then on the shape of

the deformed (originally flat) surface, i.e. on uz(x, y, z = 0). What form can it take? First, the

azimuthal symmetry of the force with respect to the surface, implies that uz depends on x and y

only through the radius r. Second, linearity implies that it must be proportional to Fz. Finally,

since Fz has the dimension of force and uz has the dimension of length, we need another quantity

that involves force dimension. The only quantity available in the problem is the elastic modulus
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E (or µ). Put all these ingredients together, we must have

uz(r, z=0) ∼ Fz
E r

. (5.25)

This gives us the shape of the deformed surface. Note that since there is no lengthscale in the

problem, the shape is scale-free. Of course the singularity at r → 0 is not physical, it simply

means that as we approach the applied force the details of how it is applied, as well as material

nonlinearities, matter and actually regularize the singularity. If we compare our result to the

exact one we discover that we indeed only missed a prefactor of order unity, which takes the

form (1− ν2)/π. Since we have considered a concentrated force, our result is valid for any surface

pressure distribution, i.e. we have a calculated a Green’s function. Therefore, for a general surface

pressure distribution pz(x, y, z = 0), we have

uz(x, y, z=0) =
1− ν2

π E

∫
pz(x

′, y′, z = 0)dx′dy′√
(x− x′)2 + (y − y′)2

. (5.26)

Example: Hertzian contact

Consider a linear elastic sphere of radius R that is pressed against an infinitely rigid plane

by a force F . This problem was considered (and solved) by Hertz in 1882 and is known as the

Hertzian contact problem (in fact, Hertz considered two deforming spheres). It signaled the birth

of contact mechanics and is of enormous importance and range of applications. These span the

full range from friction and tribology of small structures, through earthquakes in the earth crust

to rubble piles in the solar system. In order to get the essence of Hertz’s solution without actually

solving the partial differential equations we need a physical insight, a geometrical insight and a

constitutive relation. Denote the distance by which the sphere approaches the plane by δ and

the radius of the circular contact that is formed by a. The crucial physical question to ask (and

to answer, of course) is what the typical lengthscale of the strain distribution is. Since strains

are built in the sphere only because of the formed contact, we expect the strain distribution to

be concentrated on a scale a (where the rest of the sphere responds essentially in a rigid body

manner). Therefore, the displacement δ is accumulated on a scale a near the surface and the

typical strain is

ε ∼ δ

a
. (5.27)

This is the physical insight we needed. The geometrical observation is simple and reads

a2 ∼ δR , (5.28)
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i.e. for a given displacement δ the contact area is linear in the sphere’s radius R (to see this simply

cut from the bottom of a sphere of radius R a piece of height δ and estimate the cut area). Note

also that the last equation implies that a�R since δ is small. Using the constitutive relation,

Hooke’s law, we have

p0 ∼
F

a2
∼ Eε ∼ E δ

a
⇒ F ∼ Eδa , (5.29)

where p0 is a typical pressure. Using the last two equations, we can calculate the 3 relevant

“response” functions a(F ;R,E), δ(F ;R,E) and p0(F ;R,E) to be

a ∼
(
FR

E

)1/3

, δ ∼
(

F 2

RE2

)1/3

, p0 ∼
(
FE2

R2

)1/3

. (5.30)

Therefore, we managed to express the response quantities in terms of the driving force (F ),

geometry (R) and constitutive parameters (E). These players (i.e. the driving forces, geometry

and constitutive relations) are generic players in our game. Comparing the resulting expressions

above to the exact ones indeed shows that they are correct to within numerical constants of

order unity. These results are rather striking. How come a linear theory gave rise to a nonlinear

response, i.e. a nonlinear dependence of the response quantities on the driving force F? The

answer is that nonlinearities were hidden in the geometry of the problem. In other words, the

fact that the contact area is a variable that depends self-consistently on the deformation, but is

unknown a priori, makes the problem effectively nonlinear. Contact problems are highly nonlinear

even within the framework of a linear elastic field theory. As a final comment, we note that p0

represents the pressure at the center of the contact. The pressure must drop to zero at the contact

line, r=a (r is measured from the center). The result (not derived here) reads

p(r, z=0) = p0

√
1− r2

a2
, (5.31)

where z=0 is the location of the rigid plane. This shows that while the pressure is continuous at

the contact line, its derivative is not.

Before we consider further simplifications of the Navier-Lamé equation of (5.24), let us explore

some of their general properties. For that purpose, recall the identity∇2u=∇(∇·u)−∇×(∇×u).

Applying it to the Navier-Lamé Eq. (5.24), in the absence of body forces (b = 0) and under

equilibrium (static) conditions (no inertia), we obtain

(λ+ 2µ)∇ (∇ · u)− µ∇× (∇× u) = 0 . (5.32)
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Acting with the divergence operator on this equation, we obtain

∇2 (∇ · u) = 0 , (5.33)

since ∇·(∇×A) = 0 for any vector field A. This shows that under equilibrium (static) conditions

∇·u satisfies Laplace’s equation, i.e. it is harmonic. Operating then with the Laplacian operator

on the Navier-Lamé Eq. (5.24), we obtain

∇2∇2u = 0 , (5.34)

i.e. under equilibrium (static) conditions u satisfies bi-Laplace’s equation, i.e. it is a bi-harmonic

vector field. These results are useful in various contexts.

B. 2D Elasticity

We now turn to discuss further simplifications of the Navier-Lamé Eq. (5.24). In many

situations the dynamics of a linear elastic body can be approximated as two-dimensional.

1. Scalar elasticity

The simplest possible such situation is when the only non-vanishing component of the displace-

ment field is given by uz(x, y, t). This physical situation is termed anti-plane deformation. In this

case, the Navier-Lamé Eq. (5.24) reduces to

µ∇2uz = ρ∂ttuz , (5.35)

which is a scalar wave equation. cs =
√
µ/ρ is the shear wave speed. Let us focus first on static

situations in which this equation reduces to

∇2uz = 0 , (5.36)

i.e. uz satisfies Laplace’s equation (a harmonic function). Laplace’s equation emerges in many

branches of physics (electrostatics, fluid mechanics etc.). The theory of complex variable functions

offers very powerful tools to solve 2D problems. We first discuss this approach for Laplace’s

equation in (5.36). Let us first briefly recall some fundamentals of complex functions theory. Let

z be a complex variable, z = x+ iy. A function f(z) is called analytic if it satisfies

∂xf(z) = f ′(z) and ∂yf(z) = if ′(z) . (5.37)
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Writing f(z) as f(z) = u(x, y) + iv(x, y), Eq. (5.37) implies

f ′(z) = ∂xf(z) = ∂xu+ i∂xv = −i∂yf(z) = ∂yv − i∂yu , (5.38)

leading to the well-known Cauchy-Riemann conditions

∂xu = ∂yv and ∂xv = −∂yu . (5.39)

Eq. (5.37) also implies the following operator relation

∂z =
1

2
(∂x − i∂y) . (5.40)

Recalling that the complex conjugate of z is z̄ = x− iy, we also have

∂z̄ =
1

2
(∂x + i∂y) . (5.41)

Any complex function f(x, y) can be represented as f(x, y) = g(z, z̄). Therefore, an analytic

function is a function that is independent of z̄. This observation immediately shows that any

analytic function is a solution of Laplace’s equation, e.g. the one in Eq. (5.36). To see this we

note that

∇2 = ∂xx + ∂yy = 4∂z∂z̄ . (5.42)

Therefore,

uz(x, y) = <[f(z)] or uz(x, y) = =[f(z)] , (5.43)

where f(z) is sometimes called a complex potential (note the analogy with electric potential in

electrostatics). Choosing the real or imaginary part is a matter of convenience. The specific

solution f(z) is selected so as to satisfy a specific set of boundary conditions. The stress tensor

(in this case only the σzx and σzy components do not vanish) is given by (prove)

σzy + iσzx = µf ′(z) , (5.44)

when one chooses uz(x, y) = =[f(z)].

Example: Screw dislocations

Later in the course we will work out a more complicated example of how these powerful tools

help us solving important problems. Here we would like to consider a simple example. For that aim

we introduce an object called a “dislocation”. Dislocations will appear later in the course as the
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carriers of plastic deformation in crystalline and polycrystalline materials, and are very important

and interesting objects. For our purposes here we define a dislocation as a continuum object that

carries with it a topological charge and focus only on the static linear elastic consequences. By

“topological charge” we mean that if we integrate the displacement field in a close loop around

the dislocation core (where we define the origin of our coordinate system) we obtain a finite value,

i.e. ∮
duz = b . (5.45)

This implies the existence of a branch cut. The magnitude of the topological charge, b, is the size

of the so-called Burgers vector b, b= |b| (named after the Dutch physicist Jan Burgers, who is

also known for the famous fluid mechanics equation). In this case we have b= b ẑ. Note that a

dislocation is a line (and not a point) defect, which extends along the z-direction. Translation

symmetry along this direction allows for a 2D treatment. Obviously, the generation of a dislocation

is neither a linear process, nor an elastic one. Still, once it exists, we can ask ourselves what the

linear elastic fields generated by the topological charge are. The field equation is (5.36) and the

boundary condition is given by Eq. (5.45). The stress must vanish far away from the topological

charge that generates it. As noted above, the boundary condition implies the existence of a

branch cut. Linearity implies that uz ∼ b. We can meet all of these constraints and solve the field

equation by choosing

uz =
b

2π
=[log z] =

b θ

2π
. (5.46)

Recall that log z = log(reiθ) = log r + iθ. This is a solution because log z has the proper branch

cut, it is analytic outside the branch cut and it satisfies∮
duz =

b

2π

∫ π

−π
dθ = b . (5.47)

Using Eq. (5.44) we obtain

σzy + iσzx =
µb

2π

x− iy
x2 + y2

∼ µb

r
. (5.48)

Such a dislocation is known as a screw dislocation. As we said above, dislocations are very

interesting objects. Here, by looking at the linear elastic consequences of dislocations, we already

see one aspect of it. The linear elastic stress field diverges as 1/r near the core of a dislocation.

The size of the Burgers vector b is atomic (typically a lattice spacing). The linear elastic solution

is valid at distances larger than the dislocation core, whose size c is typically of the order of a

few atomic spacings. The detailed structure of the topological defect within the core regularizes

the linear elastic divergence. What happens at large distances? The stress (and strain) fields of
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a dislocation decay very slowly in space, an observation that has profound consequences. To see

this, let us calculate the energy of a single dislocation (per unit length in the z-direction)

U =

∫
u dxdy =

∫ R

c

1

2
σijεijrdrdθ ∼ µb2

∫ R

c

rdr

r2
= µb2 log

(
R

c

)
, (5.49)

where R is the macroscopic size of the system. We see that the energy of a single dislocation

diverges logarithmically with the size of the system. That means that when many dislocations

are present (a number to bear in mind for a strongly deformed metal is 1015m−2), they are

strongly interacting. Dislocations are amongst the most strongly interacting objects in nature. In

addition, they are also amongst the most dissipative objects we know of, but that has to do with

their motion, which we did not consider here.

2. Conformal invariance

Many equations of mathematical physics possess an important and very useful property called

conformal invariance. A conformal transformation/mapping between the complex planes ω and z

is defined as

z = Φ(ω) , (5.50)

where Φ(ω) is an analytic function with a non-vanishing derivative, i.e. Φ′(ω) 6= 0. Conformal

means (nearly literally) angle-preserving. To see this consider an infinitesimal line element in the

ω-plane, dω, and its image in the z-plane, dz. They are related by

dz = Φ′(ω)dω . (5.51)

However,

Φ′(ω) = |Φ′(ω)|ei arg[Φ′(ω)] (5.52)

which means that every two infinitesimal line elements dω going through the point ω0 are mapped

into their images dz going through z0 = Φ(ω0) by a common expansion/contraction (determined

by |Φ′(ω0)|) and a common rotation (determined by the angle arg [Φ′(ω0)]). Therefore, the relative

angle between them is preserved.

If a field equation is invariant under such a conformal transformation/mapping, then we can

solve a given problem in a simple domain and immediately get the solution for a (more) compli-

cated domain by a suitably chosen conformal transformation. This is a powerful mathematical

tool. An example for a conformally invariant field equation is Laplace’s equation in (5.36). To
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show this we need to prove that any solution f(z) of Laplace’s equation in the z-plane remains

a solution in the ω-plane under a conformal transformation g(ω) = f(Φ(ω)). For this particular

equation this is automatically satisfied since g(ω) is also an analytic function (because it is a

composition of two harmonic functions). However, it would be useful to see how it works. First,

note that we have

∂ωf(Φ(ω)) = Φ′(ω)∂zf(z) , (5.53)

i.e. ∂ω = Φ′(ω)∂z, which immediately implies ∂ω̄ = Φ′(ω)∂z̄. We then have

∂ω̄∂ωf(Φ(ω)) = ∂ω̄ [Φ′(ω)∂zf(z)] =

∂zf(z)∂ω̄Φ′(ω) + Φ′(ω)∂ω̄∂zf(z) = |Φ′(ω)|2∂z̄∂zf(z) = 0 . (5.54)

Therefore,

∂ω̄∂ωf(Φ(ω)) = 0 , (5.55)

which proves the conformal invariance of Laplace’s equation. Later in the course we will use this

result in the context of fracture mechanics. It is important to note that conformal invariance is

a property of partial differential equations, not of differential operators. In the above example,

the differential operator was not invariant, i.e. ∂ω̄∂ω = |Φ′(ω)|2∂z̄∂z, but the equation is. This,

for instance, immediately implies that the Helmholtz equation, ∇2u + u = 0 is not conformally

invariant. Finally, recall that a differential equation is also defined by its boundary conditions,

which should be conformally invariant as well. For Dirichlet (u = const.) or Neumann (n ·

∇u= 0) boundary conditions this is satisfied, but other boundary conditions make things more

complicated.

3. In-plane elasticity, Airy stress function

The Navier-Lamé Eq. (5.24) can be also reduced to 2D under in-plane deformation conditions.

There are two possibilities here, one called “plane-stress” and the other one “plane-strain”. To

see how it is done, let us explicitly write Hooke’s law in Eq. (5.15) in terms of E and ν. As was

noted above, the stiffness tensor C in the relation σ = Cε can be represented as a 6 by 6 matrix
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such that

σxx

σyy

σzz

σzy

σzx

σxy


=

E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1− 2ν 0 0

0 0 0 0 1− 2ν 0

0 0 0 0 0 1− 2ν





εxx

εyy

εzz

εzy

εzx

εxy


. (5.56)

We can invert this relation into the form ε = Sσ, where S = C−1 is the compliance tensor (if you

noticed that C is called the stiffness tensor and S is called the compliance tensor and wondered

about it, this is not a mistake and there is no intention to confuse you. It is a long-time convention

that cannot be reverted anymore). We write the last relation explicitly as

εxx

εyy

εzz

εzy

εzx

εxy


=

1

E



1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 1 + ν 0 0

0 0 0 0 1 + ν 0

0 0 0 0 0 1 + ν





σxx

σyy

σzz

σzy

σzx

σxy


. (5.57)

We are now ready to perform the reduction to 2D.

Plane-stress

We first consider objects that are thin in one dimension, say z, and are deformed in the xy-

plane. What happens in the z-direction? Since the two planes z = 0 and z = h (where h is the

thickness which is much smaller than any other lengthscale in the problem) are traction-free, we

approximate σzz = 0 everywhere (an approximation that becomes better and better as h → 0).

Similarly, we have σzy = σzx = 0. We can therefore set σzz = σzy = σzx = 0 in Eq. (5.57) to

obtain 
εxx

εyy

εxy

 =
1

E


1 −ν 0

−ν 1 0

0 0 1 + ν



σxx

σyy

σxy

 (5.58)

and

εzz(x, y) = − ν
E

[σxx(x, y) + σyy(x, y)] . (5.59)
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To obtain the plane-stress analog of the Navier-Lamé Eq. (5.24) we need to invert Eq. (5.58),

obtaining 
σxx

σyy

σxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1− ν



εxx

εyy

εxy

 , (5.60)

which can not be simply obtained from Eq. (5.56) by removing columns and rows. We can now

substitute the last relation in the 2D momentum balance equation ∇ ·σ = ρ∂ttu (we stress again

that σ and u are already 2D here). The resulting 2D equation reads[
νE

1− ν2
+

E

2(1 + ν)

]
∇ (∇ · u) +

[
E

2(1 + ν)

]
∇2u = ρ∂ttu , (5.61)

which is identical in form to the Navier-Lamé Eq. (5.24) simply with a renormalized λ

λ→ λ̃ =
νE

1− ν2
=

2νµ

1− ν
=

2λµ

λ+ 2µ
. (5.62)

The shear modulus µ remains unchanged

µ̃ = µ =
E

2(1 + ν)
. (5.63)

Finally, we can substitute σxx(x, y) and σyy(x, y) inside Eq. (5.59) to obtain εzz(x, y). Note that

uz(x, y, z) = εzz(x, y)z is linear in z.

Plane-strain

We now consider objects that are very thick in one dimension, say z, and are deformed in

the xy-plane with no z dependence. These physical conditions are termed plane-strain and are

characterized by εzx = εzy = εzz = 0. Eliminating these components from Eq. (5.56) we obtain
σxx

σyy

σxy

 =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1− 2ν



εxx

εyy

εxy

 (5.64)

and

σzz(x, y) =
νE

(1 + ν)(1− 2ν)
[εxx(x, y) + εyy(x, y)] . (5.65)

We can now substitute Eq. (5.64) in the 2D momentum balance equation ∇ · σ = ρ∂ttu (where

again σ and u are 2D). The resulting 2D equation is identical to the Navier-Lamé Eq. (5.24),
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both in form and in the elastic constants. With the solution at hand, we can use Eq. (5.65) to

calculate σzz(x, y). Finally, we note that Eq. (5.64) can be inverted to
εxx

εyy

εxy

 =
1 + ν

E


1− ν −ν 0

−ν 1− ν 0

0 0 1



σxx

σyy

σxy

 , (5.66)

which can not be simply obtained from Eq. (5.57) by eliminating columns and rows. Using the

last relation we can rewrite Eq. (5.65) as

σzz(x, y) = ν [σxx(x, y) + σyy(x, y)] . (5.67)

In summary, we see that in both plane-stress and plane-strain cases we can work with 2D

objects instead of their 3D counterparts, which is a significant simplification. One has, though,

to be careful with the elastic constants as explained above.

Airy stress function (potential)

Focus now on 2D static deformation conditions (either plane-stress or plane-strain) and write

down the momentum balance equations under static conditions

∂xσxx + ∂yσxy = 0 and ∂xσyx + ∂yσyy = 0 . (5.68)

These equations are automatically satisfied if σ is derived from a scalar potential χ following

σxx = ∂yyχ, σxy = −∂xyχ, σyy = ∂xxχ . (5.69)

χ is called Airy stress potential. This implies

σxx + σyy = ∇2χ . (5.70)

What a differential equation does χ satisfy? Obviously up to now we did not use the fact that we

are talking about a linear elastic solid (we just used linear momentum balance). To incorporate

the linear elastic nature of the problem we use Hooke’s law, which implies

σxx + σyy = trσ ∝ tr ε = ∇ · u . (5.71)

However, we already proved that ∇ · u is harmonic under static conditions (cf. Eq. (5.33)),

leading to ∇2(σxx + σyy) = 0, which in turn implies

∇2∇2χ = 0 . (5.72)
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Therefore, χ satisfies the bi-Laplace equation, i.e. it is a bi-harmonic function.

Example: Cylindrical cavity

Consider a large linear elastic solid containing a cylindrical hole of radius R under uniform

radial tensile loading σ∞ far away (plane-strain conditions). The hole can be regarded as a defect

inside a perfect solid. What is the emerging stress field? What can we learn from it? First, the

geometry of the problem suggests we should work in polar coordinates (derive)(
∂rr +

∂r
r

+
∂θθ
r2

)(
∂rr +

∂r
r

+
∂θθ
r2

)
χ(r, θ) = 0 (5.73)

and

σrr =
∂rχ

r
+
∂θθχ

r2
, σrθ = −∂r

(
∂θχ

r

)
, σθθ = ∂rrχ . (5.74)

Furthermore, azimuthal symmetry implies σrθ = 0 and no θ-dependence. Moreover, since the

only lengthscale in the problem is R, we expect the result to be a function of r/R alone. Finally,

linearity implies that σrr and σθθ are proportional to σ∞. We should now look for θ-independent

solutions of the bi-harmonic equation of (5.72) with the following boundary conditions

σrr(r=R) = 0 and σrr(r→∞) = σ∞ . (5.75)

The θ-independent solutions of Eq. (5.73) are r2, log r and r2 log r (show that χ(r, θ)=φ0(r, θ)+

φ1(r, θ)r cos θ+φ2(r, θ)r sin θ+φ3(r, θ)r2 is the general solution of the bi-harmonic equation, where

{φi(r, θ)} are harmonic). The r2 log r solution gives rise to a logarithmically diverging stress as

r →∞, and hence should be excluded here. We therefore have

χ(r) = a log r + br2 . (5.76)

Satisfying the boundary conditions implies that a=−σ∞R2 and b=σ∞/2, leading to

σrr = σ∞
(

1− R2

r2

)
, σθθ = σ∞

(
1 +

R2

r2

)
. (5.77)

Note that σθθ at the surface of the cylinder, which tends to break the material apart, is two

times larger than σ∞. This (mild) amplification factor is a generic property of defects which

plays a crucial role in determining the strength of solids. We will discuss this later in the course

when dealing with failure. Another interesting feature of the solution is that σθθ+σrr is a constant.
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Complex variable methods are applicable to Eq. (5.72) as well. We first rewrite it in terms of

complex differential operators as

∂zz∂z̄z̄χ = 0 . (5.78)

It is obvious that analytic functions are solutions of this equation. However, there are more

solutions because of the appearance of another derivative with respect to z̄. In fact it is clear that

z̄f(z), where f(z) is an analytic function, is also a solution. As no other solutions can be found,

the most general solution of the bi-Laplace equation is given in terms of two analytic functions

f(z) and g(z) as

χ = < [z̄f(z) + g(z)] . (5.79)

Of course the imaginary part can be used as well. It is important to understand that while this

solution is given in terms of analytic function it is by itself not an analytic function. The reason

is obvious: it depends on z̄. The stress tensor can be easily derived using complex derivatives,

yielding (derive)

σxx + σyy = 4< [f ′(z)] , (5.80)

σyy − σxx + 2iσxy = 2 [z̄f ′′(z) + g′′(z)] . (5.81)

Finally, we note that while the bi-Laplace equation is not conformally invariant (prove), conformal

methods are useful for its solution.

C. Elastic waves

Up to now we did not discuss dynamic phenomena. However, the most basic solutions of the

Navier-Lamé Eq. (5.24) are dynamic and well-known to you from everyday life: elastic waves.

This might appear strange at first sight because the Navier-Lamé Eq. (5.24) does not take the

form of an ordinary wave equation. The reason will become clear soon. The first step to address

this question would be to decompose the general displacement field u into a curl-free component

and a divergence-free component (Helmholtz decomposition)

u = ∇φ+∇×ψ , (5.82)

where φ andψ are scalar and vector displacement potentials, respectively. Recall that∇·(∇×ψ) =

0 and ∇× (∇φ) = 0. Note that the vector potential features a gauge freedom, i.e. ψ → ψ +∇ϕ

with a scalar field ϕ leaves u unchanged. A common gauge choice is ∇ · ψ = 0 (e.g. as adopted

in seismology). In 2D, it can be satisfied by choosing ψ=ψz(x, y, t) ẑ.
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Substituting Eq. (5.82) into the Navier-Lamé Eq. (5.24), we obtain

∇
[
(λ+ 2µ)∇2φ− ρ∂ttφ

]
+∇×

[
µ∇2ψ − ρ∂ttψ

]
= 0 . (5.83)

Using the analogy of this equation with Eq. (5.82) we see that each term in the square bracket

should vanish independently, yielding

c2
d∇2φ = ∂ttφ and c2

s∇2ψ = ∂ttψ , (5.84)

where

cd =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ
, (5.85)

are the dilatational (longitudinal, sound) and shear wave speeds, respectively. Linear elastody-

namics is therefore characterized by two different wave equations with two different wave speeds,

cd > cs (recall that λ > −2µ/3, which implies λ+2µ > 4µ/3 > µ). In that sense, while this theory

shares various features with electrodynamics (electromagnetism), it is more complicated because

of the presence of two wave speeds instead of one (the speed of light). It is also important to note

that while the two wave equations in (5.84) are independent inside the bulk of the solid, they

are coupled on the boundaries, which of course makes things more complicated (we will see this

explicitly when discussing fracture later in the course). Finally, note that there exist also surface

(Rayleigh) waves whose propagation velocity cR is different from both cs and cd. In general, we

have cR < cs < cd.

How do we actually know that cs corresponds to shear waves and cd to dilatational waves?

This is implicit in the fact that the latter are curl-free and the former are divergence-free, but can

we find more explicit distinguishing features? To that aim, consider plane-wave solutions of the

form

u = g(x · n− c t)a , (5.86)

where n is the propagation direction, a is the direction of the displacement and |n| = |a| = 1.

Substituting this expression into the Navier-Lamé Eq. (5.24), we obtain (see tutorial)

(c2
d − c2

s)(a · n)n+ (c2
s − c2)a = 0 . (5.87)

There are two independent solutions to this equation; either c = cs and a · n = 0 or c = cd and

a ·n = ±1 (recall that both n and a are unit vectors). Therefore, shear waves are polarized such

that the displacement is always orthogonal to the propagation direction and dilatational waves
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are polarized such that the displacement is parallel to the propagation direction.

Dilatational (pressure/density) waves in fluids and solids

Let us briefly discuss the difference between dilatational (pressure/density) waves in fluids and

solids. Since we consider linear waves we can neglect convective nonlinearities and hence the

momentum balance equation for both fluids and solids reads

ρ∂tv = ∇ · σ . (5.88)

The difference stems from the different constitutive laws that relate the stress tensor σ to particles

motions. To see this, we use Eq. (5.19) to write Hooke’s law as

σ = K tr εI + 2µ

(
ε− 1

3
tr εI

)
. (5.89)

For a fluid we have µ = 0, i.e. fluids cannot sustain shear stresses at all (note that since we

focus on non-dissipative waves we exclude viscous stresses here). Consider then small density

perturbations, ρ = ρ0 + δρ, such that

tr ε =
δV

V
= −δρ

ρ0

. (5.90)

Therefore, to linear order in density perturbations the momentum balance equation for fluids

reads

ρ0∂tv = −K
ρ0

∇ρ . (5.91)

Operating with the divergence operator on both sides of this equation we obtain

ρ0∂t∇ · v = −K
ρ0

∇2ρ . (5.92)

Finally, linearizing the mass conservation equation of (4.5)

∂tρ+ ρ0∇ · v = 0 , (5.93)

we obtain

∂ttρ =
K

ρ0

∇2ρ . (5.94)

Therefore, the speed of sound (dilatational/desnity/pressure waves) in fluids is
√
K/ρ0. What

happens in solids? One may naively think that even though solids feature a finite shear modulus µ,
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the combination ε− 1
3

tr εI — which describes shear/deviatoric deformation — does not contribute

to dilatational waves. This is wrong. In fact, we have

∇ ·
(
ε− 1

3
tr ε I

)
=

2

3
∇ tr ε− 1

2
∇× (∇× u) . (5.95)

That is, εdev=ε− 1
3

tr ε I is trace-less, but not divergence-free. Using this result in the momentum

balance equation (through Hooke’s law) and operating with the divergence operator on both sides

we obtain

ρ0∂t∇ · v =

(
K +

4µ

3

)
∇2 tr ε . (5.96)

Following the steps as in the fluid case, we immediately see that the speed of sound in solids is√
K+ 4µ

3

ρ0
, which is of course identical to the result obtained in Eq. (5.85) since K+ 4µ

3
= λ+2µ.

We thus conclude that the shear modulus contributes to the speed of sound in solids, which is

different from the speed of sound in fluids.
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VI. THE LINEARIZED FIELD THEORY OF THERMO-ELASTICITY

What happens when additional fields play a role? Up to now we did not consider explicitly the

role of temperature. We know that ordinary solids expand when heated. Therefore, we expect

that differential heating, i.e. temperature gradients, would give rise to nontrivial thermal stresses.

Such processes are important in a wide range of physical systems, from heat engines, through

blood vessels to the deformation of the earth. In situations in which the temperature T plays a

role, the relevant thermodynamic potential is the Helmholtz free energy, which is obtained by a

Legendre transformation of the internal energy

f(ε, T ) = u(ε, T )− T s(ε, T ) . (6.1)

Therefore, the second law of thermodynamics (dissipation inequality) in Eq. (4.38) reads

σ : ε̇− ḟ − s Ṫ ≥ 0 , (6.2)

where we identified D= ε̇. Using the chain rule to express ḟ , we obtain(
σ − ∂f

∂ε

)
: ε̇−

(
s+

∂f

∂T

)
Ṫ ≥ 0 . (6.3)

Since elastic response in reversible, we expect an equality to hold. Moreover, the strain and the

temperature can be varied independently. Therefore, the second law analysis implies

σ =
∂f

∂ε
and s = − ∂f

∂T
. (6.4)

These relations are the macro-canonical counterparts of Eqs. (5.4). What form then f(ε, T ) can

take within a linear theory? Obviously the temperature independent terms in Eq. (5.11) still

appear. To couple temperature variations to deformation we need to construct a scalar, which

within a linear theory must take the form (T −T0) tr ε (where T0 is some reference temperature).

Therefore, f(ε, T ) takes the form

f(ε, T ) =
1

2
K(tr ε)2 + µ

(
εij −

1

3
tr εδij

)2

−KαT (T − T0) tr ε+ f0(T ) , (6.5)

where the physical meaning of αT will become clear soon and f0(T ) is a temperature dependent

function that plays no role here. The constitutive relation reads

σij = −KαT (T − T0) δij +K tr εδij + 2µ(εij −
1

3
tr εδij) . (6.6)
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First consider free thermal expansion of a body (i.e. the temperature is increased from T0 to

T ). In this case no stresses emerge, σ = 0 (why is this the case?), and the deformation is isotropic,

hence Eq. (6.6) implies

tr ε = αT (T − T0) . (6.7)

Since tr ε is the relative volume change, δV/V , αT is simply the thermal expansion coefficient

αT = 1
V
∂V
∂T

.

A side comment: While the thermal expansion coefficient appears as a linear response co-

efficient, it is not a harmonic (linear) material property (i.e. it cannot be obtained from a

quadratic approximation to the energy). To see this, convince yourself that the thermal aver-

age δV =V <tr ε>T vanishes when a quadratic approximation to the energy, u ∼ (tr ε)2, is used.

You need to go nonlinear, i.e. invoke anharmonic contributions to the energy.

The equations of motion for a linear thermo-elastic solid take the form (neglecting inertia and

body forces, and using λ and µ again)

(λ+ µ)∇ (∇ · u) + µ∇2u = αT K∇T . (6.8)

This shows that thermal gradients appear as a source term (inhomogeneous term) in the standard

linear elastic equations of motion.

Example: Heated annulus

Consider a thin annulus of internal radius R1 and external radius R2. Consider then a

nonuniform, purely radial, temperature field T (r) and determine the resulting displacement field.

The geometry of the problem implies that the only non-vanishing displacement component is

ur(r, θ) = u(r). Writing then Eqs. (6.8) in polar coordinates we obtain

∂rru+
∂ru

r
− u

r2
=

αT K

λ+ 2µ
∂rT . (6.9)

What are the boundary conditions? As the inner and outer surfaces of the annulus are traction-

free, we have the following boundary conditions

σrr(r = R1) = σrr(r = R2) = 0 . (6.10)

The key point for solving Eq. (6.9) is to note that the operator on the left-hand-side can be

rewritten in compact form as

∂rru+
∂ru

r
− u

r2
= ∂r

[
∂r(r u)

r

]
. (6.11)



59

Therefore, integrating twice Eq. (6.9) readily yields

u(r) =
αT K

λ+ 2µ

1

r

∫ r

R1

T (r′)r′dr′ +
c1r

2
+
c2

r
, (6.12)

where c1 and c2 are two integration constants. These are being determined (derive) by the

traction-free boundary conditions of Eq. (6.10) and turn out to be proportional to
∫ R2

R1
T (r′)r′dr′.

Are these results valid for T (r)=const., i.e. for a spatially uniform temperature field?
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VII. THE NON-LINEAR FIELD THEORY ELASTICITY

Our previous discussion focussed on linear elastic deformation. Why is it such a useful the-

ory? After all it is a linear perturbation theory, so what makes it so relevant in a wide range

of situations? In other words, why ordinary solids do not typically experience large elastic de-

formations? The answer is hidden in a small parameter that we have not yet discussed. Until

now the only material parameter of stress dimensions was the elastic modulus, say µ. In ordinary

solids the elastic modulus is large. Compared to what? What other typical, intrinsic, stress scales

exist? The answer is that ordinary solids start to respond irreversibly (flow plastically, break,

etc.) at a typical stress level that is usually much smaller than the elastic modulus. In other

words, reversibility breaks down at a typically small displacement gradient. As reaching the on-

set of irreversibility limit still requires relatively large stresses, this explains why a small elastic

deformation perturbation theory is useful. We will focuss on irreversible processes later in the

course.

Everyday life experience, however, tells us that there are many materials that respond reversibly

at large deformation. Think, for example, of a rubber band, of your skin or of jelly. Such materials

can deform to very large strains (of order unity or more) under mild stresses and recover their

original shape when the stress is removed. They are “soft”. Such soft materials are of enormous

importance and range of applicability, and have attracted lots of attention in recent years. What

makes them significantly softer than ordinary solids? The answer is that their elasticity has a

difference origin.

A. Entropic elasticity (“Rubber elasticity”)

The paradigmatic example of an elastic behavior is a Hookean spring in which a restoring force

is exerted in response to length/shape variations. In this case, the restoring force has an energetic

origin: the interatomic interaction energy changes with the length/shape variations. However,

this is not the only form of an elastic behavior. Consider the Helmholtz free energy density

f(E, T ) = u(E, T )− T s(E, T ) , (7.1)

where E now is the Green-Lagrange (metric) strain tensor. A stress measure is obtained by the

variation of f with respect to E. Ordinary elasticity of “hard” materials, e.g. of metals, has an

energetic origin. In this case the entropy s does not depend on the deformation, while the internal
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energy u does. On the other hand, “rubber” elasticity of “soft” materials, e.g. of gels, rubber

and various polymeric materials, has an entropic origin. In this case, the internal energy does not

depend on the deformation, but the entropy does.

To understand the physics underlying entropic elasticity we consider a network of long-chain

polymers within a fixed unit volume. We assume that the network is incompressible. Consider

first a single polymer chain of length L=m`, where m is the number of monomers and ` is the

length of a single monomer. Suppose now that one end of the chain is fixed (say at the origin)

and the other end is free to wander in space. Denote the end-to-end vector by r. In situations in

which r= |r|�L and under the assumption that there is no correlation between the orientation

of successive monomers, the probability distribution function of the end-to-end distance p(r) can

be easily determined, in analogy to a random walk in time, to be

p(r) ∝ e
− 3r2

2〈r2〉 , (7.2)

where 〈r2〉 = m`2 is the mean-square value of r (in the analogy to random walk in time, m

plays the role of time t). p(r) measures the number of configurations the chain can be in for a

given end-to-end distance r. Also note that no elastic energy is involved here, i.e. the “joints”

of size ` can move freely (in principle, ` can be larger than the monomer size, i.e. the so-called

persistence length above which correlations fade away. In this case, the polymer is termed “semi-

flexible”, but we do not discuss this here). A chain with these properties is termed a Gaussian

chain (note that despite the name, p(r) of Eq. (7.2) is not strictly Gaussian, but rather takes the

form p(r)=4πr2
(

3
2 π〈r2〉

)3/2

e
− 3r2

2〈r2〉 , featuring p(0)=0 and r>0. Consequently, one can say that

p(r) is predominantly Gaussian). The configurational entropy of a single polymer chain with an

end-to-end distance r is given by

s̄ = s0 + kB ln [p(r)] = s̄0 − kB
3r2

2〈r2〉
, (7.3)

where s0 and s̄0 are unimportant constants. In order to understand the effect of deformation

on the entropy of the ith polymer chain we denote the undeformed end-to-end distance by r(i) =

(X
(i)
1 , X

(i)
2 , X

(i)
3 ) and the deformed one by r̃(i) =(x

(i)
1 , x

(i)
2 , x

(i)
3 ) = (λ

(i)
1 X

(i)
1 , λ

(i)
2 X

(i)
2 , λ

(i)
3 X

(i)
3 ), where

{λ(i)
k=1−3} are the (principal) stretches. Therefore, the entropy change of a single chain due to

deformation reads

∆s̄(i) = − 3kB
2〈r2〉

(
([λ

(i)
1 ]2 − 1)[X

(i)
1 ]2 + ([λ

(i)
2 ]2 − 1)[X

(i)
2 ]2 + ([λ

(i)
3 ]2 − 1)[X

(i)
3 ]2
)
. (7.4)
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We now assume that the deformation is affine, i.e. that the macroscopic and microscopic strains

are the same, λ
(i)
k = λk. Hence, the entropy change per unit volume of the part of the polymeric

network that contains N chains and occupies a volume V reads

s =
N∑
i=1

∆s̄(i)

V
= (7.5)

− 3kB
2V 〈r2〉

(
(λ2

1 − 1)
N∑
i=1

[X
(i)
1 ]2 + (λ2

2 − 1)
N∑
i=1

[X
(i)
2 ]2 + (λ2

3 − 1)
N∑
i=1

[X
(i)
3 ]2

)
.

We now invoke isotropy and assume that we can treat {[X(i)
k ]2} as independent variables, to obtain

N∑
i=1

[X
(i)
1 ]2 =

N∑
i=1

[X
(i)
2 ]2 =

N∑
i=1

[X
(i)
3 ]2 =

1

3
N〈r2〉 . (7.6)

Therefore, the free energy density of the polymeric network (due to deformation) is given by

f = −Ts =
1

2
nkBT

(
λ2

1 + λ2
2 + λ2

3 − 3
)
, (7.7)

where n ≡ N/V is the number of chains per unit volume (density of chains). Recall that we

also assume incompressibility (consequently we did not consider the variation of the entropy with

volume changes), i.e. that the constitutive law also includes the incompressibility condition

J = detF = λ1λ2λ3 = 1 . (7.8)

We can immediately identify nkBT in Eq. (7.7) as an elastic modulus (it has the dimensions of

energy density, i.e. of stress), which actually corresponds to the shear modulus

µ = nkBT . (7.9)

This dependence on T , i.e. dµ/dT > 0, has remarkable consequences that distinguish entropic

elasticity from energetic one. For example, a piece of rubber under a fixed force will shrink/expand

in response to heating/cooling, just the opposite of the behavior of a metallic spring! Another

related effect, that we do not discuss in detail here, is that of adiabatic stretching. When we rapidly

(and elastically) stretch a piece of metal it cools down. However, a rubber band under the same

conditions warms up. You can easily experience it yourself by rapidly stretching a piece of rubber

and using your lips as a thermo-sensitive device. We note that f , which was calculated above, is

the free-energy in the deformed configuration per unit volume in the undeformed configuration.

Equations (7.7)-(7.8) constitute the incompressible neo-Hookean model, which is one of the

first and most useful nonlinear elastic models. The statistical mechanical model that was used to
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derived it, originally due to Flory in the early 1940’s, is called the Gaussian-chain model. The

name “neo-Hookean” has to do with the intimate relation of this model to the small strains linear

elastic Hookean model. Noting that

trE =
1

2
tr(F TF − I) =

1

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)
, (7.10)

we can rewrite Eq. (7.7) as

f = µ trE =
1

2
µ
[
tr(F TF )− 3

]
. (7.11)

We can incorporate Eq. (7.8) into this free-energy function by writing

f =
1

2
µ
[
tr(F TF )− 3

]
− α (J − 1) , (7.12)

where α is a Lagrange multiplier introduced to enforce incompressibility. This is the simplest

possible model that is quadratic in F and reduces to Hookean elasticity at small stretches. This

phenomenological approach cannot, of course, predict the exact expression of µ in Eq. (7.9),

which requires a statistical mechanical derivation, though the T -dependence is expected on general

grounds. Note also that unlike Hookean linear elasticity the neo-Hookean model is rotationally

invariant under finite rotations and is also objective.

We note in passing that we can allow for volume variations (i.e. give up the incompressibility

constraint), in which case the Gaussian-chain model would yield

f =
1

2
µ
[
tr(F TF )− 3− 2 log J

]
, (7.13)

which simply accounts for the entropic contribution due to volume variations (note that an increase

in volume, i.e. in J , results in an increase of entropy/number of available configurations, hence

in a reduction in f). More elaborated models of compressible neo-Hookean-like materials include

additional functions of J − 1 in the free-energy.

To appreciate the “softness” of materials that are governed by entropic (rubber-like) elasticity,

let us make some rough estimates. First consider ordinary (say, metallic) solids. The elastic

modulus has the dimensions of stress, which is equivalent to energy density. The typical energy

scale for metals is roughly 1eV. Divide this by an atomic volume, Ω ' 10−29m3, and you get

10GPa which is a reasonable rough estimate (the Young’s modulus of metals can reach 100GPa).

Consider now Eq. (7.9), µ = nkBT . At room temperature we have kBTR' 1/40eV , which sets

the energy scale for rubber elasticity. If we assume a chain density n of 10−2 per atomic volume,

we get an elastic modulus which is about 3 orders of magnitude smaller for rubber. Indeed,



64

10MPa is a reasonable rough estimate for the modulus of rubber. When we consider gels, which

are typically filled with water (or other solvents), the effective chain density can be significantly

smaller and the modulus drops down to the 10KPa range, which is 6 orders of magnitude smaller

than ordinary solids. These rigidity levels are also characteristic of biological substance such as

tissues and cells.

B. Geometric nonlinearities and stress measures

Many other useful nonlinear elastic models were developed based on either statistical mechan-

ical or phenomenological approaches that employ symmetry principles and experimental obser-

vations. It is usually very difficult to solve nonlinear elastic problems analytically. The inherent

difficulty goes beyond the usual statement that nonlinear differential equations are not analyti-

cally tractable in general. The reason for that is geometrical in nature and has to do with the

fact that in nonlinear elastic problems the domain in which we solve the differential equations

depends itself on the solution that is sought for (and of course unknown to begin with). Think, for

example, of the Cauchy stress σ, defined as the force per unit area in the deformed configuration,

and consider a free boundary. Since the boundary is traction-free, σnn = σtn = 0 on it, where n

and t denote the normal and tangent to the free boundary, respectively. In order to satisfy this

boundary condition throughout the deformation process, the location should be known, but this

usually requires to know the solution. We did not encounter this problem in the linearized theory

since the deformed and undeformed are distinguishable only to second order in the displacement

gradient.

One way to deal with this situation is to formulate problems in the undeformed configuration.

This was briefly discussed in Eqs. (3.37), (3.38) and (4.20), and will be repeated here within

a thermodynamic context. Consider a small incremental deformation of a body (that might be

already deformed) and ask how much stress work was done within a volume element δx3. For

that aim, define an incremental strain measure dε as the change in length of a material element

relative to the current (deformed) state of the material. To stress the difference between ε and ε,

we resort to 1D and we discuss again Eqs. (3.19)-(3.20). ε is defined as the change in length with

respect to the undeformed state `0, `− `0, relative to the undeformed state

dε =
d`

`0

=⇒ ε =

∫ `

`0

d`

`0

=
`− `0

`0

= λ− 1 =⇒ λ = ε+ 1 , (7.14)

where λ = `/`0 is the stretch. dε is defined similarly to dε, but with respect to the deformed
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(current) state, implying

dε =
d`

`
=⇒ ε =

∫ `

`0

d`

`
= ln

(
`

`0

)
= lnλ =⇒ λ = eε . (7.15)

While these two strain measures (as every other two strain measures) agree to linear order, they

differ dramatically in general; λ(ε) is a linear function, while λ(ε) is exponential. Going back

to our original question, the stress work done by the Cauchy stress σ in the (current) volume

element δx3 is

σ :dε δx3 , (7.16)

where dε is a tensorial generalization of dε (cf. Eq. (3.23), where a slightly different notation was

used). We can now associate a new stress measure that is thermodynamically conjugate to a given

strain measure by demanding that the stress work produced would equal the above expression. To

see how this works let us focus on the case in which the deformation measure we use is F , which

connects the deformed (reference) and undeformed (current) configurations. Since F is defined

in terms of the reference coordinates X, the relevant volume element is δX3. We then define a

stress tensor P such that

P :dF δX3 = σ :dε δx3 . (7.17)

P is the first Piola-Kirchhoff stress tensor, that was already defined in Eq. (3.37) using other

considerations, which is related to σ through Eq. (3.38), P = JσF−T . This is perfectly consistent

(prove) with the thermodynamic definition of Eq. (7.17). It is very important to note that P :dF

is a work increment in the deformed (current) configuration per unit volume in the reference

configuration. Since df has the very same meaning, we can identify df = P :dF which leads to

P =
∂f

∂F
. (7.18)

Therefore, P is the force per unit area in the reference configuration acting on its image in the

deformed (current) configuration. These quantities might appear (very?) strange at first sight

(even at the second and third ones), but they are enormously useful in real calculations since

these can be done in the reference configuration. For that aim, we need to express the momentum

balance equation in terms of P in the reference configuration, which was already done in Eq.

(4.20).

As we said above, this procedure can be followed for any strain measure. As another example,

consider the Green-Lagrange strain tensor E. In that case we define a stress measure S, termed

the second Piola-Kirchhoff stress tensor, such that df = S : dE. Therefore,

S =
∂f

∂E
. (7.19)
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This stress measure is rather commonly used.

To demonstrate how these stress measures (and the associated geometric nonlinearities) appear

in physical situations, let us consider the incompressible neo-Hookean material characterized by

f =
µ

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)

(7.20)

and

detF = λ1λ2λ3 = 1 , (7.21)

where λi are the principal stretches. Consider a cylinder under a uniaxial stress state with P1 =

P >0 (along the main axis of the cylinder) and P2 =P3 =0 (traction-free lateral boundaries). The

stretches take the form λ1 = λ and λ2 = λ3 = λ−1/2, where we used isotropy and incompressibility.

The relation between the Cauchy stress and the first Piola-Kirchhoff stress reads (recall that

J = detF = 1)

σ = λP . (7.22)

Eq. (7.18) implies that in our uniaxial example we simply have P = ∂f/∂λ (this is proved below).

Therefore, we have

f =
µ

2

(
λ2 + 2λ−1 − 3

)
=⇒ P =

∂f

∂λ
= µ

(
λ− λ−2

)
. (7.23)

The constitutive relation P = µ (λ− λ−2) is different from the constitutive relation

σ = λP = µ
(
λ2 − λ−1

)
(7.24)

due to deformation-induced nonlinearities. Note that all of these effects disappear when we

linearize with respect to ε (λ = 1 + ε)

σ ' P ' 3µ ε = E ε . (7.25)

Therefore, E = 3µ is the Young’s modulus (did you expect this? what is Poisson’s ratio of

this material?). One immediate consequence of nonlinearities in the constitutive law is that the

symmetry between tension and compression observed in the linear theory is typically broken. We

will now work out a few examples to demonstrate the rather dramatic physical effects that emerge

in nonlinear elasticity.

In the example above, it was stated/argued that P = ∂f/∂λ is satisfied along the uniaxial

tension axis. Let us prove it. Our starting point is the free-energy functional in Eq. (7.12), where
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α is a Lagrange multiplier introduced to enforce incompressibility (i.e. ∂f/∂α=0 implies J=1).

Recalling that ∂ tr(F TF )/∂F =2F and ∂ detF /∂F =detF F−T , we obtain

P =
∂f

∂F
= µF − α detFF−T . (7.26)

Consider then, as above, a deformation state of the form

F =


λ1 0 0

0 λ2 0

0 0 λ3

 , (7.27)

which implies

P = µ


λ1 0 0

0 λ2 0

0 0 λ3

− αλ1λ2λ3


λ−1

1 0 0

0 λ−1
2 0

0 0 λ−1
3

 (7.28)

=


µλ1 − αλ2λ3 0 0

0 µλ2 − αλ1λ3 0

0 0 µλ3 − αλ1λ2

 . (7.29)

Applying this to the uniaxial tension state considered above together with incompressibility yields

P =


µλ− αλ−1 0 0

0 µλ−1/2 − αλ1/2 0

0 0 µλ−1/2 − αλ1/2

 . (7.30)

The traction-free boundary conditions, P2 =P3 = 0, allow to determine the Lagrange multiplier,

leading to α=µ/λ. Using the latter, one obtains P = P1 = µ (λ− λ−2)=∂f/∂λ, as stated.

Example: Necking instabilities

Consider a bar of initial length `0 and cross-section s0 that is stretched along its major axis by

a tensile force of magnitude F , such that it features length ` and cross-section s. Suppose that

the material is incompressible, i.e. that

s ` = s0 `0 =⇒ s = s0
`0

`
= s0 e

−ε , (7.31)

where we used λ = `/`0 = eε. Consider then a tensile force F that stretches the bar, i.e.

F = s(ε)σ(ε) = s0 σ(ε) e−ε . (7.32)



68

This result shows that the response to the applied force F is composed of a constitutive part

σ(ε) and a geometric part s0 e
−ε. We would like to understand the implication of this for various

representative constitutive laws σ(ε). In a brittle material, e.g. window glass, we expect abrupt

fracture at small ε as F is increased. We will discuss brittle fracture later in the course. Instead,

let us consider materials that can be deformed to large deformation without breaking, i.e. metals

and soft materials. Crystalline (metal) deformation will be discussed later in the course, but for

our purposes here we note that metals usually exhibit a response that can be approximated as a

power-law relation between stress and strain,

σmetal(ε) = E εn , (7.33)

where n is some positive power, typically smaller than unity. As a representative relation for soft

materials, let us use the neo-Hookean law

σnh(ε) = µ (λ2 − λ−1) = µ(e2ε − e−ε) . (7.34)

Focus first on the case of a metal, in which we have

Fmetal ∼ εn e−ε . (7.35)

At small strains the constitutive power-law dominates the response, which is monotonically in-

creasing, while at large strains the geometric term dominates the response, which is monotonically

decreasing. In between, the response reaches a maximum at εc = n. What are the mechanical

implications of such a response? The existence of a peak force, Fc ≡ F (εc), above which there’s

no way to balance the force with a uniform deformation, implies an instability. In our case it

takes the form of a necking instability where the bar’s cross-section becomes smaller and smaller

in some region, until the local stress is so large that the bar breaks. The necking instability is a

typical mode of failure in metals under tension, as implied by our simple analysis. A complete

account of the necking instability (initiation, critical wavelength, nonlinear evolution etc.) goes

well beyond our simple analysis, which nevertheless gives us a sense of the phenomenon. What

happens for the neo-Hookean material, say rubber? In this case we have

Frubber ∼ eε − e−2ε , (7.36)

which shows that the force is a monotonically increasing function of the strain. This suggests that

there is no necking instability in this case. Indeed, soft materials (e.g. rubber) do not generally
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undergo a necking instability under tension.

Example: Balloon (or blood vessel) under internal pressure

Consider a thin spherical shell made of an incompressible soft material (a balloon or a blood

vessel. The latter may be more properly modelled as a cylindrical shell, but the results will be

similar) under internal pressure of magnitude p. The internal radius in the undeformed (reference)

configuration is L and the outer is L + H, with H � L. The corresponding quantities in the

deformed configuration are ` and `+ h. We also have h� `. This small parameter will be useful

in solving the problem. Our goal is to determine the relation between the internal pressure and

the deformation.

We can immediately write down the global stretches in this problem

λr =
h

H
λθ = λφ =

`

L
≡ λ . (7.37)

Incompressibility implies (upon linearization with respect to h and H)

HL2 ' h`2 =⇒ `

L
=

√
H

h
=⇒ λr = λ−2 . (7.38)

Consider then the force balance equation (r is the radial coordinate in the deformed configuration)

∂rσrr +
2σrr − σθθ − σφφ

r
= 0 . (7.39)

The symmetry of the problem implies σθθ=σφφ ≡ σ. The boundary conditions read

σrr(r=`)=−p and σrr(r=`+ h)=0 , (7.40)

where the minus sign in the first boundary condition ensures that the radial stress is compressive.

The radial stress varies in space, i.e. ∂rσrr 6=0. Since h is small, the boundary conditions imply

that to leading order we have

∂rσrr '
p

h
. (7.41)

We then assume that σ�p (we will check for consistency at the end) and hence Eq. (7.39) can

be written as (where r'`)

p

h
− 2σ

`
' 0 =⇒ p ' 2hσ

`
� σ . (7.42)

The last relation shows that our assumption about the relation between p and σ is valid (since

h � `). Note that of course it was not necessary to a priori assume σ � p and then check
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for consistency a posteriori, though this procedure (i.e. of assuming something, exploring its

implications and check for consistency at the end) is very common in theoretical physics and

hence has a pedagogical/educational value. Alternatively, one can substitute σrr'−p in the force

balance Eq. (7.39) and solving for p (we could use the spatial average of σrr, −p/2, but as we are

interested in an order of magnitude estimate, it makes no difference), we obtain

p ' 2hσ

`

(
1− 2h

`

) ' 2hσ

`
+O

[(
h

`

)2
]
, (7.43)

which of course agrees with Eq. (7.42) to leading order in the smallness h/`. It can be used to

obtain higher order corrections (possibly with some additional considerations), but as h/`� 1,

the leading order will be enough. Note that the spatial variation of σrr can be obtained from

Eq. (7.41), together with the boundary condition at r=`, yielding

σrr(r) =
p

h
r − p

(
1 +

`

h

)
. (7.44)

We would now like to express p as a function of λ. Noting that

h

`
=

h

H

H

L

L

`
=
H

L
λ−3 (7.45)

we obtain

p(λ) ' 2H

L
λ−3σ(λ) . (7.46)

Again, we see that the response to the applied pressure p is composed of a constitutive part σ(λ)

(an increasing function) and a geometric part λ−3 (a decreasing function). The condition for the

existence of a maximum in the response function reads

dp(λc)

dλ
= 0 =⇒ dσ(λc)

dλ
=

3σ(λc)

λc
, (7.47)

which suggests an instability for p > p(λc) occurring at the point where geometric thinning

overcomes constitutive stiffening. As a concrete example, assume the material is neo-Hookean

f =
µ

2

(
λ2
r + λ2

θ + λ2
φ − 3

)
=
µ

2

(
2λ2 + λ−4 − 3

)
, (7.48)

which implies

σ(λ) = λ
∂f

∂λ
= 2µ

(
λ2 − λ−4

)
=⇒ p(λ) ∼ λ−1 − λ−7 . (7.49)

Therefore, λc = 71/6 ' 1.38. If a blood vessel experiences a pressure p > p(λc), it might develop

an aneurysm (which might be bad news).
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Example: Elastic cavitation

Consider a spherical cavity of initial radius L inside an elastic material loaded by a radially

symmetric tensile stress far away, σ∞. The symmetry of the problem suggests that all quantities

are functions of r alone and that σφφ = σθθ. The force balance equation reads

∂rσrr + 2
σrr − σθθ

r
= 0 . (7.50)

Integrating this equation from the deformed radius of the cavity ` to r we obtain

σrr(r) = −2

∫ r

`

σrr − σθθ
r̃

dr̃ , (7.51)

where we used the traction-free boundary condition σrr(r = `) = 0 and r̃ is a dummy integration

variable. Denote then r′ = r̃/` and focus on r →∞, we obtain

σrr(∞) = −2

∫ ∞
1

g(r′, L/`)

r′
dr′ , (7.52)

where σrr − σθθ = g(r′, L/`) is a property of the solution (which involves also the constitutive

relation). From our previous analysis we know that the existence of the cavity amplifies the

(circumferential) stress at the surface as compared to the applied stress σ∞ (for a cylindrical

cavity we calculated the amplification factor to be 2 and for a sphere is it 3/2). If we keep

on increasing the applied stress an ordinary material will simply break near the cavity surface.

However, in soft materials something else can happen (the same can happen is an elasto-plastic

material, to be discussed later). We can ask ourselves whether the cavity can grow (elastically!)

without bound under the application of a finite stress at infinity. To mathematically formulate

the question take the `→∞ limit in Eq. (7.52) and define

σc = −2 lim
`→∞

∫ ∞
1

g(r′, L/`)

r′
dr′ . (7.53)

Therefore, if the integral above converges, then for any σ∞ > σc the cavity will grow indefinitely.

The critical stress σc is called the cavitation threshold. σc is finite if g(r′, L/`) = σrr − σθθ → 0

as r →∞, which is the typical situation.

Let us see how this works in a concrete example, where the goal is to find σrr−σθθ=g(r′, L/`)

and then evaluate the integral in Eq. (7.53). Consider an incompressible elastic material. As

above, the initial radius of the cavity is L and the radial coordinate is denoted as R. The

deformed radius is ` and the coordinate of the deformed configuration is r. Incompressibility
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implies that the volume of any material piece in the reference configuration is conserved in the

deformed one, in particular we have

4π

3

(
R3 − L3

)
=

4π

3

(
r3 − `3

)
=⇒ R(r) = (r3 + L3 − `3)1/3 . (7.54)

The non-radial stretches take the form

λφ = λθ =
r

R
. (7.55)

Incompressibility implies

λr ≡ λ =⇒ λφ = λθ = λ−1/2 (7.56)

which leads to

λ−1/2 =
r

R
=⇒ λ =

(
R

r

)2

. (7.57)

Finally, this leads to

λ =

(
r3 + L3 − `3

r3

)2/3

=

[
r′3 + (L/`)3 − 1

r′3

]2/3

, (7.58)

with r′ ≡ r/`. Consider then the stress state. It is triaxial and contains only the diagonal

components (σrr, σφφ, σθθ), with σφφ = σθθ. However, since the material is incompressible we can

superimpose on this stress state a hydrostatic stress tensor of the form −σθθI without affecting

the deformation state, resulting in (σrr − σθθ, 0, 0), which is a uniaxial stress state in the radial

direction. Therefore, the constitutive relation takes the form σrr − σθθ = g(λr). Focus then on a

neo-Hookean material for which g(λ) = µ(λ2 − λ−1) and evaluate the integral in Eq. (7.53)

σc = −2 lim
`→∞

∫ ∞
1

g[λ(r′, L/`)]

r′
dr′ = −2µ

∫ ∞
1

[
(1− r′−3)4/3 − (1− r′−3)−2/3

r′

]
dr′ . (7.59)

This integral can be readily evaluated (just use x ≡ 1− r′−3 and dx = 3r′−4dr′), yielding

σc =
5µ

2
. (7.60)

This result, which was verified experimentally (see, for example, J. Appl. Phys. 40, 2520 (1969)),

clearly demonstrates the striking difference between ordinary and “soft” solids. The ideal strength

of ordinary solids is about µ/10. The actual strength is much smaller (see later in the course).

However, “soft” solids can sustain stresses larger than µ without breaking (though, as we have

just shown, they can experience unique instabilities such as elastic cavitation).
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C. Small amplitude waves in nonlinear elastic solids

Let us consider now the propagation of elastic waves in nonlinearly elastic materials. We would

like to focus on small amplitude waves that propagate on top of a nonlinearly deformed state.

What would be the propagation speed of such waves?

To qualitatively address this issue we focus on a 1D formulation in which the constitutive law

can be written as σ(ε). If the material is undeformed, then the constitutive law takes the form

σ = Eε and waves propagate at a speed
√
E/ρ0, where ρ0 is the mass density in the undeformed

configuration. Suppose now that material is already deformed to a strain ε (and hence experiences

a stress σ(ε)). The transport of energy and momentum at this state is still controlled by small

amplitude elastic waves. The question is then, what elastic modulus determines the propagation

speed? For that aim we define the tangent modulus as

E(ε) =
dσ

dε
. (7.61)

This modulus is a constant for linear elastic materials, but varies with the state of deformation

for nonlinear elastic materials. The wave propagation speed would then be
√
E(ε)/ρ(ε), where

both the relevant modulus and the mass density depend on the current state of deformation

through ε. We thus conclude that wave propagation in nonlinear elastic solids depends on the

state of deformation which affects both the elastic constants and the mass density in the material

framework. As usual, such calculations are much more convenient to perform in the reference

configuration.
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VIII. SPATIOTEMPORAL INSTABILITIES

Spatiotemporal instabilities play an essential role in shaping the world around us. Practically

all of the symmetry-breaking patterns observed in nature are generated by instabilities. The

most generic approach to instabilities is known as linear stability analysis. The philosophy is

simple; consider a set of partial differential equations, generically nonlinear, for a set of fields

(schematically denoted by f(x, t))

D [f(x, t)] = 0 . (8.1)

Suppose f0 is a space- and time-independent (or steadily propagating) solution satisfying the

global symmetries of a given problem (not always such solutions exist, see below). Introduce then

a small spatiotemporal perturbation δf(x, t) such that

f(x, t) = f0 + δf(x, t) . (8.2)

Since δf is small compared to f0, we can linearize the equations with respect to the small pertur-

bation δf to obtain

L [δf(x, t)] = 0 . (8.3)

Finally, we consider each Fourier mode separately

δf(x, t) ∼ eik·x+ωt , (8.4)

where k is the spatial wavenumber and ω is the temporal frequency. The linearized Eqs. (8.3)

then become algebraic equations for ω(k). Whenever < [ω(k)]>0, an instability is implied as the

perturbation grows exponentially in time. Note that in many problems f0 is a steadily propagating

solution of the coordinate ξ=x− c t, in which case the formalism is applicable once ξ is used. In

other problems, a time-independent solution f0(x) exists, in which case translational invariance is

broken and not all wavenumbers |k| admissible. Finally, there are problems in which there exist

no time-independent solutions (e.g., in the necking problem briefly discussed above, the spatially-

homogeneous solution is intrinsically time-dependent, f0(t)), in which case things become more

complicated.

Linear stability analysis is a very useful tool, but it is also limited to some extent. Not find-

ing a linear instability does not mean there exists no nonlinear one, or alternatively, finding a

linear instability does not tell us what happens when the perturbation grows and nonlinearities

intervene. To understand how this general framework works in a problem where elasticity plays
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a central role (yet not an exclusive one), let us consider a concrete example.

Example: The Asaro–Tiller–Grinfeld (ATG) instability

Consider a solid, say of rectangular shape, under the application of a uniaxial tension (or

compression) of magnitude σ0 (the non-hydrostatic conditions are important). The stress is small

and the response is linear elastic. The solution is simply that of homogeneous stress and it is

stable (i.e. , if a compressive stress is applied, we assume the conditions for buckling are not met).

We now introduce a new (non-elastic, non-equilibrium) piece of physics: mass transport along

the surface of the solid. The surface evolves with a normal velocity vn, which is driven by variation

of the chemical potential density µ (the chemical potential is the relevant thermodynamic quantity

because we are talking about mass transport). Mathematically speaking we say that

vn = D(µ) , (8.5)

where D(·) is a differential operator that depends on the physical nature of the mass transport

We may think of several mass transport processes. When the solid is in equilibrium with its

liquid phase (or gaseous phase), mass transport can take place by melting-recrystallization (or

evaporation-condensation). In both cases, the transport law takes the form

vn ∼ −∆µ , (8.6)

where ∆µ = µs − µl is the chemical potential difference between the solid and liquid phase (or

gaseous phase µg). Another possible process would be surface diffusion, which is the surface

analog of ordinary bulk diffusion. In this case, surface gradients of µ drive a material flux Js

Js ∼ −
∂µ

∂s
, (8.7)

where s is the arclength parameterization of the surface. Mass conservation implies

vn ∼ −
∂Js
∂s
∼ ∂2µ

∂s2
. (8.8)

Putting the prefactors in, we end up with

vn =
D

γ

∂2µ

∂s2
, (8.9)

where D, whose dimension is length4/time, is proportional to the surface diffusion coefficient and

γ is the surface tension. We stress that the evolution of the surface, encapsulated in vn is a

non-equilibrium dissipative process.
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The next step would be to write down an expression for the chemical potential density (in the

presence of a liquid phase, we are of course interested in the chemical potential difference between

the solid and the liquid). Let us first write down the answer and then try to understand its

origin. The chemical potential density contains two contributions, one is an elastic strain energy

contribution near the surface and the other is a surface contribution

µ = µe + µs =
1− ν2

2E
(σtt − σnn)2 + γκ , (8.10)

where µe and µs are the elastic and surface energy contributions to the chemical potential density.

t and n are the tangent and normal to the surface, respectively, γ is the surface tension/energy

as above and κ is the surface curvature. If the surface is not in contact with its liquid phase, i.e.

σnn= 0 (note that σnt= 0 with or without a liquid), the elastic contribution is simply the elastic

strain energy in the solid. If the surface is in equilibrium with its liquid phase, then there is a

finite pressure of magnitude |σnn| also in the liquid, and the chemical potential difference depends

on the difference σtt − σnn. This result also shows that under hydrostatic conditions in the solid,

σtt=σnn there’s no elastic contribution (and the effect we are interested will disappear).

What about the surface energy contribution? The change in the Gibbs free energy due to

surface area changes is dG = γdA. Since the (surface) chemical potential is the change of G

with the number of particles of total volume dV added to the surface, µ=dG/dV , we should ask

ourselves how the surface area changes when we add a volume dV of material to a surface (we stress

that dV is not an incremental deformation, but rather represents a piece of a material). That

obviously depends on the curvature of the surface. For a convex/concave surface an addition

of a particle of volume dV results in an increase/decrease in the surface area by an amount

dA ∼ dV κ, where κ is the signed curvature (assumed positive for convex surfaces). To make

this absolutely clear, consider a spherical surface of radius R and the addition of an infinitesimal

mass element of volume dV . The change in the sphere’s volume is given by 4πR2dR = dV , and

hence the change in the effective radius is dR = dV/4πR2. Hence, the change is the area is

dA = d(4πR2) = 8πRdR = 2dV/R ∼ dV κ. For a spherical cavity, we get the same result with a

minus sign. Therefore, the surface energy contribution to the chemical potential density is γκ.

Plugging the expression for µ in Eq. (8.10) into Eq. (8.9) we obtain a dynamic equation that

can be used to study the stability of the surface against small perturbations. To be absolutely

clear about the last point, we denote the deviation of the surface from being flat by h(x, t), where

x is the load application direction. Both vn and µ can be expressed in terms h(x, t). For a flat

surface, h(x, t) = 0, κ = 0 and µ is constant µ = 1−ν2
2E

σ2
0 (here σ0 = σtt − σnn). This, of course,
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implies vn = 0, as expected. To understand what happens when the surface is not flat, we should

introduce a small spatiotemporal perturbation h(x, t) 6= 0 and see if it grows or decays in time.

Before we do that, let us first try to make a rough estimate. For that aim, consider a square wave

perturbation of the surface, with an amplitude a and a wavelength λ. Let us estimate the change

in the Gibbs free energy due to the perturbation. On the one hand, the protruding parts of the

perturbation are far less stressed than they were when the surface was flat. Therefore, the elastic

energy (per wavelength) is reduced roughly by

∆Ge ∼ −
σ2

0

2E

λa

2
. (8.11)

The surface energy is increased due to the creation of new surface of size 2a (again per wavelength)

by

∆Gs = 2γa . (8.12)

Therefore, the total variation of the Gibbs free energy is given by

∆G = ∆Ge + ∆Gs ∼ −
σ2

0

2E

λa

2
+ 2γa . (8.13)

The important insight here is that there is a competition between an elastic effect, that tends

to reduce the free energy (a destabilizing effect), and a surface effect that tends to increase it

(a stabilizing effect). For sufficiently small wavelengths, the surface term penalizes more, and

stability is expected. For sufficiently large wavelengths, the elastic term wins and the free energy

is reduced. The critical wavelength scales as

λc ∼
γE

σ2
0

, (8.14)

where wavelengths satisfying 0<λ<λc are stable and λ>λc are unstable. While this is a crude

estimate, it gives us some insight into the physics behind the instability and essentially the right

answer (as we will see soon). Actually it is no more than a dimensional analysis, which is in

general quite a powerful tool.

Let us now perform the analysis in a more systematic way, where our goal is to express the

equation of motion for the surface to leading order in the deviation h(x, t) from a flat surface. As

we consider small shape perturbations of the surface and we limit ourselves to a linear analysis,

this small perturbation can be always decomposed into a sum of Fourier modes. Hence, we can

focus on each mode separately and write

h(x, t) = h0 e
ikx+wt . (8.15)
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The small parameter in the problem is kh0, i.e. we assume small surface gradients. We will

linearize the equations with respect to this small parameter. To linear order the curvature reads

κ ' −∂
2h

∂x2
, (8.16)

which leads to

µs ' γk2h . (8.17)

As expected, the surface term plays a stabilizing role for all k-vectors. The perturbed elastic

problem is not very difficult to solve (you will be doing this in a tutorial session) and the result is

σtt − σnn ' σ0 (1− 2|k|h) . (8.18)

Convince yourself that the k-space operator is a long-range elastic operator in real space, as

expected from elastic interactions. The last result implies the following linearized expression

µe '
(1− ν2)σ2

0

2E
(1− 4|k|h) , (8.19)

which indeed shows that elasticity plays a destabilizing role for all k-vectors. Therefore, as we

obtained from the simple estimate above, there is a competition between a stabilizing surface

effect and a destabilizing elastic effect. This is a generic situation when dealing with instabilities.

Combining the two contributions, we obtain

µ = µe + µs '
(1− ν2)σ2

0

2E
− 2(1− ν2)σ2

0

E
|k|h+ γk2h . (8.20)

In addition, we note that to linear order we have

vn '
∂h

∂t
. (8.21)

For an evaporation-condensation/melting-recrystallization mass transport process (for which

∂th ∼ −∆µ{h}), we obtain the following dispersion relation

ω(k) ∼ 2(1− ν2)σ2
0

E
|k| − γk2 . (8.22)

For a surface-diffusion mass transport process (for which ∂th ∼ ∂xxµ{h} — note that to linear

order ∂ss ' ∂xx), we obtain the following dispersion relation

ω(k) ∼ k2

[
2(1− ν2)σ2

0

E
|k| − γk2

]
. (8.23)

The relation ω(k), known as the stability/instability spectrum, contains all of the information

regarding the linear stability of a given physical system. Having it at hand, we are now in a
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position to decide about the stability conditions. It is clear that ω > 0 implies instability (an

exponential growth of the perturbation) and ω < 0 implies stability (an exponential decay of the

perturbation). Therefore, for both mass transport mechanisms, we find a critical wavenumber of

the form

kc =
2(1− ν2)σ2

0

γE
, (8.24)

which is identical to our scaling estimate above up to prefactors of order unity. For k > kc

perturbations are stable and for 0 < k < kc they are unstable. This result shows there is a

continuous range of unstable modes. Which one of these will be observed experimentally (the

instability is observed experimentally and in fact it is very important for various technological

processes)?

To answer this question we should introduce the concept of the “fastest growing mode” (or

“most unstable mode”), which refers to the mode that grows most strongly and hence will be the

one to be observed. In this case, we obtain slightly different results for melting-recrystallization

(mr) (or evaporation-condensation) and for surface-diffusion (sd), because their stability spectrum

is different (though its zero crossing is the same)

kmrm =
kc
2

and ωm ∼ k2
m , (8.25)

ksdm =
3kc
4

and ωm ∼ k4
m . (8.26)

As we explained above, an unstable mode grows and eventually its amplitude invalidates the

linearity assumption, necessitating the need for a nonlinear analysis. We would like to know, for

example, whether the surface develops narrow grooves (cusps) that may lead to cracking (global

failure of the sample) or the unstable processes saturates at a finite amplitude. Usually numerical

analysis is needed in order to answer such questions. The instability was first discovered by Asaro

and Tiller in 1972 and then independently rediscovered by Grinfeld in 1986. An experimental

evidence for the instability can be found, for example, in Phys. Rev. B 46, 13487–13495 (1992).

Some results on the nonlinear evolution of the instability can be found, for example, in Phys.

Rev. Lett. 82, 1736–1739 (1999).

It is important to note that the ATG instability is a generic instability whose existence is

independent of parameters (it only requires a non-hydrostatic stress state). In other physical

systems, one may find that all wavenumbers are stable for some range of the control parameters,

but not for others. The ATG instability is very important for various physical systems and pro-

cesses. For example, it significantly affects Molecular Beam Epitaxy (MBE), which is a method
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for thin-film deposition of single crystals (i.e. the deposition of a crystalline overlayer on a crys-

talline substrate), widely used in the semiconductor devices industry (e.g. for your cellphones and

WiFi).

Finally, we stress again that while elasticity plays an essential role in the instability, i.e. a

reduction in the stored elastic energy overcomes the surface tension contribution (those who are

interested in elastic effects on surface physics in general, are advised to consult the following

review paper, Surface Science Reports 54, 157–258 (2004)), the surface corrugation is not an

elastic deformation (bending), but rather a result of mass transport, i.e. an irreversible process.

Such processes will be discussed in the rest of the course.
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Irreversible processes: dissipative constitutive behaviors

Up until now we mainly discussed deformation processes that did not involve dissipation, i.e.

we essentially focussed on elastic constitutive behaviors. In the second part of the course we will

extensively discuss irreversible deformation processes, i.e. dissipative constitutive behaviors. This

will allow us to gain a deeper understanding into the non-equilibrium physics of materials.

IX. VISCO-ELASTICITY

Let us first consider experimental observations. Suppose we impose a constant small stress on

a solid. An elastic solid will be nearly instantaneously deformed into a strain level determined by

its elastic moduli. However, many solid materials (e.g. polymers) continue to accumulate strain

on a much longer timescale, exhibiting a “creep” behavior. Alternatively, suppose we impose

now a fixed small strain to a solid. An elastic solid will reach nearly instantaneously a state of

constant stress. However, many solid materials exhibit long timescales stress relaxation under

such conditions. Our goal in this section is to develop some understanding of these physical

behaviors, which are termed visco-elastic.

A. Viscous deformation

Before discussing visco-elasticity, we would like first to consider the simplest dissipative be-

havior. To see how it emerges consider then the second law of thermodynamics as expressed in

the dissipation inequality in (4.38) and assume that the material of interest cannot store elastic

energy at all, i.e. its internal energy density is a function of the entropy alone, u(s), and D does

not contain an elastic component. In this case −u̇ balances T ṡ and we obtain

σ :D ≥ 0 . (9.1)

The simplest way to satisfy this dissipation inequality under all circumstances is by using

σ = 2ηD , (9.2)

where η ≥ 0 being the Newtonian (shear) viscosity (in fact σ and D here should be replaced

by their deviatoric parts). Indeed, a material that does not deform elastically and its rate of

deformation is linearly related to the stress is simply a Newtonian fluid (note that actually we
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also assumed incompressibility above). From a mathematical point of view, the viscosity relation

in Eq. (9.2) is analogous to Hooke’s law since in both cases we linearly relate gradients of the basic

field (displacement in linear elasticity and velocity in Newtonian fluid mechanics) to the stress (of

course physically they are fundamentally different, one being non-dissipative and the other purely

dissipative). This is why these constitutive laws are simple and useful (but also limited): they

are, after all, linear perturbation/response approaches. Using the viscosity relation in Eq. (9.2)

one can derive the well-known Navier-Stokes equations that properly describe Newtonian fluids

under a wide range of conditions.

Why do we consider fluid viscosity if our main interest here is in solids? This is in fact a very

deep question that is intimately related to the emergence of solidity/rigidity in noncrystalline ma-

terials and discussing it thoroughly goes well beyond the scope of this course (we will nevertheless

spend time discussing some basic aspects of this important issue). Having said that, we can still

provide good answers to this question in the present context: (i) Many solids exhibit a viscous

component in their mechanical response (though, of course, not an exclusively viscous response

as Newtonian fluids) (ii) Considering viscous dissipation may allow us to gain some insight into

the origin of dissipation in solids.

First, it would be good to have some numbers in mind. The shear viscosity of water (room

temperature, low frequencies) is 10−3 Pa·sec. The shear viscosity of a glass at its glass temperature

(in fact this is the operative definition of the glass temperature, but this is really another story)

is 1012 Pa·sec. The viscosity of noncrystalline solids well below their glass temperature and of

metals is extremely large, usually regarded as infinite.

At the beginning of this section we considered viscous deformation from a thermodynamic

perspective. Let us adopt now a more microscopic approach to the viscous flow of fluids, with

the hope of gaining some insight into dissipative deformation processes. When we apply a small

stress to a crystalline solid interatomic distances vary as elastic energy is being stored, but atoms

do not change their neighbors, i.e. they do not rearrange themselves into a new configuration in

response to the applied stress. As we stressed earlier in the course, elastic deformation implies a

memory of a single state/configuration. What happens in the same situation in a fluid? In this

case it would be more illuminating to consider the application of a constant strain rate. If it were

an elastic solid then the stress would increase in proportion to the applied strain rate (but not

indefinitely).

In a Newtonian fluid, however, elastic energy cannot be stored and hence the stress must relax
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somehow. The microscopic process that mediates stress relaxation, and therefore viscous flow, is

molecular rearrangements in which molecules change their neighbors, usually by hopping motion.

So inelastic behavior involves configurational changes that mediate stress relaxation and energy

dissipation. Note, of course, that when Newtonian fluids are considered, configurational changes

take place constantly even in the absence of external driving forces, i.e. particles diffuse. To

better understand this, think of the molecular/atomic forces that do not allow two molecules

to easily come closer to one another and therefore resist rearrangements/hopping motion and

the accompanying stress relaxation. Let us assign an energy barrier ∆ to the rearrangement

process (of course ∆ actually characterizes the state of the whole system, irrespective of whether

it corresponds to a local process or not). In equilibrium, the rate of barrier crossing (transition)

is proportional τ−1
0 exp

(
− ∆
kBT

)
, where τ0 is the molecular vibration time. This fundamental

result is valid when ∆ � kBT and is usually associated with Arrhenius (1889), Eyring (1935)

and Kramers (1940) (the last two went beyond the first by calculating also the prefactor). In

the absence of external driving forces, forward and backward transitions are equally probable and

hence while transitions constantly take place, there is no net flow (in fact, detailed balance is

satisfied). However, particles perform random walk in space with a typical jump distance a of

the order of a molecular distance a and a time unit τ ≡ τ0 exp
(

∆
kBT

)
. Therefore, the diffusion

coefficient is

D ∼ a2

τ
. (9.3)

Let us go back now to the situation in which we apply a small stress to the fluid. In this case the

barrier crossings would be biased in the direction of the applied stress, giving rise to macroscopic

flow. Following the previous discussion, the resulting (shear) strain rate (considered here to be a

signed scalar that corresponds to an applied signed shear stress σ) takes the form

ε̇ ∼ 1

τ0

[
exp

(
−∆− Ωσ

kBT

)
− exp

(
−∆ + Ω σ

kBT

)]
, (9.4)

where the first term describes forward transitions and and other backwards ones, and Ω is a

molecular volume of the order of a3 (note that to avoid confusion with the diffusion coefficient,

we denote here the rate of deformation by ε̇). The last relation can be rewritten as

ε̇ ∼ 1

τ
sinh

(
Ωσ

kBT

)
. (9.5)

Note that this expression satisfies the required symmetry ε̇(−σ)=−ε̇(σ), which ensures consistency

with the second law of thermodynamics, i.e. σε̇≥0. Following Eq. (9.2), the Newtonian viscosity
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is in fact defined as

η ≡ lim
ε̇→ 0

σ

ε̇
. (9.6)

Using the above expression for ε̇ we obtain

η ∼ kBT

Ω
τ0 exp

(
∆

kBT

)
. (9.7)

This result provides some insight into the origin of fluid viscosity. It is a product of a temper-

ature dependent quantity of stress dimensions, kBT/Ω, and a relaxation timescale τ0 exp
(

∆
kBT

)
that depends on the underlying structure and molecular interactions, and temperature, through

∆/kBT . This result also gives us a sense of the origin of the large viscosity of solids. An obvious

effect would be a large ratio ∆/kBT , which tends to exponentially increase the viscosity. In fact,

another important effect was hidden in our derivation. In the expression for ε̇ in Eq. (9.4) there is

in fact a multiplicative factor that represents the probability to find molecules that can undergo

hopping motion, which for the case of fluids we assumed to be of order unity, i.e. each molecule

(on average) contributes to the flow at each time interval. In disordered solids this probability is

much small, giving rise to a large pre-factor in Eq. (9.7).

The major message we take from the discussion of fluid viscosity is that inelastic, dissipative,

deformation involves configurational changes in the state of the deformation system and that

this change is mediated by some form of stress relaxation induced by particles rearrangements.

While the nature and properties of these configurational stress relaxation processes will vary from

system to system (e.g. polymeric solids vs. metals), the basic idea remains valid. The physics of

such configurational changes is usually described at the continuum level by coarse-grained internal

state variables, which are in fact non-equilibrium order parameters (extension of ordinary order

parameters in equilibrium statistical physics). These will be discussed later.

A corollary of the above discussion of fluid deformation/flow is a fundamental result in statis-

tical physics that is worth mentioning. Putting together Eqs. (9.3) and (9.7) leads to

η D ∼ kBT , (9.8)

which is the famous Stokes-Einstein relation. It is a paradigmatic example of a fluctuation-

dissipation relation (here diffusion describes equilibrium fluctuations and viscosity describes non-

equilibrium dissipation). Ordinary solids do not satisfy this relation.
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B. Bringing linear viscous and elastic deformation together

The experiments we described at the beginning of this section clearly demonstrate that solids

might exhibit a viscous component in their response. How do we account for this piece of physics?

More precisely, how do we describe a response that is both elastic and viscous?

As usual, we start by making some simplifying assumptions. In short, we assume linearity

as well as spatial and temporal homogeneity. Under these conditions, the most general linear

relation between the stress σ and the strain ε reads

σij(t) =

∫ t

−∞
Gijkl(t− t′)ε̇kl(t′)dt′ . (9.9)

(since the elastic part of the deformation is assumed to be linear, ε is an appropriate strain

measure to describe elasticity. As we also consider viscous deformation, which can be large, we

should use ε as in the previous discussion of fluid viscosity. We arbitrarily chose the former here,

but we should remember that the deformation can in fact be large). The tensor G is sometimes

termed the stress relaxation modulus (it has the dimensions of stress). Note thatG(t−t′) vanishes

for t′> t due to causality, i.e. the stress at time t can only be affected by strain variations that

took place at earlier times, t′<t. This is manifested by the choice of the upper integration limit

in Eq. (9.9). For G(t)=η δ(t), we obtain a purely viscous behavior σ=η ε̇ (note that here η is a

fourth order viscosity tensor). For G(t) =CH(t) (here H(t) is the Heaviside step function), we

recover the elasticity relation σ = C ε of Eq. (5.6), where ε(0) = 0 is assumed. In general, all

of the viscoelastic properties of a material are contained within a single time-dependent tensor,

which is a generalization of the elasticity tensor. From the mathematical structure of Eq. (9.9)

we immediately see that G(t) is in fact the stress response to a step strain ε̇(t) = ε0 δ(t) or

equivalently ε(t) = ε0H(t). If such a measurement is performed and the stress response σ(t) is

tracked, one can obtain G(t) following

G = σε−1
0 . (9.10)

In a simple shear setting (for an isotropic material), we obtain G(t) =σ(t)/ε0. Likewise, we can

define a creep compliance modulus J that quantifies the response to a step stress as

εij(t) =

∫ t

−∞
Jijkl(t− t′)σ̇kl(t′)dt′ . (9.11)

Note that as in Eq. (9.9), causality implies that the upper integration limit is t. In the scalar case

and for a step stress σ(t)=σ0H(t), we have

J(t) =
ε(t)

σ0

. (9.12)
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While the creep compliance J(t) (it has the dimensions of inverse stress) contains the same physical

information as the stress relaxation modulus G(t), transforming one into the other in the most

general case is not necessarily trivial and might involve numerical evaluation of Fourier integrals.

For a simple Newtonian fluid we have J(t)= t/η, while for an elastic solid we have J(t)=H(t)/E.

To get a better understanding of how visco-elasticity actually works, let us consider simple

models. The basic elements that capture the linear visco-elastic response of solids are an elastic

element (Hookean spring) whose response is given by

σ = E ε , (9.13)

(we use here E as a representative elastic modulus, though the shear modulus µ can be used as

well. The relevant modulus is determined by the properties of the loading, e.g. uniaxial vs. shear

deformation) and a viscous element (dashpot) whose response is given by

σ = η ε̇ . (9.14)

Any linear combination of these elements (connected in series or in parallel) describes a visco-

elastic model. The complexity of the connected network of elements determines the complexity

and richness of the model.

The Kelvin-Voigt model

One simple possibility would be connect a spring and a dashpot in parallel, i.e. to say that

elastic deformation gives rise to an elastic stress σel and that viscous deformation gives rise to a

viscous stress σvis, while both types of deformation share the same total strain ε. In this case, we

have

σ = σel + σvis = E ε+ η ε̇ . (9.15)

This is known as the Kelvin-Voigt model. In fact, by substituting a step strain ε(t) = ε0H(t)

in the above equation we see that this model simply emerges as a sum of the elastic and viscous

stress relaxation moduli

GKV (t) = Gel(t) +Gvis(t) = EH(t) + η δ(t) , (9.16)

where the superscript ’KV’ stands for Kelvin-Voigt. Let us calculate the creep compliance in this

model. To that aim, we impose a step stress σ(t) = σ0H(t) in Eq. (9.15). The initial strain
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cannot jump (this would imply a diverging strain rate, which would imply an infinite viscous

stress) and hence ε(t=0) = 0. Therefore, solving σ0 =E ε+ η ε̇ with this initial condition yields

ε(t) =
σ0

E

[
1− exp

(
−Et
η

)]
=⇒ JKV (t) =

ε(t)

σ0

=
1

E

[
1− exp

(
−Et
η

)]
. (9.17)

At short times, t� η/E we have

JKV (t) ' t

η
, (9.18)

i.e. a viscous response, while for long times, t� η/E, we have

JKV (t) ' 1

E
, (9.19)

which is an elastic response. Therefore, the Kelvin-Voigt model represents short timescales viscous

response and long timescales elastic response, with a crossover at a characteristic time η/E. The

existence of such a timescale is a qualitatively new physical feature that was absent in the elastic

constitutive laws (where there exists no intrinsic timescale). The competition between elastic and

viscous deformation gives rise to a characteristic timescale. In the creep compliance experiment,

this corresponds to the typical time by which the system develops a strain of the order of σ0/E.

What happens if we remove the external stress, say at t′, after the strain saturates (i.e. t′�η/E)?

In this case, we set σ = 0 in Eq. (9.15) to obtain 0 = E ε+ η ε̇, which is solved by

ε(t− t′) =
σ0

E
exp

[
−E(t− t′)

η

]
. (9.20)

This implies that the Kelvin-Voigt model exhibits full recovery of the initial shape when the stress

is removed after a constant deformation state has been reached. This might look like an elastic

behavior, but it is not. Dissipation is involved.

The Maxwell model

Another simple model can be constructed by saying that the elastic and viscous response share

the same stress σ, but contribute additively to the strain rate ε̇, i.e.

ε̇ = ε̇el + ε̇vis =
σ̇

E
+
σ

η
. (9.21)

This model is known as the Maxwell model which corresponds to a spring and a dashpot con-

nected in series. Let us see whether and how this model is consistent with the second law of

thermodynamics. The dissipation inequality (for a scalar case) reads

σ ε̇− u̇+ T ṡ ≥ 0 . (9.22)
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Here again we treat u and s as quantities per unit volume. Unlike the purely viscous case, a

visco-elastic solid can store elastic energy. The important point to note is that the internal energy

density u cannot depend on the total strain ε, but rather on εel, u = u(εel, s). There are deep

reasons why the total strain cannot be regarded as an independent thermodynamic variable, but

more importantly, we note that internal energy can be reversibly stored during deformation only

through elastic strains and that stresses are always thermodynamically conjugate to these strains

σ =
∂u

∂εel
. (9.23)

Therefore, u̇ = σ ε̇el + T ṡ, which leads to

(
σε̇el + σε̇vis

)
−
(
σε̇el + T ṡ

)
+ T ṡ ≥ 0 =⇒ σ ε̇vis ≥ 0 . (9.24)

This dissipation inequality is indeed satisfied by the choice σ = η ε̇vis, with η ≥ 0. Note that in

Eq. (9.24) the elastic power σε̇el cancels out, i.e. the reversible part of the applied power is stored

in the material (and accounted for in the internal energy), and of course does not contribute to

the dissipation. This is precisely why the heat equation in Eq. (4.43) follows from Eq. (4.42) for

elastically deforming materials.

Let us now consider the properties of the Maxwell model. By substituting a step stress σ(t) =

σ0H(t) into Eq. (9.21) and integrating from t′ = 0− to t′ = t, we see that this model simply

emerges as a sum of the elastic and viscous creep compliances

JM(t) = Jel(t) + Jvis(t) =
H(t)

E
+
tH(t)

η
, (9.25)

where the superscript ’M’ stands for Maxwell. In this case, the short times, t� η/E, behavior is

elastic

JM(t) ' 1

E
, (9.26)

while the long times, t� η/E, behavior is viscous

JM(t) ' t

η
. (9.27)

Therefore, the Maxwell model represents short timescales elastic response and long timescales

viscous response. This means that solids described by this model feature a finite Newtonian

viscosity.

Let us calculate the stress relaxation modulus in the framework of this model. A step strain

ε(t) = ε0H(t) is represented in this model by the initial condition σ(t=0) = E ε0 (i.e. the spring
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responds instantaneously, while the dashpot remains passive) for the equation

0 =
σ̇

E
+
σ

η
, (9.28)

valid for t > 0. The solution is readily obtained as

σ(t) = E ε0 exp

(
−Et
η

)
=⇒ GM(t) =

σ(t)

ε0

= E exp

(
−Et
η

)
. (9.29)

As expected, in this case the material cannot support stresses on long timescales. What happens

if during the stress relaxation process, say when the stress has reached a value σ1 < E ε0, all

external constraints are being removed? In this case we have an instantaneous strain relaxation

of magnitude σ1/E, and the material remains deformed at a strain level of ε0−σ1/E. The Maxwell

model describes a simple, single timescale, exponential stress relaxation process. It is clear that

both the Kelvin-Voigt and the Maxwell model may be too simple to capture a wide range of

realistic visco-elastic phenomena. The limitations are quite clear: the Kelvin-Voigt model exhibits

no short times elasticity and the Maxwell model exhibits no long times elasticity (which might

be realistic for supercooled liquids and glasses near their glass transition temperature). These

limitations are intrinsically related to the fact that these models involve only a single timescale.

Real visco-elastic solids typically exhibit a range of timescales, which can be mathematically

represented using the Maxwellian stress relaxation function as a Green’s function by writing

G(t) =

∫
τ

f(τ)e−t/τdτ , (9.30)

where f(τ) is a continuous distribution of response coefficients corresponding to different relax-

ation times τ . Since any visco-elastic model can be viewed as a combination of springs and

dashpots, f(τ) represents a continuous distribution of such elements.

As we said above, the creep compliance J(t) contains the same physical information as the

stress relaxation modulus G(t), though it is not trivial to explicitly transform one into the other

in the most general case. Nevertheless, an implicit integral relation satisfied by these two functions

can be obtained. It takes the form ∫ t

0

G(t− t′)J(t′)dt′ = t . (9.31)

You will be asked to prove this relation in one of your homework assignments.

C. Oscillatory response

In addition to stress relaxation and creep experimental protocols, one can also measure the

visco-elastic response to an oscillatory perturbation. This experimental protocol is a fundamental
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tool for probing the physics of visco-elastic materials. More generally, it is a standard way to probe

the linear response of many physical systems and quantities (e.g. dielectric properties, mechanical

properties etc.). In our context, we consider the application of a small amplitude periodic strain

of the form

ε(t) = ε0e
iω t , (9.32)

where as usual in linear response theory we use a complex representation (while physical quantities

are represented either by the real part or imaginary one). We then track the stress response

σ(t) = ε0G
∗(ω)eiω t , (9.33)

where G∗(ω) = G′(ω) + iG′′(ω) is the complex modulus. G′(ω) is known as the storage modulus

and G′′(ω) as the loss modulus (the physical meaning of these terms will become clear soon).

If we scan over a wide range of angular frequencies ω, the function G∗(ω) can be determined.

This function contains the same information as the stress relaxation modulus G(t) (and hence

also as the creep compliance modulus J(t)). To see this, substitute ε0e
iω t in the scalar version of

Eq. (9.9), yielding

σ(t) = ε0

∫ t

−∞
iωG(t− t′)eiω t′dt′ . (9.34)

By a simple change of variables t̃ ≡ t− t′ we obtain

G∗(ω) = iω

∫ ∞
0

G(t̃)e−iω t̃dt̃ . (9.35)

Therefore, the complex modulus G∗(ω) equals iω times the unilateral Fourier transform of G(t).

Note that since G′(ω) and G′′(ω) are derived from a single real function they are not independent.

They are related by the Kramers-Kronig relations (to be discussed in a tutorial session). The

Newtonian viscosity can be readily extracted according to

η = lim
ε̇→ 0

σ

ε̇
= lim

ω→ 0

G∗(ω)

iω
. (9.36)

Let us apply this result to the Maxwell model, whose stress relaxation modulus GM(t) =

E exp (−Et/η) is given in Eq. (9.29). We then need to evaluate the following expression

lim
ω→ 0

G∗(ω)

iω
= lim

ω→ 0

∫ ∞
0

GM(t)e−iω tdt . (9.37)

In this case, but not necessarily always, we can exchange the order integration and the ω → 0

limit to obtain ∫ ∞
0

GM(t)dt = E

∫ ∞
0

e−Et/ηdt = η

∫ ∞
0

e−xdx = η , (9.38)
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which confirms Eq. (9.36) for the Maxwell model.

The complex modulus can be also expressed as

G∗(ω) = |G∗(ω)|eiδ(ω) , (9.39)

where G′(ω) = |G∗(ω)| cos[δ(ω)], G′′(ω) = |G∗(ω)| sin[δ(ω)] and

tan[δ(ω)] =
G′′(ω)

G′(ω)
, (9.40)

which is known as the loss tangent. δ quantifies the phase shift between the perturbation (strain)

and the response (stress). To understand the physics behind this terminology let us calculate the

dissipation during one deformation cycle. We know that for an elastic solid this would give zero,

i.e. no dissipation is involved, while for a viscous fluid all of the work is being dissipated. Let’s

see what happens in the case of a viscous-elastic solid. For that aim we would like to integrate

the incremental work σdε over a complete cycle

Wdis =

∮
σdε . (9.41)

We use dε = <[ε̇dt] = −ωε0 sin(ω t)dt and σ = <[ε0|G∗|ei(ω t+δ)] = ε0|G∗| cos(ω t+ δ)

Wdis =

∮
σdε = −ε2

0|G∗|
∫ 2π/ω

0

ω sin(ω t) cos(ω t+ δ)dt = πε2
0|G∗| sin δ ∝ G′′ . (9.42)

Therefore, we observe that in cyclic deformation a visco-elastic material dissipates energy in

proportion to the loss modulus, hence the name. Furthermore, since the latter vanishes when

δ = 0, the term loss tangent becomes clear. In fact, one can show that Wdis/Wsto ∝ tan δ, where

Wsto is the stored energy (by the elastic component) in the first quarter-cycle (prove). Finally, let

us calculate the complex modulus for the Kelvin-Voigt and Maxwell models. For the former we

substitute ε(t) = ε0e
iω t in Eq. (9.15) obtaining

σ(t) = ε0(E + iωη)eiω t =⇒ G∗(ω) = E + iωη . (9.43)

Again, we see the same picture emerging, the response is viscous at high frequencies (short

timescales) and elastic at low frequencies (long timescales). The storage and loss moduli are

G′ = E and G′′ = η ω. For the Maxwell model we use Eq. (9.21) to obtain

G∗(ω) = E
iωη
E

1 + iωη
E

. (9.44)
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The corresponding storage and loss moduli read

G′(ω) = E

(
ωη
E

)2

1 +
(
ωη
E

)2 and G′′(ω) = E
ωη
E

1 +
(
ωη
E

)2 . (9.45)

The low frequency behavior is dominated by the viscous response G′′/E ∼ ω � G′/E ∼ ω2, while

the high frequency behavior is dominated by the elastic response G′/E ∼ 1 � G′′/E ∼ ω−1. In

addition, note that ‘low’ and ‘high’ frequencies are defined relative to the characteristic frequency

scale in the model, ∼E/η. As stressed above, in most cases these are oversimplified models, yet

they provide us with some basic physical understanding.

D. Viscoelastic waves

An important application of visco-elastic materials is in energy absorbing devices, which are

used as mechanical dampers. To get a feeling how this works (in principle, we are of course

not considering the devices themselves), let us consider wave propagation through a visco-elastic

material. We focus on a scalar case and write the displacement field as u(x, t) = u∗(x, ω)eiωt and

the stress field as

σ(x, t) = σ∗(x, ω)eiωt = G∗(ω)
∂u∗

∂x
eiωt , (9.46)

where we used ε(x, t) = ∂u(x,t)
∂x

= ∂u∗

∂x
eiωt. Substituting these expressions in the momentum balance

equation
∂σ

∂x
= ρ

∂2u

∂t2
, (9.47)

we obtain

G∗(ω)
∂2u∗

∂x2
= −ρω2u∗ . (9.48)

Using u∗∼e−ikx, we obtain a propagating plane-wave solution of the form

u(x, t) ∼ exp

[
iω

(
−
√

ρ

G∗(ω)
x+ t

)]
. (9.49)

We observe that G∗ plays the role of the elastic constant in an ordinary (elastic) plane wave and

that
√
G∗(ω)/ρ is a complex wave-speed. Suppose we would like to transmit low frequency waves

and strongly attenuate high frequency ones. What kind of a material do we need? We would

like to have a strong dissipative (viscous-like) response at high frequencies and an elastic response

at low frequency. Therefore, our material should be Kelvin-Voigt-like. Let us use the complex

modulus of the Kelvin-Voigt model in Eq. (9.43) as an example

G∗(ω) = E(1 + iωτ) , (9.50)
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where τ = η/E. We are interested in the inverse complex speed√
ρ

G∗(ω)
=

√
ρ

E

1√
1 + iωτ

≡ 1

c

1√
1 + iωτ

, (9.51)

in the limits ωτ � 1 and ωτ � 1. In the low frequency limit, ωτ � 1, we have√
ρ

G∗(ω)
=

1

c

1√
1 + iωτ

' 1

c

(
1− iωτ

2

)
. (9.52)

Substituting this result into Eq. (9.49) we obtain

u ∼ exp

[
−iω (x− c t)

c

]
exp

[
− x

`(ω)

]
. (9.53)

Here

`(ω) ≡ 2c

ω2τ
∼ λ

ω τ
� λ for ω τ�1 , (9.54)

where λ=2πc/ω is the wavelength. Therefore, in the low frequency limit waves propagate at the

ordinary wave speed with a large attenuation length scale ` (many wavelengths). This is expected

as the Kelvin-Voigt model is predominantly elastic in the long timescales limit.

In the opposite limit, ωτ � 1, we have√
ρ

G∗
=

1

c

1√
1 + iωτ

' 1− i
c
√

2ωτ
. (9.55)

Substituting this result into Eq. (9.49) we obtain (defining ˜̀(ω)≡c
√

2ωτ/ω)

u ∼ exp

[
− ix

˜̀(ω)
+ iω t

]
exp

[
− x

˜̀(ω)

]
= exp

[
−i(x−

˜̀(ω)ω t)
˜̀(ω)

]
exp

[
− x

˜̀(ω)

]
, (9.56)

which shows that both the wavelength and the decay length are determined by ˜̀(ω) (which

actually means that the wavelength is ill-defined). Hence we conclude that in the high frequency

limit wave propagation is completely attenuated.
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X. THERMODYNAMICS WITH INTERNAL VARIABLES

The discussion of visco-elasticity above provides a framework, both mathematical and exper-

imental, for describing the linear visco-elastic response of materials. The latter is encapsulated

in response functions such as the stress relaxation modulus G(t), the creep compliance modulus

J(t) or the complex modulus G∗(ω). While being very useful, these functions (e.g. G(t) and J(t),

which are “memory functions”) do not reveal the physics that underlie dissipation and memory.

To better account for the underlying physics one needs to identify in each systems, or class of

systems, the nonequilibrium degrees of freedom that are responsible for dissipation and mem-

ory — i.e. the account for the configurational/srucural changes in the material — and to write

coarse-grained equation of motion for them.

This requires a new concept, that of internal state fields (“internal variables”). To see this, let

us consider the viscous part of the strain rate (as in the Maxwell model, cf. Eq. (9.21)), ε̇vis, and

write it in the form

ε̇vis = ε̇vis(σ, T, ...) . (10.1)

The “...” represents the “something else”, related to the evolution of the material’s structure,

which we need to account for in addition to conventional thermodynamic fields such as σ and

T . We replace the “...” by a (small) set of coarse-grained internal variables/field, which describe

the structural state of the material and are a generalization of “order parameters” in equilibrium

statistical thermodynamics. Formally, we denote the set of these internal variables by {Λα} and

rewrite the above equation as

ε̇vis = ε̇vis(σ, T, {Λα}) . (10.2)

Obviously a macroscopic system contains an extensive number of structural degrees of freedom.

How then do we choose a small set of state variables? How do we coarse-grain? How do we derive

evolution equations for the internal variables? How do we self-consistently integrate these internal

variables into thermodynamics?

Instead of developing a general (and rather abstract) formalism that addresses these questions,

we will follow here another path in which we develop these ideas following a concrete example.

The example concerns the volume deformation of a material, which contains both elastic and

dissipative parts, and is assumed to be macroscopically homogenous (i.e. we neglect spatial

gradients etc.). Such volume deformation is visco-elastic, and hence will complement and extend

the discussion in the previous part of the course. The example is sufficiently generic to be relevant
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for the discussion of plastic deformation in the next part of the course. It is also simple enough

to work out all of the details without mathematical complications and will teach us a lot.

The first step would be to decompose the elastic and viscous/dissipative parts of the rate of

deformation as done in the Maxwell model

V̇ = V̇ el + V̇ vis . (10.3)

Obviously the viscous/dissipative rate of deformation may depend on the pressure p and the

temperature T . However, our main focus here is on internal variables, so we would like to ask

ourselves how to relate irreversible volume deformation to the material’s structure (the elastic

part is of course described as usual by the bulk modulus and the thermal expansion coefficient).

A natural assumption would be that irreversible volume deformation is mediated by the formation

and annihilation of vacancies. A vacancy carries a “unit” of irreversible volume deformation of

magnitude v0. Therefore, V̇ vis can be written as

V̇ vis(p, T,Nv) = V̇ vis = v0 Ṅv , (10.4)

where Nv is the number of vacancies and serves as our internal variable. Note that Nv is a dy-

namical variable that satisfies its own equation of motion. In addition, as Nv is a non-equilibrium

thermodynamic variable that represents a macroscopic number of degrees of freedom, we should

associate with it energy and entropy.

The next step would be to write down the laws of thermodynamics as

U̇ + U̇R = −pV̇ , (10.5)

Ṡ + ṠR ≥ 0 . (10.6)

Our system experiences a pressure p and is coupled to a thermal reservoir of temperature TR.

The reservoir degrees of freedom are denoted by the subscript R.

At this point we should discuss the entropy of the system S. Why does it deserve a special

attention? The point is that the internal variable Nv may fall out of equilibrium with the applied

pressure p and temperature T , and hence S should in fact be a non-equilibrium entropy. We

define S as

S(U, V el, Nv) = kB log Ω(U, V el, Nv), (10.7)

where Ω(U, V el, Nv) is a constrained measure of the number of states of the system with energy

U , elastic volume V el, and a specified value of the internal variable Nv. Nv is out of equilibrium



96

if its value is not the one that maximizes S. When it does maximize S, i.e. when Nv = N eq
v , then

we require that the equilibrium entropy Seq(U, V ) = kB log Ω(U, V ) be accurately approximated

by
1

V
Seq(U, V ) ≈ 1

V
S(U, V,N eq

v ). (10.8)

This approximation must become an equality in the thermodynamic limit, V → ∞. Note also

that once Nv equilibrates, we no longer distinguish between the total volume and its elastic and

viscous parts.

Next, we invert the entropy in favor of the internal energy S(U, V el, Nv) → U(S, V el, Nv) and

as usual have (
∂U

∂S

)
V el,Nv

= T ,

(
∂U

∂V el

)
S,Nv

= − p. (10.9)

Therefore,

U̇ = − p V̇ el +

(
∂U

∂Nv

)
S,V el

Ṅv + T Ṡ . (10.10)

The first law then becomes

− p V̇ vis −
(
∂U

∂Nv

)
S,V el

Ṅv − U̇R = T Ṡ, (10.11)

where we have used V̇ = V̇ el + V̇ vis to eliminate V̇ el. The quantity

W ≡ − p V̇ vis −
(
∂U

∂Nv

)
S,V el

Ṅv , (10.12)

is an important one. It quantifies the difference between the dissipative work and the rate of

internal energy stored in the internal variable Nv, termed “the stored energy of cold work”.

We then isolate Ṡ in the above version of the first law, Ṡ = (W − U̇R)/T , and insert it into the

second law to obtain

W −
(

1− T

TR

)
U̇R ≥ 0, (10.13)

where we used ṠR = U̇R/TR (i.e. the bath is assumed to be a “simple fluid” characterized by an

internal energy of the form UR(SR), or alternatively by SR(UR)). Since we can vary the reservoir

energy UR independently of Nv (which controls W ), we can split the inequality above into two

independent inequalities of the form

W = − p V̇ vis −
(
∂U

∂Nv

)
S,V el

Ṅv ≥ 0, (10.14)

and

−
(

1− T

TR

)
U̇R ≥ 0. (10.15)
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The first inequality stresses again that not all of the viscous power − p V̇ vis is dissipated, i.e. that

part of it is stored in the structural degrees of freedom which evolve with irreversible deformation.

The second inequality is satisfied by requiring that U̇R be a function of T that changes sign only

when T = TR; therefore we write

− U̇R = A (TR − T ) ≡ Q, (10.16)

where A ≥ 0 and Q is the rate at which heat is flowing into the system from the reservoir. It

is important to understand that even if we make the common assumption of very strong heat

coupling between the reservoir and the system, A → ∞, Q remains finite. This simply means

that in this limit T → TR (as we expect) such that the product A (TR − T ) is finite. Note also

that Eq. (10.16) involves an equality, not an inequality. With this definition of Q, Eq. (10.11)

becomes

CvṪ ' T Ṡ = W +Q = W + A (TR − T ) , (10.17)

where Cv is the heat capacity. This is a heat equation, which is driven by two terms. One is the

coupling to the heat reservoir, which tends to equilibrate T with TR. The strength of the coupling

is A ≥ 0 (we usually assume this coupling to be large). The other is the dissipation associated

with viscous deformation, which is a source term that tends to heat the system. This is a very

general result (in a spatially varying situation an additional diffusion term would appear as well).

Our next and important task is to calculate the dissipation term W . For that aim, we need to

associate energy and entropy with the internal variable Nv. We then write

U(S, V el, Nv) = U0(Nv) + U1(S1) + Uel(V
el) = e0Nv + U1

[
S − S0(Nv)

]
+ Uel(V

el). (10.18)

Here U0(Nv) is the energy of the vacancies, e0 is the formation energy of a vacancy, S0(Nv) is the

entropy of the vacancies Uel(Vel) is the elastic energy, and S1 and U1 are, respectively, the entropy

and energy of all of the other degrees of freedom in the system. Equivalently, we can invert this

relation and write it as an expression for entropy S

S(U, V el, Nv) = S0(Nv) + S1(U1) = S0(Nv) + S1

[
U − e0Nv − Uel(V el)

]
. (10.19)

The structure of these relations, i.e. the arguments of U1 and S1 in their second versions, describes

the way the energy and entropy are shared between the vacancies and the other degrees of freedom.

Note that the total entropy and energy in Eqs. (10.18)-(10.19) are assumed to have very simple

forms.
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We then assume that the vacancy population is dilute, i.e. that Nv � N (where N is the

number of available sites, proportional to the number of particles in the system), and therefore

S0(Nv) ' kB

[
−Nv log

(
Nv

N

)
+Nv

]
, (10.20)

which is of course extensive. (Just to remind you how to derive this result: The number of ways

to distribute Nv objects among N sites is give by Ω = N !
Nv !(N−Nv)!

. Take the logarithm, invoke

Stirling’s approximation, i.e. log(x!) ' x log x− x for large x, and Nv � N .). Note that

∂S0

∂Nv

= kB
∂

∂Nv

[Nv logN −Nv logNv +Nv] = −kB log

(
Nv

N

)
. (10.21)

Finally, we are able to calculate W for which we need first to evaluate(
∂U

∂Nv

)
S,V el

=
∂

∂Nv

[U0(Nv)−TS0(Nv)] = e0 + kBT log

(
Nv

N

)
. (10.22)

This leads to

W = −pv0Ṅv −
[
e0 + kBT log

(
Nv

N

)]
Ṅv ≡ −

(
∂Gv

∂Nv

)
T,p

Ṅv ≥ 0 , (10.23)

where

Gv = e0Nv − TS0(Nv) + pv0Nv (10.24)

is a vacancy-related Gibbs free-energy (it has the structure “U−TS+pV ”). To satisfy the second

law inequality in (10.23), we demand that both −∂Gv/∂Nv and Ṅv change sign at the same point.

Gv attains a minimum at Nv = N eq
v determined by(

∂Gv

∂Nv

)
T,p

= 0 =⇒ N eq
v (p, T ) = N exp

(
−e0 + p v0

kBT

)
. (10.25)

The equilibrium number of vacancies is determined by the vacancy enthalpy e0 + p v0 through

a Boltzmann factor. We then conclude that −∂Gv/∂Nv is a monotonically decreasing function

that changes sign at N eq
v . The inequality in (10.23) is satisfied if Ṅv has the same property. It is

crucial to note that in principle we have not assumed any special proximity to equilibrium and

hence the deviation of Nv from N eq
v need not be small, going beyond linear response. However,

the degree of non-linearity is a matter of physics, not of thermodynamics, and should emerge from

more detailed physical considerations. For example, in the linear response regime the inequality

in (10.23) can be satisfied by a linear relation of the form

Ṅv = Γ(T,Nv) (N eq
v (p, T )−Nv) , (10.26)
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where Γ(T,Nv) a positive rate factor. A nonlinear model, which we do not work out here, may

lead to

Ṅv ∼ −Nv log

(
Nv

N eq
v

)
. (10.27)

The point is clear: any physical model should be consistent with the inequality in (10.23). It is

important to note that the rate factor (i.e. the proportionality factor which has the dimension of

inverse time) also contains essential physics that goes beyond thermodynamics. For example, if

it deviates from a constant molecular rate – it can be much smaller and actually depend by itself

on Nv — we can obtain interesting “slow” dynamics.

The upshot of this analysis are the evolution equations for T and Nv. The latter can be used

to obtain V̇ vis and once a thermo-elastic energy functional is specified, the volume V (t) can be

calculated for any prescribed loading p(t) and reservoir temperature TR(t).

The example we worked out in detail was quite simple. Usually, things are much more involved.

The basic structure of the non-equilibrium thermodynamic theory, however, and the concepts

discussed are rather general.
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XI. THE EMERGENCE OF SOLIDITY: AMORPHOUS SOLIDS AND THE GLASS

TRANSITION PUZZLE

It would be impossible to discuss the physics of solids without mentioning the glass transition

puzzle. The question that we ask first is how do solids form (in fact, we actually ask what is a

solid)? The simple textbook answer is that solids form through a crystallization process, which

is a first-order phase transition, as their liquid phase is cooled below the melting temperature

Tm. However, a substantial fraction of the solids around us are not crystalline or polycrystalline.

Think of your window glass or of a piece of plastic. They are amorphous solids. How do they

form? When we mentioned the first-order phase transition through which crystals are formed, we

did not refer to the dynamical aspects of the process. Being a first-order phase transition, the

crystallization process requires the nucleation of a critical crystalline nucleus within the liquid.

This nucleation process is stochastic, has a finite free-energy activation barrier and is driven

by thermal fluctuations. It takes a finite time to be activated and it depends exponentially on

the temperature. Therefore, for the phase transition to take place we need to cool the liquid

sufficiently slowly through its melting temperature Tm. If, on the other hand, we do it faster, the

phase transition does not take place. What happens then?

Consider a thermodynamic quantity, say the volume or the enthalpy, and plot it as a function

of the temperature T for different cooling rates. For sufficiently small rates a first-order phase

transition occurs at T = Tm, accompanied by a sharp drop in the thermodynamic quantity. A

crystal is formed. As we explained above, when the cooling rate is sufficiently increased, there is

no phase transition and the curve continues to go down smoothly with the decreasing temperature.

A supercooled liquid is born. Supercooled liquids are meta-stable equilibrium states. At some

point, near a temperature that is termed the “glass temperature” Tg, the curve levels off. A glass

(an amorphous solid) is born. What is the nature of this state of matter? To start scratching

the surface of this fascinating branch of physics, let us consider another macroscopic variable, the

Newtonian viscosity. As we said above (in our discussion of visco-elastic solids), the Newtonian

viscosity of ordinary liquids, say water (at room temperature), is 10−3 Pa·sec. Let us now plot

the logarithm of the Newtonian viscosity η as a function of 1/T (it is called an Arrhenius plot).

For simple liquids (as we discussed above), we expect this curve to be a straight line. This is

true at high temperatures. However, when the temperature approaches the glass temperature Tg

a dramatic (strongly nonlinear) increase of the viscosity is observed. We are talking about 10

orders of magnitude within a narrow window of temperatures. This is one of the most dramatic
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phenomena we know of in terms of dynamical range. However, as far as we know, there is no phase

transition (i.e. no divergence or singularity) in this range of temperatures. The viscosity curve

is smooth. What then is the glass temperature Tg? It is operatively defined as the temperature

for which the viscosity reaches 1012 Pa·sec. At this high level of viscosity a shear stress can be

sustained by the glass for a macroscopic time, of about 102 sec (this is 14 orders of magnitude

larger than the microscopic timescale, which is of the order of picoseconds). When the temperature

is further reduced, the viscosity shoots up so strongly that the glass can sustain shear stresses for

extremely long timescales, effectively infinite. For example, Plexiglass or Polycarbonate (i.e. the

material from which your eye-glasses are made) are at about 0.7 − 0.8Tg (at room temperature)

and you were never worried that they would start flowing.

To better appreciate these effects, let us briefly mention the Pitch drop experiment, the longest

scientific experiment ever. It was initiated in 1930 at the University of Queensland, Australia.

The experimental configuration consists of Pitch (a glassy polymer) which is allowed to flow under

gravity through a funnel. The Pitch viscosity is estimated to be 1011 times larger than that of water

(i.e. it is above its Tg) and since then only 9 drops have fallen and the tenth is currently forming.

During the years in which the Pitch has been dripping no one has ever seen a drop falls. If you

want to try your luck, you can visit: http://smp.uq.edu.au/content/pitch-drop-experiment,

where the experiment is continuously broadcast online.

Correlation functions, fluctuations, α relaxation times and stretched exponentials

The crucial question, which is still regraded as one of the biggest puzzles in condensed-matter

physics, statistical physics and materials science, is what makes a glass a solid, i.e. how come

it can sustain a shear stress for enormously large times? As there exists no evidence that the

viscosity actually diverges at any finite temperature and no real phase transition is taking place

(though from a practical point of view this question is quite academic, a glass well below its

glass temperature will be “frozen” essentially forever), one needs to ask himself what makes the

relaxation dynamics of a glass so slow. This is a question about dynamics, not about thermo-

dynamics (though there are also clear thermodynamic signatures of the glass “transition”, which

we do not discuss here). One thing is absolutely clear: we are talking here about a (strongly)

out-of-equilibrium phenomenon.

To get a slightly better understanding of what actually is going on, let us consider microscopic

http://smp.uq.edu.au/content/pitch-drop-experiment
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quantities. The van Hove correlation function is defined as

G(r, t) =
1

N

〈
N∑
i=1

N∑
j=1

δ [r − (ri(t)− rj(0))]

〉
, (11.1)

where < · > is an ensemble average. Obviously the volume integral of G(r, t) just gives the

number of particle N , i.e.
∫
G(r, t)dr=N . It is common to decompose G(r, t) into its self and

distinct parts

G(r, t) = Gs(r, t) +Gd(r, t) , (11.2)

where the self part is given by

Gs(r, t) =
1

N

〈
N∑
i=1

δ [r − (ri(t)− ri(0))]

〉
(11.3)

and the distinct part reads

Gd(r, t) =
1

N

〈
N∑
i=1

N∑
j 6=i

δ [r − (ri(t)− rj(0))]

〉
. (11.4)

We obviously have
∫
Gs(r, t)dr=1 and

∫
Gd(r, t)dr=N − 1. At time t = 0, we have

G(r, 0) = δ(r) + ρ
N
g(r) , (11.5)

where ρ
N

=N/V is the average number density and g(r) is the pair distribution function (when

orientations are averaged out, or for isotropic systems as we consider here, we obtain the usual

radial distribution function. The Fourier transform of this function is the static structure factor).

These quantities are directly measurable using scattering techniques. One striking observation

about glasses is that their radial distribution function (i.e. the probability to find a particle a

distance r away from a given particle at the origin) is nearly identical to that of an equilibrium

liquid at a higher temperature. Therefore, there seems to be no obvious static signature (i.e. at the

level of the radial distribution function) for the dramatic slowing down of the internal dynamics

of a glass.

We should look at dynamic quantities. Let us define the intermediate scattering function

(which again can be decomposed into its self and distinct parts) as the spatial Fourier transform

of G(r, t)

F (k, t) =

∫
G(r, t)e−ik·rdr . (11.6)

For the self part of the intermediate scattering function (ISF) we obtain

Fs(k, t) =
1

N

〈∑
i

e−ik·[ri(t)−ri(0)]

〉
≡ 〈Φs(k, t)〉 . (11.7)
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How does this function look like? For an equilibrium liquid it simply decays exponentially with

a characteristic molecular timescale (k is usually chosen to correspond to the first peak in the radial

distribution function, but this is not important here). When the glass transition temperature is

approached something dramatic happens. The self intermediate scattering function exhibits two-

step relaxation dynamics. First, over a relatively short timescale, it drops to a value somewhat

smaller than unity. Then it remains “stuck” at this level for a long time and finally it drops

to zero. The final relaxation is non-exponential, but rather follows a “stretched exponential”

behavior

Fs(k, t) ∼ e−(t/τ)β , (11.8)

with a stretching exponent β < 1. The characteristic relaxation time, defined as the time it

takes Fs(k, t) to reach 1/e, is denoted by τα. It is this timescale, the so-called α relaxation time,

that grows dramatically near the glass temperature. In fact, as the main relaxation time, it is

proportional to the viscosity

η ∼ τα . (11.9)

Note, however, that the stretched exponential behavior in fact implies a distribution of timescales

(which is only peaked at τα). We can also ask what is the manifestation of this slowing down

of relaxation times at the level of single particles. For that we can focus on the mean-squared-

displacement 〈r2(t)〉 and plot log 〈r2(t)〉 vs. log t. For an equilibrium liquid the picture is clear.

The behavior is ballistic (i.e. a straight line of slope 2 in the log-log plot) below a typical vibration

timescale and diffusive (i.e. a straight line of slope 1 in the log-log plot) above it. Near the glass

transition the curve develops a long plateau before it crosses over to a diffusive behavior. The

typical timescale in which the plateau ends is again τα. The physical picture is that the particles

are “frozen/locked” within cages formed by their neighbors and only once the cage opens up by

some very low probability cooperative fluctuation of several particles, it can diffuse away. It is this

cooperative motion that is believed to be at the heart of the dynamic slowing down near the glass

temperature, though nobody knows how to calculate the relaxation time from first principles.

These dynamics are also markedly different from an ordinary fluid in which thermal fluctuations

and stress relaxation events are distributed rather homogeneously in space and occur on similar

time scales. A glass is a disordered state of matter in which the thermal vibration timescales are

well separated from stress relaxation timescales. This suggests a picture in which the vibrational

degrees of freedom of a glass are quickly equilibrated with the heat bath, but the structural

degrees of freedom are out-of-equilibrium with the bath. Obviously a major theoretical hurdle
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in calculating the relaxation time is that we do not know how to handle the intrinsic structural

disorder of a glass.

For an equilibrium liquid a Gaussian approximation is valid and the self-ISF can be written as

Fs(k, t) ' exp

[
−k

2 〈r2(t)〉
6

]
. (11.10)

Since the diffusion coefficient is

D = lim
t→∞

〈r2(t)〉
6t

, (11.11)

we obtain

Fs(k, t) ∼ exp
[
−Dk2t

]
. (11.12)

As we discussed above, this is indeed the case for equilibrium liquids. The breakdown of this

behavior as the glass temperature is approached, tells us that the statistics become non-Gaussian.

Vibrational anomalies and Stokes-Einstein relation violation

The disordered nature of the glassy state has some dramatic implications for vibrational exci-

tations. In crystalline solids, the low frequency vibrational modes are extended (long wavelength)

phonons, whose density of states scales as DD(ω)∼ωd−1 (d is the dimension), following Debye’s

theory (hence the subscript). Glasses of course feature low frequency phonons as well, which is

just a manifestation of global continuous symmetries (the Goldstone theorem). However, they

feature also other low frequency vibrations, which do not exist in their crystalline counterparts.

Here we highlight major properties of these vibrational anomalies:

� Quasi-localized glassy modes — Very recently it has been established that the low frequency

end of the vibrational spectrum of glasses features quasi-localized (non-phononic) vibrational

modes in addition to low frequency phonons. These modes feature a localization length (of

a few atomic sizes) and a power-law decay. Moreover, they follow a universal gapless density

of states DG(ω)∼ω4.

� The Boson peak — At somewhat higher frequencies (typically corresponding to the terahertz

range in experiments) other non-phononic vibrational excitations exist. These generically

give rise to the so-called Boson peak (the name has nothing to do with the physics of

Bosons) that manifests itself by plotting D(ω)/ωd−1, which exhibits a peak (D(ω) is the

total/measured vibrational density of states).
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These vibrational anomalies are intimately related to some universal low temperature anomalies

in glasses (e.g. in the thermodynamic and transport properties), which are not discussed here.

Another implication of the glass transition is related to the Stokes-Einstein relation, η D ∼ kBT ,

which was mentioned in our discussion of Newtonian fluids. In the glassy state, near Tg, this

relation between diffusivity and viscosity is violated by a factor that can reach 102−103. That is,

while the diffusivity D decreases with decreasing T , it does so less dramatically than the increase

in the viscosity η.

Dynamic heterogeneity and aging

It is clear from the above discussion that glassy dynamics is highly heterogeneous. In search

for statistical measures of cooperativity/heterogeneity, people started looking at higher order

correlation functions. One popular object is the four-point density correlation function defined as

C4(r, t) = 〈ρ(0, 0)ρ(0, t)ρ(r, 0)ρ(r, t)〉 − 〈ρ(0, 0)ρ(0, t)〉 〈ρ(r, 0)ρ(r, t)〉 . (11.13)

It quantifies the spatial (different particles separated by r) correlation between correlated motion

in time (single particle). The hope here is to be able to extract a growing correlation length from

such a correlation function. In many cases it is not easy to evaluate this correlation function and

hence its spatial integral is used instead

χ4(t) =

∫
C4(r, t)dr . (11.14)

χ4 is known as the “dynamic susceptibility” and the spatiotemporal correlated motion is termed

“dynamic heterogeneity”. χ4 is regarded as a dynamical order parameter, which is also peaked at

τα and can be used to define a cooperativity lengthscale.

We mentioned above that glasses are intrinsically out-of-equilibrium. This means, for example,

that all of the standard powerful tools and results of equilibrium statistical thermodynamics (e.g.

fluctuation-dissipation relations, equipartition etc.) are not valid. Another fundamental aspect

of this is the phenomenon of aging. Glasses near their glass temperature spontaneously relax

towards equilibrium (albeit very slowly). That means that even in the absence of external forces

physical quantities (e.g. energy, volume etc.) change over time. Time translational invariance

(TTI) is broken in the glassy state, i.e. it is a non-ergodic state. Following the timescales sepa-

ration discussed before, it is clear that the structural degrees of freedom are those that age (they

undergo structural relaxation), while the vibrational ones are equilibrated with the bath. In a
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schematic manner, we may say that a glass is non-Arrhenius, non-exponential and non-ergodic.

Non-affine deformation and the elasticity of amorphous materials

One may naively think that elasticity of amorphous system is rather simple. Eventually, how

complicated a generalization of a linear Hookean spring can be? The answer is that structural

disorder may make even elasticity rather non-trivial. To get a feeling of that, we need to introduce

the notion of non-affine deformation. Suppose we apply simple shear deformation to a solid.

In a perfect crystal, the deformation of any atom is the same as the macroscopically imposed

deformation. All particles respond similarly. We call this affine response. This cannot happen

in a disordered (amorphous) solid. In this case, not all particles can reach local mechanical

equilibrium by following the macroscopic deformation. They have to move in different directions

and over different distances to conform with their local environment. The elastic response is

heterogenous. We say that the deformation contains a non-affine component, i.e. part of the

local deformation in the system is not the same as the macroscopically imposed one. What are

the consequences of this non-affine deformation to elasticity? The non-affine deformation makes

the system softer as compared to its crystalline counterpart of the same composition. The shear

modulus (the bulk modulus is rather insensitive to such physical effects) can be written as

µ = µB − µna , (11.15)

where µB is the affine contribution (the one of a perfect crystal, “B” stands for “Born”) and µna is

associated with the non-affine deformation. µna is typically 30% of µB, which makes amorphous

solids about 30% softer than their crystalline counterparts. Put in another way, for a given

applied shear stress τ , an amorphous solid stores more elastic energy ∼ τ 2/µ than its crystalline

counterpart (of the same composition). The non-affine motions provide the amorphous system

with additional degrees of freedom for storing energy.

Visco-elasticity of amorphous materials

We mentioned above that glassy dynamics are characterized by a broad spectrum of relaxation

times. A direct experimental evidence for that is obtained through linear mechanical spectroscopy.

In particular, the loss modulus G′′(ω) (defined in Eq. (9.39)) spans many orders of magnitude,

i.e. it is much broader than G′′(ω) for the Maxwell model which drops off linearly from its peak.
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In a glass, G′′(ω) is peaked at ωα ∼ 1/τα but decays much slower away from the peak.

Effective temperatures emerging from non-equilibrium fluctuation-dissipation relations

Let us consider another intriguing feature of glassy systems. For that, we need to recall the

fluctuation-dissipation theorem of equilibrium statistical physics. Consider two physical observ-

ables, say A and B, and define their two-point mutual correlation function as

C(t) =<A(t)B(t)> − <A(0)><B(0)> . (11.16)

Introduce then a small perturbation hB (an external field), which drives the systems gently out-of-

equilibrium and which is thermodynamically conjugated to B. That is, hBB is a time-dependent

perturbation to the original time-independent Hamiltonian of the system). The susceptibility χ(t)

quantifies the response of the observable A to this perturbation

χ(t) =
<A(t)− A(0)>

hB
. (11.17)

Note that of course one is allowed to choose A=B. Finally, the fluctuation-dissipation relation

takes the form

χ(t) =
1

kBT
[C(0)− C(t)] . (11.18)

This is one of the central features of systems at thermal equilibrium. What happens in glassy

systems, either during aging or when they are persistently driven externally (the latter will be

discussed soon in the context of plasticity)? Well, as these are out of equilibrium systems, we

expect the equilibrium fluctuation-dissipation relation to break down. Is the breakdown interesting

and insightful?

At short times, when the particles vibrate within the cages formed by their neighbours, the

system is just an equilibrium system at the bath temperature T . Hence we expect the equilib-

rium fluctuation-dissipation relation to remain valid. This means that the vibrational degrees of

freedom of a glassy material are in equilibrium at T . At longer time, where the non-equilibrium

nature of the configurational degrees of freedom is crucial, we expect the relation to break down.

In the last 20 years or so people studied this breakdown, both on the computer and in the lab,

and discovered something remarkable: in many cases, the longer times relation between χ(t) and

C(t) is not some arbitrary function, but rather it remains linear with a slope different from −1/T

(the absolute value of the slope is generically smaller than −1/T ). These observations have driven
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people to propose that the configurational degrees of freedom of glasses are in quasi-equilibrium

at an effective temperature Teff>T determined from the long times slope of the non-equilibrium

fluctuation-dissipation relation. These ideas have triggered a lot of interest and subsequent ex-

tensive work, see the following review paper: “The effective temperature”, Journal of Physics A:

Mathematical and Theoretical 44, 483001 (2011).

The issues briefly raised above, including the strongly nonlinear dissipative (plastic) response,

are hot topics in the condensed-matter, statistical and materials physics communities.
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XII. THE FIELD THEORY OF PLASTICITY

Up to now we considered linear viscous deformation as a dissipative process in solids. However,

the vast majority of the solids we encounter around us do not exhibit viscous flow at small applied

stresses on reasonable timescales. They are elastic solids. Our focus in the rest of the course will

be on what happens when such an elastic solid is subjected to large enough driving forces (we will

have to quantify what we mean by large here). Again, our everyday experience already gives us a

hint to what can happen. Take a metal spoon and start bending it. If the force you apply is small,

the spoon bends and then recovers its original shape when you remove the force. However, if you

bend it hard enough and then remove the force, the spoon will not return to its original shape.

It would be permanently deformed. The material remains is a new “equilibrium” configuration

that carries memory of the previous irreversible deformation. We call this phenomenon “plastic

deformation”. Suppose now your spoon is made of wood and you repeat your bending experiment.

What would happen then? For small applied forces, the spoon will respond elastically, in much

the same way as the metal spoon. However, when you bend it hard enough, it will simply break

into two pieces. We call this phenomenon “fracture”. In this case, the spoon also finds a new

“equilibrium” configuration that carries (some, but less?) memory of the previous deformation.

Intuitively, we feel that the irreversibility in the two cases is somewhat different. In the metal

case, we might bend the spoon backwards to its original shape, while in the piece of wood case,

the irreversibility appears stronger. The phenomena of plasticity and fracture will be discussed

in the remaining of the course. These are strongly nonlinear and dissipative phenomena that are

both fascinating, and of prime scientific and technological importance.

We start by looking at plasticity. Let us first consider experimental observations. Suppose one

takes a metal sample and slowly increases the stress applied to it. What would the response look

like? There will be an initial linear elastic response followed by a nonlinear behavior. Up to now

we cannot tell whether the response is nonlinear elastic or something else. To distinguish between

these possibilities, we need to unload the system, i.e. to remove the applied stress. If the response

was nonlinear elastic, we would follow the loading path backwards, recovering the original state.

This is not what happens for a metal. In this case, the strain will go down linearly, roughly with

the same modulus of the linear elastic loading curve, hitting the zero stress at a non-zero strain.

The system is permanently deformed and the residual strain is called plastic strain.
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A. The concept of yield stress and perfect plasticity

This physical response entails the introduction of a new concept that has to do with the

critical conditions beyond which the behavior is no longer elastic (reversible), but rather plastic

(irreversible). The concept we need is that of a “yield stress”. It is a new stress scale in the

system, in addition to elastic constants that are also of stress dimension, which tells us at what

typical stress a solid starts to flow/deform plastically. In an idealized scenario, a solid behaves in

an elastic-perfect plastic manner: it responds linear elastically for stresses below the yield stress

σy and flows indefinitely at the yield stress. In this ideal case the stress cannot overshoot σy

as plastic deformation instantaneously relaxes it back to σy. Plastic deformation is intrinsically

related to stress relaxation processes. Mathematically, this ideal elastic-perfect plastic behavior

can be captured by the following constitutive law

σ = Eε for ε <
σy
E

σ = σy for ε ≥ σy
E

. (12.1)

Above yielding, the evolution is non-elastic and the power σy ε̇ is partially transformed into heat

and partially locked in dynamically generated material structures, as previously discussed in the

context of thermodynamics with internal variables.

The introduction of an yield stress might appear rather innocent at first sight, but it has pro-

found consequences that make plasticity theory strongly nonlinear and highly nontrivial to study.

Before we work out a few examples in order to highlight some new features, let us first generalize

the ideal elastic-perfect plastic law above to situations where the stress state is three-dimensional.

The basic idea is that a yield stress in the one-dimensional case discussed above transforms into

a yield surface in the space of the components of the stress tensor. This surface defines an elastic

domain. Inside the elastic domain, the material response is elastic. On the surface, the response

is plastic. To express this mathematically, we first make the further assumption (which is exper-

imentally supported for metals and whose microscopic origin will be discussed later) that plastic

flow is largely insensitive to hydrostatic stresses, only to deviatoric (shear) ones. That is to say,

we would like to express the yielding criterion in a way that is independent of trσ. Therefore,

we would like to use the deviatoric stress tensor s = σ − 1
3

tr (σ) I as the basic object. The two

simplest and rather widely used yield criteria (they are also supported experimentally to some

degree) are due to von Mises and Tresca. In the von Mises criterion (1913) (the criterion was

formulated by Maxwell in 1865, discussed by Huber in his 1904 work, but is usually attributed to
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von Mises) one assumes that the second invariant of s, J2 = 1
2
s : s, reaches a threshold value at

yielding √
J2 = σy . (12.2)

Note that J2 can be expressed in terms of the principal stresses as

J2 =
(σ1 − σ2)2 + (σ3 − σ2)2 + (σ1 − σ3)2

6
. (12.3)

While the von Mises criterion is based on energetic considerations, the Tresca criterion (1864) is

based directly on stresses. It states that yielding takes place when the maximal shear stress along

any possible orientation reaches a threshold, that is

1

2
max(|σi − σj|i 6=j) = σy . (12.4)

Note that σy here and in the von Mises criterion is not necessarily the same (both just express

the idea that a threshold exists) and that when two components of the stress tensor are equal, the

von Mises and Tresca criteria are essentially identical (we schematically denote the yield stress

by σy, though a more appropriate notation would be sy or τy).

B. The theoretical and practical shear strength (yield stress) — dislocations needed

Up to now we treated the yield stress σy as a material parameter, but we did not say anything

about its magnitude. Of special interest is the relation between the yield stress and the other stress

scale in a solid, the elastic modulus. In order to get a physical intuition about the yield stress, let

us consider an infinite cubic lattice with a lattice constant d. It is clear that translating the lattice

over a distance d brings the system back to the same configuration. It is also conceivable that

a displacement smaller than d/2 would be reversible and a displacement larger than d/2 would

make the configuration unstable, i.e. induce an increment of irreversible deformation. The stress

that is needed to bring the system to the unstable state is the yield stress (or the shear strength).

A mathematical representation of the physical situation described above is given by

τ = τmax sin

(
2πx

d

)
, (12.5)

where τ is the shear stress (this dates back to Frenkel, 1926). While the sine function may not

be accurate, it possesses the required properties and should provide us with rough estimates. In

order to estimate τmax, we note that to linear approximation we have

τ ' τmax
2πx

d
. (12.6)
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However, linear elasticity tells us that τ = µγ, where γ = x/d, and therefore

τmax =
µ

2π
. (12.7)

More sophisticated estimates for the theoretical shear strength reach somewhat smaller values, but

still of the order of 10−1µ. What do experiments tell us? Well, measured values for metals are in

the range of 10−5µ−10−3µ, which are orders of magnitude smaller than the theoretical estimates.

What went wrong? Why solids are so much weaker than their theoretical limit? The answer is

that solids do NOT flow plastically by simultaneously shifting complete atomic planes. Instead,

they flow by the propagation of lattice defects known as dislocations. We already encountered

these objects in our discussion of linear elasticity. There (cf. Eq. (5.45) and the discussion

around it), our concern was the elastic consequences of the existence of a topological defect which

we defined at the continuum level as ∮
du = b , (12.8)

where b is the Burgers vector. Our focus here would be on the formation and propagation of

dislocations. For that aim, we need to adopt a more microscopic perspective. Think first of a

perfect square lattice in 2d and make a close rectangular path (“circuit”) around some point in the

lattice. Insert then an additional line of atoms above this point. This can be physically achieved

by pushing atoms above some line a distance b, of the order of a lattice distance, without moving

the atoms below the line. The resulting defect is called an edge dislocation and it is characterized

by a Burgers vector b (there are other types of dislocations, such as screw dislocations discussed

earlier, but the basic idea is the same). The latter can be obtained by realizing that the original

rectangular path (“circuit”) around the core of the dislocation fails to close upon itself. The

vector that is needed to close the circuit is b. When such a defect moves in a solid it carries

with is a “quantum” of plastic deformation. For example, when it crosses a crystal from one side

to another, it leaves an atomic step of size |b| on the boundary. Why does such motion require

significantly smaller stress than the ideal strength? The crucial point is the elastic field generated

by such a defect, which has already shown to take the form

σ ∼ µ |b|
r

. (12.9)

Therefore, the stress near the dislocation core is already very intense (in the absence of an external

stress) and only a relatively small external stress should be added in order to push it into motion.

This basic understanding already gives us a qualitative idea about how to resolve the above puzzle.
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In fact, the external stress needed to move an isolated dislocation within a perfect crystal can

be estimated using the dislocation stress field and the simple interatomic stress of Eq. (12.5),

assuming a continuous distribution of irreversible slip (i.e. not quantized by the Burgers vector).

This model results in an integro-differential equation which was solved by Peierls (Proc. Phys.

Sot. 52, 34 (1940)) and Nabarro (Proc. Phys. Sot. 59, 256 (1947)), yielding the Peierls-Nabarro

stress which we only quote here (details will appear in the tutorial session)

τ
PN

=
2µ

1− ν
exp

[
− 2πh

d(1− ν)

]
, (12.10)

where h is the distance between adjacent atomic planes (which does not necessarily equal d). For

reasonable numbers, one obtains τPN ∼ 10−5µ, which is consistent with the yield stress of pure

single crystals. A scientifically and historically interesting paper was written by Nabarro on the

occasion of “Fifty-year study of the Peierls-Nabarro stress” (Materials Science and Engineering

A234-236, 67 (1997)). Note also that this microscopic picture of plastic flow in crystalline and

polycrystalline solids immediately implies a very weak dependence on compressive stresses. In

situations where there are many dislocations that interact and may hamper the motion of one

another, the Peierls-Nabarro stress may not be the most important factor controlling the strength

of crystalline and polycrystalline.

We finally note that dislocations are intrinsically non-equilibrium objects: the probability of

finding a dislocation at equilibrium at temperatures below the melting temperature is unrealisti-

cally small. Dislocations are formed only as defects during the crystallization process and more

importantly during the deformation process itself. One such dynamics formation mechanism is

the Frank-Read source, which will be briefly presented in class. Dislocations mechanics and sta-

tistical mechanics constitute a fascinating and important branch of physics. Unfortunately, we

will not be able to devote more time to it in the present framework. Hence, we continue to adopt

a continuum approach in which the yield stress is a material parameter and bear in mind that in

elasto-plastic problem there exist a small parameter of the form σy/E � 1 (or τy/µ� 1).

A historical note is in place. The concept of a dislocation in a solid was developed mathe-

matically by Volterra in 1907. However, the fundamental relation between dislocations motion

and plastic deformation in solids was not understood until 1934, when Orowan (Z. Phys. 89,

634 (1934)), Polanyi (Z. Phys. 89, 660 (1934)) and Taylor (Proc. R. Sot. A 145, 362 (1934))

independently published almost simultaneous papers describing dislocation-mediated plasticity.

The concept of a dislocation has revolutionized our understanding of many physical processes.

For example, melting in 2d was not properly understood until Nelson and Halperin published
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in 1979 their seminal paper entitled “Dislocation-mediated melting in two dimensions” (Physical

Review B 19, 2457 (1979)).

C. The continuum (field) theory of elaso-perfect plasticity

Let us now see how such an elasto-perfect plasticity theory actually works at the continuum

level. Plasticity models usually do not allow to determine a solution by static considerations

alone (we say that plasticity problems are not statically determinate), but we will focus on sit-

uations when this is possible. In general, the dynamic path that the deformation follows should

be calculated in order to find a solution. From a fundamental physics point of view, plasticity is

an intrinsically dynamic phenomenon and hence a statically determinate problem is by no means

representative. Nevertheless, such an example can be worked out analytically and will teach us a

lot.

Example: Internally pressurized spherical shell (thick-walled)

Let us consider a spherical shell of inner radius a and an outer radius b, under internal pressure

of magnitude p. The thick-wall condition implies that the shell’s thickness b − a is not much

smaller than a. Due to the symmetry of the problem, the only non-vanishing component of the

displacement field is ur(r) = u(r). We will use the following shorthand notation: σrr → σr,

σθθ→ σθ and σφφ→ σφ (and similarly for the components of the strain tensor). The boundary

conditions are given by

σr(r = a) = −p and σr(r = b) = 0 . (12.11)

Our goal is to quantitatively understand the elasto-plastic deformation of the shell. We assume

small strains, even though plastic flow usually implies large strains (we want to get some insight

about plasticity, keeping the mathematics as simple as possible). The strains in the problem are

given by

εr =
du

dr
and εφ = εθ =

u

r
. (12.12)

These kinematic relations imply the following compatibility relation

εr =
d

dr
(rεθ) . (12.13)
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In addition, quasi-static force balance takes the form

dσr
dr

+ 2
σr − σθ

r
= 0 . (12.14)

As a preparatory step, we first focus on a purely linear elastic constitutive behavior, that is

εr =
1

E
(σr − 2νσθ) , (12.15)

εθ = εφ =
1

E
[(1− ν)σθ − νσr] . (12.16)

Substitute these constitutive equations into the kinematic relation in Eq. (12.13) to obtain (after

some straightforward algebra)

d

dr
[(1− ν)σθ − νσr] =

(1 + ν)(σr − σθ)
r

. (12.17)

The force balance in Eq. (12.14) implies 2(σr − σθ) = −rdσr/dr, which can be substituted in the

above equation to yield
d

dr
trσ =

d

dr
[2σθ + σr] = 0 . (12.18)

The last result implies that 2dσθ/dr = −dσr/dr, which leads to

2

3

d(σθ − σr)
dr

= −dσr
dr

. (12.19)

Substituting this in the force balance in Eq. (12.14), we obtain

d(σθ − σr)
dr

+ 3
(σθ − σr)

r
= 0 . (12.20)

Eqs. (12.18) and (12.20) are two first order linear differential equations that can be readily solved

to yield

2σθ + σr = 3A and σθ − σr =
3B

r3
, (12.21)

where A and B are constants of integration. We can then obtain σr(r) = A−2Br−3 and determine

A and B from the boundary conditions in Eqs. (12.11), leading to

A =
2B

b3
and B =

p

2(a−3 − b−3)
. (12.22)

Therefore the linear elastic solution inside the shell (a < r < b) reads

σr(r) = − p

b3/a3 − 1

(
b3

r3
− 1

)
, (12.23)

σθ(r) =
p

b3/a3 − 1

(
b3

2r3
+ 1

)
. (12.24)
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Since perfect plasticity is defined as the boundary of the elasticity domain, we can immediately

gain insight about the onset of plastic deformation using the purely elastic solution. What is then

the elastic limit?

To answer this question we need to adopt a yield criterion. Since the stress state in the shell is

such that σθ = σφ, the von Mises and Tresca criteria are the same, leading to

σθ − σr = σy . (12.25)

We can use the elastic solution derived above to evaluate σθ − σr, giving

σθ − σr =
p

b3/a3 − 1

3b3

2r3
. (12.26)

Since σθ−σr is a monotonically decreasing function of r, it attains its maximum at the inner edge

of the shell, r = a. Therefore, the yield criterion in Eq. (12.25) is satisfied first when p = pE with

pE =
2σy
3

(
1− a3

b3

)
. (12.27)

This means that for p > pE, the solution is no longer elastic, but rather elasto-plastic. We will

now explore such situations.

Since the yield criterion we use is sharp, when p > pE we expect to find a sharp boundary (in

real space) between plastic and elastic domains. Let us denote the radius of this elastic-plastic

boundary by c, where a < c < b. Since we know that the yield criterion is first met at r = a,

it is clear that the plastic domain spans a < r < c and the elastic one spans c < r < b. Let us

focus first on the latter. Suppose now that the plastic solution, which we do not know at present,

induces a pressure pc at r = c. Therefore, the solution in Eqs. (12.23)-(12.24) is valid when we

replace p with pc and a with c, leading to

σr(r) = − pc
b3/c3 − 1

(
b3

r3
− 1

)
, (12.28)

σθ(r) =
pc

b3/c3 − 1

(
b3

2r3
+ 1

)
, (12.29)

for c < r < b. Note that c and pc are still unknown here. These two unknowns can be interrelated

without knowing the solution in the plastic domain because we know that σθ(c) − σr(c) = σy.

Using this condition we obtain

pc =
2σy
3

(
1− c3

b3

)
, (12.30)

which leads to

σr(r) = −2σy
3

(
c3

r3
− c3

b3

)
, (12.31)

σθ(r) =
2σy
3

(
c3

2r3
+
c3

b3

)
, (12.32)
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which is again valid for c < r < b. c cannot be calculated without knowing the solution in the

plastic domain.

The plastic domain is characterized by a constitutive law which is different from the one in the

elastic domain. For our ideal elastic-perfect plastic relation, the constitutive relation for a < r < c

reads

σθ(r)− σr(r) = σy , (12.33)

i.e. the yield condition is satisfied everywhere in this region instead of the linear elastic constitutive

relation of Eqs. (12.15)-(12.16). Note the qualitative change in the character of the constitutive

law; while the elastic constitutive law is expressed as a relation between stresses and strains, the

plastic one is expressed in terms of stresses alone. Using the constitutive law inside the force

balance Eq. (12.14), we obtain
dσr
dr

=
2σy
r

, (12.34)

which can be readily integrated from r to c to yield

σr(r) = σr(c)− 2σy log
(c
r

)
. (12.35)

σr should be continuous at r = c (though its derivative is not), so using Eq. (12.31) we obtain

σr(r) = −2σy
3

[
1− c3

b3
+ 3 log

(c
r

)]
. (12.36)

σθ(r) simply satisfies

σθ(r) = σr(r) + σy . (12.37)

Note that the continuity of σθ at r = c is automatically satisfied and does not provide with an

additional constraint. The last remaining thing we need before the complete solution is obtained

is to determined c. For that aim, we use the boundary condition σr(a) = −p, which directly leads

to

p =
2σy
3

[
1− c3

b3
+ 3 log

( c
a

)]
. (12.38)

This equation should be solved numerically for c. Note that the different constitutive laws in the

elastic and plastic domains give rise to different behaviors of the stress; in the elastic domain the

stress varies spatially as a power-law, while in the plastic domain it varies logarithmically.

Finally, we may ask ourselves what is the “Ultimate pressure” pU , i.e. the pressure for which

the whole shell becomes plastic. This is simply determined by the condition c = b, which leads to

pU = 2σy log

(
b

a

)
. (12.39)
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Therefore, for p≤ pE the shell is fully elastic, for pE < p < pU the shell is elasto-plastic and for

p=pU it is fully plastic.

Once the complete stress distribution is known, one can also calculate the displacement u(r).

Within the elastic region, c<r<b, one simply uses

u(r) = εθ r =
r

E
[(1− ν)σθ(r)− νσr(r)] , (12.40)

where σr(r) and σθ(r) of Eqs. (12.31)-(12.32) are used, with c which is determined from Eq. (12.38).

To calculate u(r) in the plastic region, we need to bear in mind that stresses always emerge due

to elastic strain. Moreover, plasticity is quite generically deviatoric in nature and the volumetric

strain is purely elastic. Consequently, we can use the linear elastic relation tr ε∝trσ to obtain

du

dr
+ 2

u

r
=

1

r2

d (r2 u)

dr
=

1− 2ν

E
(σr + 2σθ) , (12.41)

which can be readily integrated using Eqs. (12.36)-(12.37) and demanding continuity of the dis-

placement at r = c. We stress again that these explicit relations between stresses and displace-

ments are not generic and are rather specific to this example.

Plastic deformation may lead to various interesting and surprising physical effects. We already

mentioned that plastic deformation implies residual plastic strains. Actually, when the defor-

mation is spatially inhomogeneous, residual stresses remain locked in the solid as well. These

residual stresses may, and generally do, affect the subsequent response to additional loading cy-

cles. Sometimes this may strengthen the material, leading to a phenomenon known as shakedown

— a situation in which no further plastic deformation occurs after one or a few deformation cycles

— that is, all subsequent unloading-reloading cycles are elastic. Another important phenomenon

is that of unlimited plastic flow (plastic collapse), in which a solid deforms continuously at a fixed

applied stress. We will encounter some of these phenomena below.

Example: Plastic cavitation

Before we continue our discussion of the physics of plastic deformation, let us consider another

example, still in the framework of the elastic-perfect plastic model. Earlier in the course, we

considered the problem of elastic cavitation in soft solids. Can we analyze a similar problem for

hard solids?

The answer is definitely yes, such an analogous phenomenon exists for hard solids, though the

physical processes is different; while for soft solids elastic deformation can be very large and lead
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to cavitation, hard solids show a limited range of elastic response and the origin of cavitation is

plastic deformation.

We follow the kinematic analysis leading to Eq. (7.58), which is reproduced here

λr =

(
1 +

L3 − `3

r3

)2/3

, (12.42)

where λr is the radial stretch, L is the radius of the undeformed cavity and ` is the radius of the

deformed one. The logarithmic strain εr reads

εr = log λr =
2

3
log

(
1 +

L3 − `3

r3

)
. (12.43)

Note that we use the logarithmic strain because it is thermodynamically-conjugated to the Cauchy

stress that we use next. The force balance equation in terms of the Cauchy stress is given in Eq.

(12.14) and the boundary conditions are

σr(r = `) = 0 and σr(r →∞) = σ∞ . (12.44)

Since symmetry implies σθ = σφ and we assume incompressibility, the stress state is essentially

uniaxial and we can write down a general constitutive law as

σr − σθ = σyf(εr) . (12.45)

We then have∫ ∞
`

dσr = −2σy

∫ ∞
`

f(εr)dr

r
= −2σy

∫ ∞
`

f

[
2

3
log

(
1 +

(L/`)3 − 1

(r/`)3

)]
d(r/`)

(r/`)

=⇒ σ∞ = −2σy

∫ ∞
1

f

[
2

3
log

(
1 +

(L/`)3 − 1

x3

)]
dx

x
. (12.46)

The cavitation threshold σc is defined as the stress needed to grow the cavity indefinitely, i.e.

`� L. This leads to

σc = lim
`→∞

σ∞ = −2σy

∫ ∞
1

f

[
2

3
log
(
1− x−3

)]
x−1dx . (12.47)

The constitutive law (σr − σθ)/σy = f(εr) we adopt is that of Eq. (12.1), which we interpret here

as pertaining to the logarithmic strain and also allow all quantities to be signed,

f(εr) =
εr
εy

for |εr| < εy

f(εr) = sign(εr) for |εr| ≥ εy , (12.48)
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where εy ≡ σy/E. With this law at hand, after a few rather simple mathematical manipulations,

we obtain a nice analytic result. First, we use the yield strain εy inside the argument of f(·) in

the above integral

− εy =
2

3
log
(
1− x−3

y

)
=⇒ xy = [1− exp(−3εy/2)]−1/3 . (12.49)

This allows us to use the constitutive law in order to split the integral into its elastic and plastic

contributions as
σc
σy

= 2

∫ xy

1

x−1dx︸ ︷︷ ︸
Plastic domain

− 4

3εy

∫ ∞
xy

log
(
1− x−3

)
x−1dx︸ ︷︷ ︸

Elastic domain

. (12.50)

We now recall that there exists a small parameter in the problem, εy � 1 (since for ordinary hard

solids the yield stress is much smaller than the elastic modulus). Therefore, we have

xy '
(

2

3εy

)1/3

� 1 and log
(
1− x−3

)
' −x−3 . (12.51)

This immediately yields

σc
σy
' 2 log(x)

∣∣∣∣
(

2
3εy

)1/3

1

− 4

3εy
× x−3

3

∣∣∣∣∞(
2

3εy

)1/3
=

2

3
log

(
2

3εy

)
+

2

3
. (12.52)

Therefore,
σc
E
' 2εy

3

[
1 + log

(
2

3εy

)]
. (12.53)

As expected, σc is an increasing function of σy (for a fixed E), but the dependence is not trivial

and could not have been guessed to begin with (note, though, that the elastic term is related to

the elasticity limit presented in Eq. (12.27) in the b/a→∞ limit). This is an example of unlimited

plastic flow under a fixed applied stress (“plastic collapse”).

D. Beyond perfect plasticity

The elastic-perfect plastic model discussed above involves some serious simplifications. One

simplification we adopted is that elasto-plastic materials behave in a perfect plastic manner, i.e.

flow indefinitely at a yield stress that cannot be exceeded. This is not quite true for most of the

materials. This brings us to a very important phenomenon called “strain hardening” or “work

hardening”, which means that the stress needed to make a solid flow plastically is increasing with

the deformation beyond the initial yield stress (elastic limit) σy. The material becomes plastically
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harder (stronger) the more it is deformed. Usually the increase of the stress with strain can be

described by a power-law and hence in many cases one phenomenologically replaces Eq. (12.1)

with

σ = Eε for ε <
σy
E

σ = σy

(
Eε

σy

)n
for ε ≥ σy

E
, (12.54)

where n is the hardening exponent (typically small). For n = 0 we recover the elastic-perfect

plastic law. Another way to describe hardening, say in the framework on the J2 theory of Eq.

(12.2), is to stipulate that the yield stress is in fact a function of the history of the deformation,

i.e. √
J2 = f(β) , (12.55)

where β is sometimes taken to be proportional to the plastic dissipation
∫ t

0
ε̇pl :σdt′. In order to get

a better qualitative understanding of strain hardening, we need again to consider the microscopic

processes that mediate plasticity – dislocations dynamics. Qualitatively speaking, some of the

dislocations that move chaotically during plastic deformation remain locked inside the material

(“statistically stored dislocations”) and serve as obstacles for additional flow. Understanding

strain hardening from basic principles remains one of the major challenges in materials physics.

Another great simplification in the ideal elastic-perfect plastic model is the omission of all

dynamical aspects of plasticity, including the relevant timescales. Plasticity is an intrinsically

dynamic phenomenon. From this perspective, we would expect the theory to tell us some basic

about rates (i.e. strain rates instead of strains) and the basic field to be the velocity field (instead

of the displacement field). Therefore, we would like to express elastic-plastic theories in terms

of the rate of deformation tensor D, which is a symmetrized version of the velocity gradient

tensor L (when small deformations are of interest, D can be approximated by the total strain

rate tensor ε̇). This immediately poses a very serious problem that was alluded to earlier in the

course. Elasticity involves a memory of one reference state and is described by the displacement

field that is defined with respect to the reference configuration. Plasticity, on the other hand,

implies the continuous evolution of the configuration and is generally described by the velocity

field in the deformed configuration. Elasticity seems to be more naturally described in Lagrangian

coordinates, while plasticity seems to be more naturally described in Eulerian coordinates. How

do we combine them together?

This is a very serious problem that goes beyond the scope of our discussion. We will only
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briefly mention that one can roughly distinguish between two basic approaches to this problem.

In the first of these, one decomposes the deformation gradient F (recall that L = Ḟ F−1) into a

product of a plastic part F pl and an elastic one F el as

F = F elF pl . (12.56)

In this multiplicative decomposition, due to Kröner (1960) and Lee (1969), the order of operation

is crucial. Since the deformation gradient is defined in terms of a fixed reference configuration

(recall that it describes how line elements in the reference configuration are transformed into their

images in the current (deformed) configuration), F pl acts on such a fixed reference configuration.

It describes the evolution of the structure due to plastic deformation and transforms the reference

configuration into an artificial “intermediate” configuration. Elasticity is defined with respect

to this intermediate configuration and transforms it into the current (deformed) configuration.

Thus, elasticity – in this framework – is defined as usual by an elastic energy functional, but with

respect to an evolving configuration whose dynamics are described by the plastic deformation.

This is an intrinsically Lagrangian framework in which, in some sense, plasticity is formulated in

a way similar to elasticity. While this framework is not free from problems, it is very popular in

formulating elasto-plasticity theories. One problem with the multiplicative decomposition is that

it requires that the intermediate configuration be stress free (as always, all stresses emerge from

the elastic part of the deformation). However, when the deformation is inhomogeneous (as it is

usually the case) this implies that the intermediate configuration is not geometrically compatible

(different material elements relax in a mutually incompatible way when the stress on them is

relaxed).

The second conventional way to kinematically combine elasticity and plasticity is to represent

elasticity in a rate form. That is, instead of defining elasticity with respect to a reference frame,

we define it incrementally with respect to the current configuration. Therefore, the elastic part

of the rate of deformation tensor, Del, is defined as the material derivative of some elastic strain

Del =
Dεel

Dt
. (12.57)

When an elastic constitutive relation of the form εel(σ) is inserted, the above expression describes

the time evolution of the stress σ. The total rate of deformation tensor D is then decomposed

additively as

D = Del +Dpl , (12.58)
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where the plasticity theory is described by Dpl (which by itself can depend on other variables in

addition to the stress, see below). This is an intrinsically Eulerian framework in which, in some

sense, elasticity is formulated in a way similar to plasticity. This formulation is also not free of

problems, the major one is that it is not possible to guarantee that the rate form of elasticity will

be exactly integrable, i.e. that it will lead to a path independent elastic deformation. However,

one can show that for small elastic deformation (extension and rotation) both the multiplicative

and the additive elasto-plastic decompositions discussed above agree with one another. We will

therefore adopt the additive form and focus on simple situations where it can be written in terms

of strain rates as

ε̇ = ε̇el + ε̇pl , (12.59)

where ε̇el is simply the time rate of change of Hooke’s law. Plasticity is described in a rate form

and contained in ε̇pl. There are many models for ε̇pl. The simplest, and probably the oldest

(dating back to 1922), is due to Bingham who proposed the following (scalar) form

ε̇pl = 0 for σ < σy

ε̇pl =
σ − σy
η

for σ ≥ σy , (12.60)

where η is a viscosity-like parameter (here we immediately see the presence of relevant plasticity

timescales, which are missing altogether in the perfect plasticity model). This is the simplest

way to combine the concept of a yield stress with a Newtonian-type flow. Materials described by

such a model are typically termed “yield-stress fluids”, which constitute an important example

of complex, non-Newtonian fluids. In this context it worthwhile mentioning the Herschel-Bulkley

fluids, which are described by the following stress strain-rate relation

σ = σy + κ ε̇m , (12.61)

which describe the flow behavior of many complex fluids/solids (clay slurries, paints, microgels,

emulsions, colloidal suspensions, foams, cements, mud, polymers, organic materials and more).

Note that since we do not consider here elastic deformations, we do not need to distinguish between

elastic and plastic components. For σy = 0 and m= 1, we obtain a Newtonian fluid. For σy 6= 0

and m = 1, we obtain a Bingham material. More generally, the exponent m can be different

from unity (“power-law fluids”). When m> 1, the behavior is termed “shear-thickening” while

for m< 1, it is termed “shear-thinning”. These names refer to the dependence of the nonlinear

(effective) viscosity on the shearing rate

ηeff ≡
∂σ

∂ε̇
∼ ε̇m−1 . (12.62)
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For m> 1, ηeff increases with the shearing rate, i.e. the fluid “thickens”, while for m< 1, ηeff

decreases with the shearing rate, i.e. the fluid “thins”. We finally note that plasticity models

whose basic object is ε̇pl are sometimes termed visco-plastic models. The “visco” part denotes the

fact that these models include a timescale in them (which are absent in perfect plasticity models).

The most serious simplification of the ideal elastic-perfect plastic model, which in a deep sense

includes in it the previous simplifications and which is shared by many phenomenological models

of plasticity, is that it does not tell us anything about the evolution of the material’s structure

during deformation and how the structure affects the flow. We said several times earlier in

the course that the essence of plastic (irreversible) deformation is that the configuration of the

material evolves and determines the subsequent response. We also said that plastic deformation

implies some “memory” of previous deformation. There are direct experimental observations that

demonstrate the need to describe the evolution of the internal structure of a deforming solid. We

demonstrate it here using a well-known effect, the Bauschinger effect. Consider a solid under

the application of a stress that is larger than its yield stress and then unload it. The material

remains deformed plastically in the absence of external stress. Ask yourself then what stress in

the opposite direction would you need to apply to the material in order to recover the original

shape (under stress now)? In particular, would the magnitude of this stress be equal, smaller or

larger than the magnitude of the original stress? The answer is that it is smaller. Alternatively,

you can apply the same magnitude of stress in the opposite direction and the response would be

stronger. The material “remembers” part of its past deformation, and this should be accounted

for in our theoretical modeling.

These observations and discussion clearly point to something we already know, i.e. one needs

to identify coarse-grained “internal variables” that account for the material’s structural evolution

during plastic deformation and its effect on subsequent deformation. In the crystal plasticity

problem, these are likely to include the density of dislocations and related quantities. Discussing

in detail such theories goes beyond the scope of this course.
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Dissipative phenomena in solid mechanics

XIII. MATERIAL FAILURE

When solids are sufficiently strongly driven by mechanical forces, they break. The scientific

field that addresses materials failure is called “Fracture Mechanics“. Our goal in this part of the

course is to understand the basic concepts related to the fracture of solids.

A. Some scaling arguments

Consider a solid of cross-section A and height H. The gravitational potential energy of the

solid is given by

U =

∫
g h dm =

∫ H

0

g h ρAdh =
ρgAH2

2
. (13.1)

Consider now what happens if instead of one piece of a material of height H, we have two pieces

of height H ′ = H/2 (the cross-section remains the same). In this case, the total gravitational

energy is given by

2U ′ = 2
ρgA

2

H2

4
=
U

2
< U . (13.2)

The gravitational energy reduced by an amount

∆U = U − 2U ′ =
ρgAH2

4
. (13.3)

This is, of course, not the only energy involved. In comparing the two configurations (one vs. two

pieces), we should also take into account the fact that the latter includes an additional surface

(actually two). That means an increase in energy due to surface energy by an amount 2γA, where

γ is the surface energy. Therefore the total energy of the solid can be reduced by breaking it to

two identical pieces when
ρgAH2

4
> 2γA . (13.4)

That means that the critical height Hc at which the solid becomes unstable scales as

Hc ∼
√

γ

ρ g
. (13.5)

In order to estimate Hc, we need to put in some numbers. How do we estimate the surface

energy γ of ordinary solids? Surface energy has the dimensions of energy per unit area. To
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estimate it we need a typical energy scale and a typical area scale. As before, we use microscopic

quantities, an atomic interaction energy scale, ∼ 1eV, and an atomic area, ∼ 10× 10−20m2 to get

γ ∼ 10−19J

10× 10−20 m2
= 1 J/m2 . (13.6)

Using ρ ' 103kg/m3 and g ' 10m/sec2 we obtain Hc ∼ 10−2m. That is a remarkable observation.

It says that essentially all solids around us are out-of-equilibrium. More accurately, they are in

metastable states that can persist for extremely long times without getting to their true ground-

state.

Let us now try to estimate the barrier that needs to be overcome in order to separate a solid

into two pieces. For that aim, let us forget about gravitational potential energy, which is typically

small compared to strain energies, and ask ourselves how much we need to stretch a solid in order

to break it. Suppose we impose a uniaxial tensile strain of magnitude ε to a solid. What happens

at the microscopic level? Let us focus on single crystals (e.g. forget about disorder, non-affine

deformations etc.). In this case, the distance between atoms within the solid increases by 100× ε

percent. When does the interaction between two atoms drop to zero? Consider then a typical

atomic interaction energy. It is clear that when the equilibrium separation is increased by a sizable

fraction, say by 50%, the interaction essentially vanishes. The critical separation is somewhere in

between, say at 25%. Therefore, the critical strain is roughly εc ' 0.25. This suggests that

σc = Eεc '
E

4
. (13.7)

Note the similarity of this estimate to the ideal shear strength (shear yield stress) estimate for

the plastic flow of solids. To test this prediction we again need experiments. What do laboratory

experiments tell us? Well, the typical tensile strength observed in the lab is 2-3 orders of magnitude

smaller than the theoretical prediction.

To understand what went wrong in the theoretical prediction, we need to better understand

the dynamical processes that lead to the failure of materials. Equilibrium thermodynamics is not

enough. Like in the case of plastic shear flow, where we invoked the dynamics of atomic scale

defects (dislocations), also here in the context of tensile failure we need a symmetry breaking,

out-of-equilibrium, dynamical process that will provide us a path to equilibrium. In this case, the

objects of interest are cracks. Cracks are very interesting and important objects. In the remaining

parts of the course we will try to understand their basic properties and their effect on the strength

and failure of solids. Before we derive more rigorous and fundamental results, let us again start

with some simple scaling arguments.
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A tensile crack is defined as a material line that cannot support tensile and shear stresses,

i.e. the crack faces satisfy traction-free boundary conditions σnn = σtn = 0 (this implies that

under compressive stresses we might not be able to detect the presence of cracks). Mathemat-

ically speaking, a crack is a branch-cut that introduces a displacement discontinuity when it is

crossed. Before we explore the field theoretic implications of this, we first consider a simple scaling

approach. For that aim, consider an infinite solid which contains a crack of length ` under the

application of a uniaxial stress σ (oriented perpendicularly to the crack). We will soon consider

what happens when the crack propagates at a velocity v, but first focus on the case when the

crack is stationary/quasi-static (v→0). Let us estimate the total energy change per unit sample

thickness ∆E due to the presence of a crack. In the absence of a crack, the solid is uniformly

stressed with a potential strain energy density of the form

up ∼
σ2

2E
(13.8)

where E is the Young’s modulus. As we said above, a crack cannot support stresses and hence

strain energy is released in its surroundings. The spatial scale where it happens must be deter-

mined by `, the only available scale in the problem. Therefore the change in the strain energy per

unit sample thickness reads

∆Ep ∼ −α
σ2 `2

2E
, (13.9)

where α is a dimensionless number of order unity. The minus sign represents the fact that we are

talking here about a reduction in the energy. It is important to note that we focuss here only on

the linear elastic manifestations of the presence of the crack, a point that we will elaborate on

later. As should be clear now from the above discussion, there is always a positive contribution

to the energy change, coming from surface energy. This contribution is linear in ` and reads

∆Es ∼ γ` . (13.10)

In fact, we should have used here a more general concept than the surface energy – the fracture

energy – to be discussed later. ∆E is then expressed as

∆E = ∆Ep + ∆Es ∼ −α
σ2 `2

2E
+ γ` . (13.11)

Think now of ` as a thermodynamic variable and plot how ∆E varies with it. At small crack

lengths, the surface energy dominates the elastic energy and ∆E increases with increasing `. For

sufficiently large cracks, the elastic energy reduction dominates and ∆E decreases with increas-

ing `, implying an instability in which the crack grows indefinitely and the material undergoes
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catastrophic failure. The critical crack length `c is determined from

∂E
∂`

= 0 =⇒ `c ∼
γ E

σ2
. (13.12)

The critical crack length decreases as the square of the applied stress. Alternatively, if ` is fixed

– i.e. it is a frozen-in defect in the solid, which is the most common case – then the critical stress

for failure σc reads

σc ∼
√
γ E

`
. (13.13)

This provides us with a deep physical insight: the strength of materials is determined by the

largest defect (crack) it contains. This observation suggests a qualitative understanding of the

failure of the theoretical tensile strength prediction; materials contain defects and therefore their

strength is significantly reduced. We will get deeper insights about this point soon when we

discuss more rigorous results. An equivalent, yet meaningful, way to combine the two last results

is to write for the critical point the following relation

σ2` ∼ γ E . (13.14)

The right hand side is a combination of material parameters and the left hand side is a product

of an externally controlled parameter (σ) and a parameter characterizing the defect state of the

material (`). This fundamental result was essentially obtained by Alan Arnold Griffith, a British

engineer, in a brilliant and revolutionary series of papers in the early 1920’s. The importance

of Griffith’s work was largely unrecognized until the 1950’s. It took, then, a few more decades

before this has been consolidated into a physical theory formulated within a firm mathematical

framework.

Let us now consider what happens when ` > `c, still in the spirit of a scaling theory. When the

unstable regime ` > `c is approached, the crack continuously accelerates and hence emits kinetic

energy into its surroundings. Therefore, a kinetic energy contribution to ∆E should be taken into

account. Suppose the crack propagates (at least instantaneously) at a velocity v and denote the

kinetic energy change associated with it by ∆Ek. We then assume that a mass per unit thickness

M ∼ ρ `2, where ρ is the mass density, attains a velocity that scales with v. Therefore, we can

estimate

∆Ek ∼ β
1

2
Mv2 ∼ 1

2
βρ `2v2 , (13.15)

where β is a dimensionless number. Note that ∆Ek>0, i.e., the crack radiates kinetic energy that

has to be supplied by the stored elastic energy. For reasons that will become clear immediately,
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we denote the energy change in Eq. (13.11) as ∆Eqs, where the subscript stands for “quasi-static”,

and write

∆Eqs(`) = ∆Eqs(`c)− α
σ2

2E
(`− `c)2 . (13.16)

Therefore, we have for the total change of energy associated with crack motion the following

relation

∆Etot(`) = ∆Es(`) + ∆Ep(`) + ∆Ek(`) ∼ ∆Eqs(`c)− α
σ2

2E
(`− `c)2 +

1

2
βρ `2v2 . (13.17)

The next key point is to note that when `>`c, the process becomes highly dynamic, i.e. the crack

experiences rapid acceleration, and hence there is no time for energy to flow in and/or out of the

system. Consequently, we approximately have ∆Etot(`) ' ∆Eqs(`c) (i.e. energy may change form

— surface, kinetic and potential — but the sum is fixed). Substituting this relation in the above

equation and solving for v(t) = ˙̀(t), we obtain the following evolution equation for the crack’s

length `(t)

˙̀(t) ' vmax

(
1− `c

`(t)

)
, (13.18)

where

vmax ≡

√
ασ2

β E ρ
. (13.19)

This is a remarkably simple and insightful result; it tells us that under the prescribed conditions

and when ` > `c (obviously v=0 for ` ≤ `c), the crack accelerates monotonically toward a limiting

velocity vmax. Moreover, since this equation does not include v̇ term it suggest that the crack

tip may be regarded as a massless particle. The above argument does not tell us how exactly

the limiting velocity vmax is related to intrinsic velocity scales in the system, e.g. the various

elastic wave-speeds. In 1957 Stroh correctly argued that vmax should in fact be identified with

the Rayleigh wave-speed cR because in the limit of high speeds a crack should be viewed as a

surface perturbation. This seems consistent with the idea that a crack tip should be regarded as

a massless particle, in which case we expect it to propagate at the limiting velocity of the theory.

This also suggests “relativistic” effects, that will be mentioned later.

This scaling theory that leads to Eq. (13.18) is due to Sir Nevill Mott (1947), who was awarded

the Nobel prize in Physics in 1977 for his work on the electronic structure of disordered solids (he

also made seminal contributions to the theory of fragmentation and other important problems).

As it sometimes happens in the history of science, great scientists obtain essentially correct results

even though they make fundamental physical mistakes. In the present case, the analysis did not

take into account the fact that cracks induce singular stress fields and the kinetic and potential
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energies actually diverge as the propagation speed approaches the limiting velocity – the Rayleigh

wave-speed cR. However, the final result depends only on the ratio of the two, which exhibit

the same divergence and hence cancels out. It took about 30 years and serious mathematical

developments to actually properly derive Eq. (13.18), including cR as vmax. We might get a

glimpse at this towards the end of the course.

Before we proceed to make things more accurate and quantitative, let us note that it is conven-

tional to specify three modes of fracture, defined through the symmetry of the loading conditions

with respect to a crack. Mode I fracture corresponds to tensile loading, i.e. tensile stresses that

act perpendicularly to the crack faces, and is characterized by the following symmetry properties

of a two-dimensional (in-plane) vectorial displacement field u = (ux, uy, 0)

ux(x,−y) = ux(x, y) ,

uy(x,−y) = −uy(x, y) . (13.20)

Mode II fracture corresponds to shear loading, i.e. shear stresses that act parallel to the crack

faces, and is characterized by the following symmetry properties of a two-dimensional (in-plane)

vectorial displacement field u = (ux, uy, 0)

ux(x,−y) = −ux(x, y) ,

uy(x,−y) = uy(x, y) . (13.21)

Mode III fracture corresponds to anti-plane shear loading and is characterized by the following

symmetry properties of a two-dimensional (out-of-plane) scalar displacement field u = (0, 0, uz)

uz(x,−y) = −uz(x, y) . (13.22)

B. Rigorous results in the framework of Linear Elastic Fracture Mechanics

Up to now we used various scaling arguments to gain insight into the nature of cracks and

the fracture process. We did not, however, touch upon the most striking feature of cracks, i.e.

the existence of near tip singularity. We stress again that even though fracture is a strongly

nonlinear and dissipative phenomenon, we presently focus on the linear elastic aspects of fracture

phenomena, in the framework of the so-called Linear Elastic Fracture Mechanics (LEFM).

Inglis solution



131

Our story should start with the solution of Inglis (1913). Inglis considered a two-dimensional

elliptical hole of major and minor axes a and b, respectively, inside an infinite linear elastic solid

loaded by a remote tensile stress σ∞ perpendicularly to the major axis of the hole. Inglis solved

the complete problem analytically, but his main result can be presented in a compact manner.

Denote the maximal tensile stress along the hole by σmax, then

σmax
σ∞

= 1 +
2a

b
. (13.23)

For a circular hole, a = b, we obtain a mild amplification factor, σmax = 3σ∞. However, when the

hole becomes more and more elongated the amplification factor increases. When it approaches

a crack, b/a → 0, the stress diverges. We therefore see that the geometry of defects plays a big

role in determining the strength of materials and that cracks concentrate enormous stresses near

their tips, i.e. cracks are stress amplifiers. It is this physical effect that explains the dramatic

difference between the theoretical and practical strength of solids. The Inglis analysis has very

practical implications; if you have a crack in your structure, you would better drill a hole at its

tip to increase its radius of curvature. Engineers do that and now you understand why, even

though it might appear counterintuitive to the layman. The Inglis solution played an important

role in the development of fracture theory. In fact, Griffith was aware of the Inglis solution and

used it to derive his famous 1922 result, Eq. (13.13), including all pre-factors.

Williams eigenfunctions expansion

Our next stop would be in the 1950’s (there are good reasons why it happened in the 1950’s, I

will comment about this in class), with the so-called Williams expansion. Consider a linear elastic

solid under quasi-static conditions, for which we have

∇2∇2χ(r, θ) =
(
∂rr + r−1∂r + r−2∂θθ

)2
χ(r, θ) = 0 . (13.24)

where χ(r, θ) is the Airy stress potential. Let us look for a solution of the form χ(r, θ) = rλ+2f(θ)

(you already know from previous discussions that there are more solutions, e.g. log r). Operating

with ∇2 on this Ansatz, we obtain(
∂rr + r−1∂r + r−2∂θθ

)
rλ+2f(θ) = rλ

[
(λ+ 2)2 +

d2

dθ2

]
f(θ) ≡ rλg(θ) . (13.25)

Operating with ∇2 again yields(
∂rr + r−1∂r + r−2∂θθ

)
rλg(θ) = rλ−2

[
λ2 +

d2

dθ2

]
g(θ) = 0 , (13.26)
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and therefore we end up with the following ordinary differential equation[
λ2 +

d2

dθ2

] [
(λ+ 2)2 +

d2

dθ2

]
f(θ) = 0 . (13.27)

Assume then a solution of the form f(θ) = eαθ, which leads to the following algebraic equation

[
λ2 + α2

] [
(λ+ 2)2 + α2

]
= 0 . (13.28)

The solution is

α1,2 = ±iλ α1,2 = ±i(λ+ 2) , (13.29)

therefore

f(θ) = a cos(λθ) + b cos[(λ+ 2)θ] + c sin(λθ) + d sin[(λ+ 2)θ] . (13.30)

To determine the parameters we need to introduce a crack. Consider then a straight mode I crack

where (r, θ) represents a coordinate system attached to the tip and θ = 0 points in the direction of

the tangent to the crack tip. Symmetry alone, f(θ) = f(−θ), implies c = d = 0. As we explained

above, a crack is introduced mathematically as traction-free boundary conditions of the form

σθθ(r, θ=±π) = ∂rrχ(r, θ=±π) = 0, σrθ(r, θ=±π) = −∂r
(
r−1∂θχ(r, θ=±π)

)
= 0 . (13.31)

Using χ(r, θ) = rλ+2 (a cos(λθ) + b cos[(λ+ 2)θ]), we obtain

σθθ(r, θ) = (λ+ 2)(λ+ 1)rλ (a cos(λθ) + b cos[(λ+ 2)θ]) , (13.32)

σrθ(r, θ) = (λ+ 1)rλ (aλ sin(λθ) + (λ+ 2)b sin[(λ+ 2)θ]) . (13.33)

Applying the boundary conditions, we obtain

(a+ b) cos(λπ) = 0 , (13.34)

[aλ+ b(λ+ 2)] sin(λπ) = 0 . (13.35)

Denoting n = 0,±1,±2, ..., the solution reads

λ = n =⇒ b = −a , (13.36)

λ =
2n+ 1

2
=⇒ b = − aλ

λ+ 2
. (13.37)

We therefore end up with the Williams eigenfunctions expansion

σij(r, θ) =
m=∞∑
m=−∞

amr
m/2f

(m)
ij (θ) , (13.38)
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where f
(m)
ij (θ) are explicitly expressed in terms of trigonometric functions as above. An immediate

striking feature here is that the expansion contains half-integer powers. These emerge from the

fact that a crack introduces a discontinuity in the fields, i.e. a crack is regarded as a mathematical

branch cut.

What can we say about {am}? How can one calculate them? It is crucial to understand that

we did not consider the outer boundary conditions of the problem, i.e. we essentially performed

a crack tip asymptotic expansion, without even formulating the global boundary-value problem.

{am} are determined from the solution of each specific global boundary-value problem, which in

general cannot be done analytically. The Williams expansion in Eq. (13.38) is therefore universal,

independent of the external geometry and boundary conditions. The asymptotic expansion of

course has a finite radius of convergence typically determined by some geometric properties of the

crack, e.g. length for straight cracks or curvature for non-straight ones (note that we imposed the

boundary conditions at θ = ±π, assuming that on the scale of interest any path curvature can be

neglected).

Universal singular crack tip fields

The next question we would like to ask ourselves is whether all m’s in the Williams expansion

in Eq. (13.38) are physically acceptable? The point is the following: all terms with m < −1 will

lead to unbounded linear elastic strain energy in the r → 0 limit. To see this, recall that in a

linear theory we have ε ∼ σ ∼ rm/2 and hence the strain energy density scales as 1
2
σijεij ∼ rm.

Therefore, the energy per unit thickness reads
∫

1
2
σijεij r dr dθ ∼

∫
rm+1dr. It diverges in the

r → 0 limit for m < −1 (more precisely, we are interested in the energy flux into the tip region

when the crack advances incrementally, which in fact does not involve integration over r, as will

be discussed below). We should therefore rewrite Eq. (13.38) as

σij(r, θ) =
m=∞∑
m=−1

amr
m/2f

(m)
ij (θ) . (13.39)

The above discussion has serious implications. As we have included the m = −1 term in the

expansion, it seems as if we allow the stress tensor to diverge in the r → 0 limit as long as it

results in an integrable elastic energy. This divergence is precisely the one we discussed in the

context of the Inglis solution above. Obviously a physical quantity such as the stress cannot really

diverge, i.e. there must be some small scale physical regularization of the divergence. However,
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the square-root singular spatial variation of the stress (and strain) field near the tip of a crack is

real and of enormous importance. We already understood that it is this singularity that essentially

explains the huge discrepancy between the theoretical and practical strength of materials.

In 1957 Irwin made the next seminal contribution. He pointed out that the series in Eq. (13.39)

is dominated by the m = −1 term as the crack tip is approached, r → 0. He therefore focussed

on this contribution, for which we have λ = −1/2 and b = −aλ/(λ + 2) = a/3 in Eq. (13.32),

leading to

σθθ(r, θ) =
a

4
√
r

[
3 cos

(
θ

2

)
+ cos

(
3θ

2

)]
=

a√
r

cos3

(
θ

2

)
. (13.40)

Irwin defined a ≡ KI/
√

2π, where KI is known as the mode I stress intensity factor (the other

symmetry modes have their own stress intensity factors). It is a fundamental quantity in the

theory of fracture as it quantifies the intensity of the near tip singularity. It has rather strange

physical dimensions of stress times square-root of length. Before we continue to discuss it, we

note that for θ = 0 we have

σθθ(r, 0) = σyy(r, 0) =
KI√
2πr

, (13.41)

which directly quantifies the strength of the tensile stress that tends to drive the crack into

motion. The other two components of the stress field corresponding to the m = −1 term are

easily obtained and read

σrθ(r, θ) =
KI√
2πr

cos2

(
θ

2

)
sin

(
θ

2

)
, (13.42)

σrr(r, θ) =
KI√
2πr

cos

(
θ

2

)[
1 + sin2

(
θ

2

)]
. (13.43)

This asymptotic stress field σ is termed the “K-field”.

The emerging mathematical and physical picture is neat. Whatever external geometry and

boundary conditions we have, the near crack tip fields are universal and characterized by a square-

root singularity. All the information about the large scales is transmitted to the crack tip region by

a single number, the stress intensity factor KI – the only non-universal quantity in the universal

K-field (if mode II and III loadings are relevant, we have two additional universal fields, all

feature a square-root divergence, and two additional stress intensity factors, KII and KIII). As

we stressed above, calculating it entails the solution of the global crack problem. In the case of a

single straight crack of length ` in an infinite medium loaded by a tensile stress σ∞ at infinity (an

Inglis crack), dimensional analysis implies that KI ∼ σ∞
√
` and only the order unity prefactor

should be calculated from the exact global solution.
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As we explained above, there must be some physical regularization of the singularity at small

scales, which means that nonlinear and dissipative processes (e.g. plasticity) are taking place

near the tip of crack relax the stress. Therefore, the K-field should be in fact interpreted as

“intermediate asymptotics” separating the large (“outer”) scales linear elastic behavior from the

small (“inner”) scales nonlinear and dissipative behavior. A crucial assumption here is that we

indeed have scales separation, i.e. that linear elasticity is valid everywhere except for a region

near the crack tip – the so-called “process zone” – whose dimensions are much smaller than any

other lengthscale in the crack problem. This assumption is termed “small scale yielding” (though

the nonlinear and dissipative processes near the tip are not necessarily or exclusively plastic

yielding and deformation). It is important to stress again that the (“inner”) scales near the tip

of the crack, where fracture is actually taking place, are always subjected to universal boundary

conditions in the form of the K-field and that the specific properties of a given problem at the

larger (“outer”) scales are transmitted to the tip region only through the stress intensity factor.

It is this scales separation that makes a linear elastic approach so useful. Fracture is a physical

phenomenon that exhibits a rather unique coupling between widely different scales. It is also

a natural laboratory for extreme out-of-equilibrium physics that takes place near the tip region

even if external loading conditions are mild.

Crack tip opening displacement (CTOD)

Let us explore some more consequences of the universal K-field in Eqs. (13.40), (13.42) and

(13.43). First, we use Hooke’s law to transform this stress field into a displacement field. The

result reads (derive)

ux(r, θ) =
KI

√
r

4µ
√

2π

[
(2κ− 1) cos

(
θ

2

)
− cos

(
3θ

2

)]
, (13.44)

uy(r, θ) =
KI

√
r

4µ
√

2π

[
(2κ+ 1) sin

(
θ

2

)
− sin

(
3θ

2

)]
, (13.45)

where

κ=

 3− ν
1 + ν for plane-stress ,

3− 4ν for plane-strain .
(13.46)

We now ask the following question: what is the shape of the crack tip when it opens up under

external loadings, i.e. what is the crack tip opening displacement? To answer this question we

would be interested in calculating the dependence of ϕx(r, π) on ϕy(r, π), where ϕ = x+u is the
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motion (recall that in the linear theory we do not distinguish between the undeformed X and the

deformed x coordinates). We then have

ϕx(r, π) = r cos(π) + ux(r, π) = −r , (13.47)

ϕy(r, π) = r sin(π) + uy(r, π) ∼ KI

µ

√
r . (13.48)

Therefore, we obtain

ϕx(r, π) ∼ − µ
2

K2
I

ϕ2
y(r, π) , (13.49)

which implies that the crack tip opening displacement is parabolic. The curvature of the parabola

is determined by µ2/K2
I .

C. Configurational forces and the J-integral

Up to now we discussed the linear elastic fields near the tip of the crack. But we have not

touched upon the question of how fracture actually happens; What drives it? When does it

happen? To start answering these questions, let us introduce the concept of configurational

forces, a fundamental concept in non-equilibrium continuum physics. Unfortunately, we cannot

discuss this concept in great detail, but rather sketch the basic ideas. Configurational forces

are very general and useful physical objects; in fact, we already ran into them in the context of

dislocations, where the configurational force is termed the Peach-Köhler force. The basic idea and

formalism were laid down by Eshelby who introduced the concept of a generalized force acting on a

defect by realizing that defects break some basic symmetry in a given physical system. He derived

an elastic energy-momentum tensor, where one or more of the components are not conserved due

to the presence of a defect. These configurational forces are thermodynamic forces acting on

symmetry-breaking defects, to be distinguished from Newtonian forces that act on particles. To

convey the basic idea let us assign to a defect (e.g. a dislocation or a crack) a coordinate ` and

write down the total rate of dissipation (per unit thickness) Φ associated with the defect motion

as

Φ = −∂E
∂`

˙̀ ≥ 0 , (13.50)

where E is the energy (per unit thickness) stored in the loading device and the system. The

configurational (generalized) force G acting on the defect is defined as

G ≡ −∂E
∂`

. (13.51)
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Note that since the inequality in (13.50) is a dissipation (second law) inequality, we see that the

configurational (generalized) force G and the defect coordinate ` are thermodynamically conjugate

such that the product G ˙̀ is the dissipation (compare to other dissipation inequality we have

encountered, e.g. σ : ε̇pl ≥ 0). It also shows that G = 0 in the absence of dissipation. G has the

dimensions of energy per unit area. Let us understand what the physical meaning of G is when

the defect is a crack (without following the energy-momentum tensor derivation). G is associated

with energy dissipation, yet it is obtained by the variation of the total elastic energy (stored in

both the loading device and the system) with respect to the crack tip coordinate. Since dissipation

takes place only at the crack tip, this means that G quantifies the energy that flows from the

loading and the elastic bulk into the singularity where it dissipates.

With this physical understanding we can write down an expression for G. Consider a crack

moving with an instantaneous speed v (which may vary with time) in the x-direction and a contour

C that starts at one crack face and ends at the other one that translates with the crack tip. Let

us express the energy flux through the contour C. This flux is composed of two physically distinct

contributions. The first is the rate of work the tractions acting on C do on the material inside C.

Had C been a fixed material line, that would be the only contribution to the energy flux. However,

as C is translating with the crack tip, energy flows through C also due to the transport of material

(which carries potential and kinetic energies) through C. Put together we have

J(C) =

∫
C

[
sij
∂ui
∂t
nj + (U + T ) vnx

]
ds , (13.52)

where n is an outward unit normal on C, s is the first Piola-Kirchhoff stress tensor, ds is an

infinitesimal arclength element along C and

T =
ρ

2

∂ui
∂t

∂ui
∂t
, U =

∫ t

−∞
sij

∂2ui
∂xj∂t′

dt′ . (13.53)

are the kinetic and potential energy densities, respectively. The line integral is understood to be

taken in the counterclockwise direction. This in fact can be shown to be an integral over one

component of the elastic energy-momentum tensor. We note that all quantities and coordinates

refer to the reference configuration (for the simplicity of the notation we did not use the X’s as we

did earlier in the course) and that U is any elastic strain energy function (possibly nonlinear). The

integral in Eq. (13.52), which is sometimes termed the J-integral, quantifies the instantaneous

rate of energy flow through C towards the crack tip.

The dimensions of J-integral, energy per unit length per unit time, are different from those of
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G above. Obviously the two are related through the crack speed v such that

G = lim
C→ 0

J(C)
v

= lim
C→ 0

[
1

v

∫
C

[
sij
∂ui
∂t
nj + (U + T ) vnx

]
ds

]
. (13.54)

G, the configurational (generalized) force discussed above, is termed in the present context the

“dynamic energy release rate” (though it is not an energy rate, but rather an energy per unit

area). Was it necessary to take the limit C → 0? i.e. why couldn’t we simply have G = J/v?

The point is that in order for G to be a fundamental physical quantity it must be independent

of the path (contour) C. This is not true in general if C can be anywhere inside the elastic bulk.

However, it is independent of C if the latter is taken within the universal singular region where

the K-field is dominant (we do not prove this here), which is ensured if C is sufficiently small.

There is one important class of situations in which G (and J) are independent of the path

(contour) C for any C, irrespective if it is inside or outside the universal singular region. This

happens for steady state crack propagation, i.e. when v is time-independent. Let us prove it. We

start with the equations of motion
∂sij
∂xj

= ρ
∂2ui
∂t2

, (13.55)

where sij are the component of the first Piola-Kirchhoff stress tensor, ρ is the mass density in the

reference (undeformed) configuration, ui are the components of the displacement vector and xj

are the reference (undeformed) coordinates.

We multiply Eq. (13.55) by u̇i and sum over the index i

∂sij
∂xj

∂ui
∂t

= ρ
∂ui
∂t

∂2ui
∂t2

, (13.56)

which implies
∂

∂xj

(
sij
∂ui
∂t

)
− sij

∂2ui
∂xj∂t

= ρ
∂ui
∂t

∂2ui
∂t2

, (13.57)

which implies
∂

∂xj

(
sij
∂ui
∂t

)
=

∂

∂t
(U + T ) . (13.58)

The crucial point is that for steady state propagation we have

∂t = −v∂x , (13.59)

for which we have

G =

∫
C

[
(U + T )nx − sij

∂ui
∂x

nj

]
ds . (13.60)
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We should prove that the latter is independent of C. For that aim, consider a closed path ∂A such

that two segments of the path lie along the two crack faces. Denoting the area enclosed in ∂A by

A, the proof is as follows∫
∂A

(U + T )nxds =

∫
A

∂

∂x
(U + T ) dA = −v−1

∫
A

∂

∂t
(U + T ) dA = −v−1

∫
A

∂

∂xj

(
sij
∂ui
∂t

)
dA

=

∫
A

∂

∂xj

(
sij
∂ui
∂x

)
dA =

∫
∂A

sij
∂ui
∂x

njds , (13.61)

where Eqs. (13.58)-(13.59) and the divergence theorem were used. This implies∫
∂A

[
(U + T )nx − sij

∂ui
∂x

nj

]
ds = 0 , (13.62)

which completes the proof. To see this, recall that the two segments that lie along the crack

faces do not contribute to the integral in Eq. (13.62) because there we have nx=0 and sijnj =0

(the latter due to the traction-free boundary conditions). This implies that the sum of the two

line integrals over the two remaining portions of the path vanishes. However, the direction of

integration is reversed in one of them (such that the path is closed). If we reverse it back to be

counterclockwise, we get a minus sign that immediately implies that for every path that starts

at the lower crack face, encircles the tip in the counterclockwise direction and ends at the upper

crack face, the value of the integral is the same.

In particular, this result is valid for quasi-static cracks. Though the ideas about configurational

forces were developed by Eshelby in the early 1950’s, the integral discussed above in the context of

fracture theory was independently derived by Cherepanov (1967) and Rice (1968) for quasi-static

cracks and then extended to the dynamic case in the 1970’s.

D. Fracture toughness and fracture energy

We are now in a position to ask what is the criterion for crack initiation and motion. From

the perspective of LEFM, there are two interrelated approaches; the first one asserts that a crack

starts to propagate when the stress intensity factor KI surpasses a critical value KIC , the so-called

“fracture toughness”. This is a very useful concept, which translates into a fundamental material

property of great practical importance. The practice is rather simple: a crack is introduced into

a sample of prescribed geometry. Then the sample is loaded following a prescribed protocol until

it fails and the critical loading condition is tracked. The stress intensity factor KI is calculated

numerically for the prescribed geometry and loading, as a function of the loading parameter. KIC
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is the value of KI at the critical loading conditions. The engineer can then select materials with a

given fracture toughness KIC , depending on the application. Metals, such as those used to build

your car, can reach KIC of tens or even 100 MPa
√

m. Very brittle materials, such as your window

glass, are characterized by KIC which is smaller than 1 MPa
√

m. It worthwhile mentioning that

we usually want materials to be stiff, i.e. to deform as little as possible when they perform, and

also to be tough, i.e. to resist crack propagation and failure. Unfortunately, these properties are

usually inversely related. In fact, Nature does it quite well (think of your teeth or your bones) and

these days we see intense research activity in which people try to mimic natural design principles

to create better materials. This scientific strategy is called “biomimetics”.

When KI < KIC the crack remains stationary/static. For KI ≥ KIC motion sets in and

˙̀ = v > 0. Under these conditions, the stress intensity factor needed to propagate a crack at a

speed v is termed the “dynamic fracture toughness”, Kd
IC

.

The other approach to characterize the fracture resistance of materials is based on energy

considerations. Above, we have expressed the energy flux into the crack tip/sigularity in terms of

the near tip fields. From the perspective of LEFM this energy flows into the singularity which acts

as an energy sink, where energy is being dissipated by highly localized and nonlinear processes.

The amount of energy per unit crack area that should be supplied to the tip in order to propagate

at a speed v is denoted by Γ(v). It is known as the “fracture energy”. This material property is

extremely difficult to predict theoretically, because it lumps together physical processes that take

place under extreme conditions at the small scales near the tip of a crack. Using Eq. (13.54), we

obtain the following energy balance at the crack tip

G = Γ(v) . (13.63)

When Γ(v) is known and G is calculated in terms of the crack length (if the crack is assumed

to be straight), this becomes an equation of motion for the crack tip. Under certain conditions

Mott’s scaling prediction in Eq. (13.18) is recovered, where vmax is replaced with cR. It is crucial

to understand that the two sides of Eq. (13.63) have a fundamentally different status. The left

hand side is a quantity that can be calculated from the linear elastic solution for a given crack

configuration and speed. It quantifies the amount of linear elastic energy flowing from the large

scales into the small scales near the crack tip. The right hand side quantifies the amount of energy

being dissipated per unit crack area in the small scales near the tip when the crack propagates

at a speed v. We are talking here about fundamentally different physics that requires completely

different theoretical frameworks. Crack initiation is characterized by Γ(v) when v → 0. This is
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sometimes denoted as Γc or Gc. Unfortunately, as we mentioned above, typically we do not know

how to calculate Γ(v) from first principles. In fact, Eq. (13.63) is used in order to measure Γ(v).

This is a theory assisted (because the left hand side can be calculated) measurement. The same

practice is followed to measure KIC , as explained above.

The fracture energy Γ(v) is a generalization of the concept of surface energy γ. The latter

quantifies the amount of energy needed in order to break molecular bonds per unit area. We

already estimated γ to be of the order of 1 J/m2 for ordinary materials. Γ(v), on the other hand,

refers to the dynamical process that creates new surfaces, which might be different because it may

involve additional dissipative processes that are triggered by the large stresses and strains near

the crack tip. In general, 2γ (the two appears because we are creating two surfaces) is the lower,

velocity-independent, bound of Γ(v)

Γ(v) = 2γ + additional crack tip dissipation per unit crack area . (13.64)

The latter includes visco-elasticity, plasticity, damage (voids, micro-cracking) etc. Can these

dissipative processes make a significant contribution to Γ(v)? In nearly ideally brittle materials

like window glass, the major dissipative process is bond breaking and we have Γ ' 2γ. However,

for many other brittle materials this is not the case. Think for example about Plexiglass (Perspex)

or Polycarbonate (the material from which your glasses are made of). These are glassy polymers.

In order to break monomers – which still costs about 1 J/m2 – you need first to disentangle the

polymeric chains and to slide them one against the other, which involves quite a lot of energy

dissipation, much more than 1 J/m2. Therefore, for such materials, even though dissipation is

localized near the crack tip, the fracture energy may be orders of magnitude bigger than γ.

Finally, we should ask whether the two ways described above to quantify the fracture resistance

of solids, the fracture toughness KIC and the fracture energy Γ are related. The answer is yes.

To see this we should consider the J-integral in Eq. (13.54) and use the asymptotic K-field to

evaluate it. We have not calculated the K-field in the dynamic case (this will be done for mode III

cracks below), but here we focus only on the essential features of the outcome. The crucial point

to notice is that all the terms in the integrand are quadratic in the strain (i.e. appear as products

of the strain and stress). Since both the stress and strain scale as KI/
√
r, the integrand scales

as (with the correct dimensions) K2
I /Er. When multiplied by ds = rdθ, we obtain (as discussed

explicitly above in the context of the Williams expansion), a finite energy release

G ∼ K2
I

E
. (13.65)
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This is a very important result that tells us that saying thatG should meet a threshold is equivalent

to saying that KI should meet a threshold. The prefactor is indeed order unity for quasi-static

cracks, v → 0, but is a universal and highly nontrivial function for finite v. In fact, it diverges as

v → cR. We will not discuss this here (see tutorial).

E. Dynamic fracture

Our goal here is to better understand dynamic effects in fracture mechanics. For that aim, in

order to simplify the mathematical development, we focus on mode III fracture which is described

by scalar elasticity

µ∇2uz(x1, x2, t) = ρ∂ttuz(x1, x2, t) . (13.66)

Define then a coordinate system moving with the crack tip

x(x1, x2, t) = x1 − `(t) , (13.67)

y(x1, x2, t) = x2 , (13.68)

where `(t) is the crack tip position (the crack is assumed be to straight, but all of the results

remain the same for a curved trajectory). We therefore have

uz(x1, x2, t) = w(x, y, t) . (13.69)

We would like now to express Eq. (13.66) as an equation for w(x, y, t), which reads

∂xxw + ∂yyw =
1

c2
s

[
∂xxw ẋ

2 + ∂xw ẍ+ 2∂xtw ẋ+ ∂ttw
]
. (13.70)

Note that a partial derivative of uz with respect to t is different from a partial derivative of w

with respect to t, because in the former x1 and x2 are fixed and in the latter x and y are fixed.

Recalling that ẋ = −∂t`(t) = −v, we actually have

∂xxw + ∂yyw =
1

c2
s

[
v2∂xxw − v̇∂xw − 2v∂xtw + ∂ttw

]
. (13.71)

This shows, for example, how the crack tip acceleration v̇ enters the equation of motion.

The next question we should address is which terms in the equation contribute to the leading

singular field. From the energy considerations discussed above we know that the leading term in

the near tip expansion behaves as w ∼
√
r when r → 0 and hence to leading order we have(

1− v2

c2
s

)
∂xxw + ∂yyw = 0 . (13.72)
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This shows explicitly that the crack tip acceleration does not contribute to leading order. Note

also that the absence of explicit time derivatives here implies that as long as spatial derivatives

are concerned we can use w and uz interchangeably.

Let us solve this equation to leading order. Define

α2
s = 1− v2

c2
s

, (13.73)

which quantifies the “relativistic” change in length in the propagation direction. Then we have

∂xxw + ∂y′y′w = 0 , (13.74)

with

y′ ≡ αsy =

√
1− v2

c2
s

y . (13.75)

The relativistic effects (relative to the shear wave speed cs) are already evident here with the

appearance a Lorentz contraction which becomes strong at elastodynamic propagation velocities

(c→ cs).

Eq. (13.74) is Laplace’s equation, which we can readily solve using a complex functions tech-

nique that was discussed earlier in the course. For that aim define a complex variable ζs such

that

ζs = x+ iy′ = x+ iαsy = rse
iθs . (13.76)

It would be more convenient to introduce polar coordinate system at the crack’s tip

r =
√
x2 + y2 and θ = tan−1

(y
x

)
. (13.77)

We then have

rs = r

√
1− v2sin2θ

c2
s

and tan θs = αs tan θ . (13.78)

The solution to Eq. (13.74) is readily written as

w(ζs) = = [f(ζs)] , (13.79)

where f(·) is an analytic function. The leading near tip contribution takes the form

f(ζs) = a ζ1/2
s . (13.80)

The boundary conditions read

σzy(r, θ=±π) = 0 . (13.81)
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Let us calculate the stress components

σzx = µ∂xw = µ= [f ′(ζs)] = µ=
[a

2
ζ−1/2
s

]
= −µa

2
r−1/2
s sin

(
θs
2

)
, (13.82)

σzy = µ∂yw = µ= [iαsf
′(ζs)] = µ=

[
iαs

a

2
ζ−1/2
s

]
=
µa

2
αsr

−1/2
s cos

(
θs
2

)
. (13.83)

Since cos[θs(θ)/2] vanishes for θ = ±π, the boundary conditions in Eq. (13.81) are satisfied

automatically.

The definition of the mode III stress intensity factor

KIII ≡ lim
r→ 0

√
2πr σzy(r, θ=0) , (13.84)

implies

a =
2KIII

µαs
√

2π
. (13.85)

Finally, we can write down the complete leading order solution

w(r, θ) = =
[
a ζ1/2

s

]
=

2KIII

µαs
√

2π
r1/2
s sin

(
θs
2

)
, (13.86)

and

σzx(r, θ) = − KIII

αs
√

2πrs
sin

(
θs
2

)
, (13.87)

σzy(r, θ) =
KIII√
2πrs

cos

(
θs
2

)
. (13.88)

We can also calculate the leading asymptotic contribution to the particle velocity

u̇z = ∂tuz(x1, x2, t)|x1,x2 = ∂tw(x1 − `(t), x2) = −v∂xw = −vσzx/µ =
vKIII

µαs
√

2πrs
sin

(
θs
2

)
,

(13.89)

which features the same singular behavior. The results for the in-plane fracture modes (mode I

and II) are qualitatively similar (e.g. they feature the same universal singularity), though they

are more mathematically involved (see tutorial).

Dynamic fracture problems are extremely difficult to solve. Let us briefly explain why. From

the perspective of Linear Elastic Fracture Mechanics (LEFM) the crack is regarded as bound-

ary conditions. Enormous difficulties emerge from the fact that these boundary conditions are

dynamic, i.e. they evolve in time. So unlike standard boundary value problems in which the do-

main is fixed, here the domain is evolving. The moving free boundary nature of dynamic fracture

problems introduces serious nonlinearities into the problem. But there is a more serious issue

here: The moving free boundary is not determined externally but rather should be solved for
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self-consistently, i.e. the solution at time t determines the new boundary conditions at time t+dt.

This is a remarkable mathematical feature. Worse than that is the fact that we do not know how

the crack selects its path. LEFM does not tell us anything about that. Eq. (13.63) is a scalar

energy balance equation that tells us that if Γ(v) is known then the crack growth rate is known,

but there is no information about the direction of growth. We will mention this again when we

discuss the limitations of LEFM below. Finally, we would like to mention that dynamic fracture is

extremely challenging from an experimental perspective. Take your window glass as an example.

The size of the singular region is in the nanometer scale. The typical crack propagation speed

is kilometers per second. It is impossible today, and most probably in the near future, to probe

such lengthscales at such rates.

F. Limitations of Linear Elastic Fracture Mechanics (LEFM) and beyond it

While LEFM has revolutionized our understanding of the fracture of solids and has led to the

development of a very successful engineering practice, it suffers from some serious limitations. In

many cases, especially for metals (which are typically termed ductile), the small scale yielding

assumption is not satisfied. Significant and spatially extended plastic deformation develops in

the presence of a crack. This plastic deformation makes these materials tougher, but limits the

usage of LEFM. For that aim, Elastic-Plastic Fracture Mechanics (EPFM) has been developed.

Unfortunately, we cannot discuss it here.

LEFM is in fact not sufficient to properly describe fracture even in brittle materials in which

the small scale yielding assumption is satisfied. To get a feeling of the problem, we will raise here

two points. First, the asymptotic singular K-field of LEFM – while properly quantifying the flux

of energy into the crack tip region – cannot actually tell us how things break. The quasi-static

(v → 0) K-field in Eqs. (13.40), (13.42) and (13.43) has the following property

σyy(r, θ=0; v=0) = σxx(r, θ=0; v=0) . (13.90)

(for θ = 0, x can replace r and y can replace θ). For any v>0 (see tutorial session) we have

σyy(r, θ=0; v) < σxx(r, θ=0; v) . (13.91)

This is striking because it means that the material element whose unit normal points parallel

(in the x-direction) to the crack will break before the material element whose normal points

perpendicularly (in the y-direction) to the crack, which is of course the one that actually breaks
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during mode I fracture. Therefore, the K-field cannot even explain why mode I cracks propagate

as perpendicularly to the tensile loading. The inequality in (13.91) becomes stronger and stronger

as v increases. This means that beyond some velocity (say, under plane-stress conditions)

εyy ∼ σyy − νσxx (13.92)

becomes negative, implying that compressive strains break the material under tension. This is of

course wrong. These “puzzles” simply mean that the K-field is not the one that actually controls

fracture, which takes place at smaller scales near the tip, and that even some qualitative features

of it are not directly relevant.

The second point we raise concerns lengthscales. Experimental observations indicate that rapid

straight cracks undergo all sorts of dynamic instabilities. These instabilities feature lengthscales

that do not seem to be geometrical in nature. However, LEFM does not contain any intrinsic

lengthscale and hence in principle cannot explain these instabilities. Moreover, as we mentioned

above, LEFM does not tell us how a crack selects its path (direction), i.e. we still miss a physically

well-established crack tip equation of motion. Without such an equation one cannot even think

about asking questions regrading the stability of cracks, simply because there is no equation

with which he can perform stability analysis. Some of these issues are currently investigated by

physicists and other scientists working in the field.

Configurational forces

Consider a Lagrangian density

L(ui, ∂jui, xm) , (13.93)

where the explicit appearance of xm represents the breakdown of space homogeneity. The variation

of L with xl reads
δL
δxl

=
∂L
∂ui

∂lui +
∂L

∂(∂jui)

∂(∂jui)

∂xl
+

(
∂L
∂xl

)
expl

. (13.94)

Noting that
∂(∂jui)

∂xl
=

∂2ui
∂xj∂xl

=
∂(∂lui)

∂xj
(13.95)

and
∂L

∂(∂jui)

∂(∂lui)

∂xj
=

∂

∂xj

(
∂L

∂(∂jui)
∂lui

)
−
(

∂

∂xj

∂L
∂(∂jui)

)
∂lui , (13.96)

we obtain

δL
δxl

=

[
∂L
∂ui
− ∂

∂xj

∂L
∂(∂jui)

]
∂lui +

∂

∂xj

(
∂L

∂(∂jui)
∂lui

)
+

(
∂L
∂xl

)
expl

. (13.97)



147

The first term on the RHS is just the Euler-Lagrange equation, i.e. it vanishes, and noting that

δL
δxl

=
∂L
∂xj

δlj , (13.98)

we finally obtain
∂Tlj
∂xj

= −
(
∂L
∂xl

)
expl

, (13.99)

where T is the (elastic) energy-momentum tensor

Tlj ≡ −Lδlj +
∂L

∂(∂jui)
∂lui . (13.100)

In the most general case, we have L=T −u, where T is the kinetic energy density. Here, however,

we did not consider ∂tui and hence do not include the kinetic energy. This implies L=−u and

Tlj = u δlj −
∂u

∂(∂jui)
∂lui . (13.101)

Surface integrals over T , which enclose dissipative symmetry-breaking defects, define configura-

tional forces

Fl =

∫
S

Tlj dSj , (13.102)

that are thermodynamically conjugated to the defect coordinate ξl according to a dissipation

inequality

Fl δξl ≥ 0 . (13.103)
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XIV. SUMMARY TABLE

Quantity Notation

Reference/undeformed configuration X

Deformed configuration (spatial, Eulerian) x

The motion (mapping between X and x) x=ϕ(X)

Displacement vector field U (X, t) ≡ x (X, t)−X = x−X (x, t) = u (x, t)

Velocity vector field V (X, t) ≡ ∂tU (X, t) = v (x, t)

Acceleration vector field A (X, t) ≡ ∂ttU (X, t) = a (x, t)

Material derivative Dt ≡
(
∂
∂t

)
X

=
(
∂
∂t

)
x

+
(
∂
∂x

)
t

(
∂ϕ(x,t)
∂t

)
X

Deformation gradient tensor F (X, t) ≡ ∇Xϕ (X, t)

Deformation gradient Jacobian (volume conversion) J (X, t) ≡ detF (X, t)

Surface element dS = J−1F Tds

Displacement gradient tensor H (X, t) ≡ ∇XU (X, t), F = I +H

Biot extensional strain tensor EB ≡ U − I

Hencky logarithmic strain tensor EH ≡ lnU

Green-Lagrange strain tensor (Lagrangian) E ≡ 1
2

(
U 2 − I

)
= 1

2

(
H +HT +HTH

)
Euler-Almansi strain tensor (Eulerian) e ≡ 1

2

(
I − F−TF−1

)
Linear (infinitesimal) strain tensor ε ≡ 1

2

(
H +HT

)
, εij = 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
Spatial velocity gradient tensor L ≡ ∂v(x,t)

∂x
= Ḟ F−1

Rate of deformation tensor D ≡ 1
2

(
L+LT

)
Spin tensor (vorticity) W ≡ 1

2

(
L−LT

)
Traction vector (deformed, reference) t(x, t,n), T (X, t,N )

Cauchy stress tensor σ (x, t)

Helmholtz free energy density f = u− Ts

First Piola-Kirchhoff stress tensor P (X, t) ≡ ∂f
∂F (X,t)

= JσF−T

Second Piola-Kirchhoff stress tensor S (X, t) ≡ ∂f
∂E(X,t)

Relation between stresses and tractions T (X, t,N ) = P · N̂ = σ · n̂ = t (x, t,n)

Stiffness tensor (fourth order) C ≡ ∂2u
∂ε∂ε

, Cijkl = ∂2u
∂εij∂εkl
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Elastic Moduli Notation

Bulk Modulus K

Young’s Modulus E

Lamé parameter λ

Shear modulus µ

Poisson’s ratio ν

Conservation laws Mathematical formulation

General conservation form ∂(field)
∂t

+∇x (field flux) = source/sink

Mass conservation ∂tρ (x, t) +∇x (ρ (x, t)v (x, t)) = 0

Reynolds transport theorem D
Dt

∫
Ω
ψ (x, t) dx3 =

∫
Ω

[∂tψ (x, t) +∇x (ψ (x, t)v (x, t))] dx3

Linear momentum balance b+∇x · σ = ρv̇, B +∇X · P = ρ0V̇

Angular momentum balance σ = σT

Thermodynamics Mathematical formulation

First law K̇ + U̇ = Pext +Q, ρu̇ = σ :D −∇x ·q

Second law Ṡ ≥ −
∫
∂Ω

q ·n
T
ds+

∫
Ω
r
T
dx3, σ :D − ρḟ − ρsṪ ≥ 0

Heat equation ρu̇ = σ :D + κ∇2
xT

Linear elasticity Mathematical formulation

Small deformation approximation |H| � 1, E ' ε = 1
2
(H +HT ), D ' ε̇

Constitutive relation (general materials) σ = C :ε (C contains 21 independent numbers)

Energy density (isotropic materials) u(ε) = λ
2

(trε)2 + µtrε2

Hooke’s law (isotropic materials) σ = λtrεI + 2µε, σij = λεkkδij + 2µεij

Navier-Lamé equation (λ+ µ)∇ (∇ · u) + µ∇2u+ b = ρ∂ttu

Compatibility conditions (in 2D) ∂yyεxx + ∂xxεyy = 2∂xyεxy

Airy stress function (in 2D) ∇2∇2χ = 0

Helmholtz decomposition u = ∇φ+∇×ψ → c2
d∇2φ = ∂ttφ, c2

s∇2ψ = ∂ttψ

Wave speeds cd=
√

λ+2µ
ρ
, cs=

√
µ
ρ
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Thermo-elasticity Mathematical formulation

Free energy density f(ε, T )= 1
2
K(trε)2 + µ(εij − 1

3
δijtrε)

2 −KαT (T − T0)trε

Constitutive relation σij = −KαT (T − T0) δij +Ktrεδij + 2µ(εij − 1
3
δijtrε)

Thermo-elastic Eqs. of motion (no inertia) (λ+ µ)∇ (∇ · u) + µ∇2u = αTK∇T

Nonlinear elasticity Mathematical formulation

Free energy density (per unit volume in the reference config.) f(E, T )=u(E, T )− Ts(E, T )

Incompressible neo-Hookean material u = 1
2
µ[tr(F TF )− 3]− α(J − 1)

Saint-Venant material u = λ
2
tr2E + µ trE2

Linear visco-elasticity Mathematical formulation

Newtonian (linear) viscosity η = lim
ε̇→0

σ/ε̇

Constitutive relation (with stress relaxation modulus) σij (t) =
∫ t
−∞Gijkl (t− t′) ε̇kl (t′) dt′

Constitutive relation (with creep compliance modulus) εij (t) =
∫ t
−∞ Jijkl (t− t

′) σ̇kl (t
′) dt′

Kelvin-Voigt model σ = σvis + σel (and the same strain)

Maxwell model ε̇ = ε̇el + ε̇vis (and the same stress)

Plasticity Mathematical formulation

Ideal elasto-(perfect)plasticity σ = Eε for Eε < σy and σ = σy for Eε ≥ σy

vom Mises criterion

√
(σ1−σ2)2+(σ2−σ3)2+(σ1−σ3)2

6
= σy

Tresca criterion 1
2
max

(
|σi − σj|i 6=j

)
= σy

Contour integral around a topological defect
∮
du = b

Hyper-elastoplasticity F = F elF pl

Hypo-elastoplasticity D = Del +Dpl
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