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Kinematics — strains and stress

1 An Eulerian strain measure

In this section we’ll introduce the Eularian analogue of the Green-Lagrange strain tensor
defined in class. We’ll then see in a concrete example how the two behave.

You are reminded that the Green-Lagrange strain tensor E was defined as a measure
of the change in lengths squared. We examined a line element (dX1, dX2, dX3), of total
length dℓ, which changed under the deformation to be (dx1, dx2, dx3), of total length dℓ

′.
E was defined by the relation

(dℓ′)2 − (dℓ)2 = 2 dXTEdX , (1)

that is, E is defined with respect to the material (=reference =undeformed) coordinates.
It was shown in class thatE can be simply expressed in terms of the deformation gradient:

E =
1

2

(
F TF − I

)
, (2)

where recall that F = ∇Xφ = I + ∇XH . We now ask, what is the equivalent strain
measure, in terms of the spatial (=laboratory =deformed) coordinates? We use the

relation dx = F dX to write dX=F−1dx and dXT =dxT (F−1)
T
, to obtain

(dℓ′)2 − (dℓ)2 = 2 dXT E dX = 2 dxT F−T EF−1 dx , (3)

and see that we can define the Eularian analogue of E as e = F−T EF−1. e is called
the Euler-Almansi strain tensor. Explicitly, it is given by

e = F−T EF−1 =
1

2
F−T

(
F TF − I

)
F−1 =

1

2

(
I − F−TF−1

)
. (4)

It is easy to see that e is symmetric. In class we’ve shown that if λi are the principal
stretches, then E can be written as

E =
1

2

(
λ2i − 1

)
Mi ⊗Mi . (5)

where Mi are the directions (in X coordinates) of the principal stretches (that’s Eq.
(3.24) from the lecture notes). In much the same way, e is

e =
1

2

(
1− λ−2

i

)
mi ⊗mi . (6)

where mi are the directions (in x coordinates) of the principal stretches.
As a side note, we remark that the process of taking a Lagrangian quantity and writ-

ing its Eularian analogue is called “push-forward”. The inverse operation, of calculating
the Lagrangian analogue of an Eulerian quantity, is called “pull-back”. These are fun-
damental concepts in differential geometry. As above, it is generally true that pushing
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forward a (covariant) Lagrangian tensor is done by multiplying from the left and right
by F−T and F−1, respectively. If you’re interested in the relation between differential
geometry and elasticity, have a look at Elasticity & Geometry by Basil Audoly and Yves
Pomeau. Also, An introduction to differential geometry with applications to elasticity by
Philippe Ciarlet is a good introduction to both elasticity and differential geometry. In
addition, you might want to have a chat with Hillel Aharoni who has been working on
this for years.

1.1 Application of strain measures, rotation invariance

In this exercise, we’ll look at the differences between three strain tensors: the Green-
Lagrange tensor E, the Cauchy (linearized) tensor ε, and the Euler-Almansi tensor e.
To this end, consider a thin rod of length L = 2πR which is wrapped around a circle or
radius R, like in the figure. By “thin” we mean H ≪ L. The motion φ(X, Y ) is defined
by

x(X, Y ) = X cos

(
2π
Y

L

)
,

y(X, Y ) = X sin

(
2π
Y

L

)
,

φ⃗(X, Y ) =

(
X cos

(
2π Y

L

)
X sin

(
2π Y

L

)) .

(7)

This might be more intuitive if we introduce the shorthand notations

r = X , θ = 2π
Y

L
=
Y

R
, (8)

and then the motion takes the form

φ⃗(X, Y ) =

(
r cos θ
r sin θ

)
, (9)
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but we stress that r, θ here are only shorthand notations and not coordinates - we are
strictly working in Cartesian coordinates.

Note that what we do here is not the usual scenario in this kind of problems. Usually,
the motion is not given but rather has to be solved for. We usually know only the
boundary conditions – the displacements or forces applied on the body’s surface – and the
motion in the bulk is calculated by solving the relevant continuum equations. However,
since we didn’t learn about these equations yet, we specify the motion at the outset. The
purpose here is only to see the differences between the strain measures.

The deformation gradient is given by

F = ∇X

(
x(X, Y )
y(X, Y )

)
=

(
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

)
=

(
cos θ −h sin θ
sin θ h cos θ

)
, (10)

where the notation h = X/R is introduced. Note that h− 1= X−R
R

≈H/L≪1 is a small
number. The strain tensors are given by

E =
1

2

(
F TF − I

)
=

(
0 0
0 1

2
(h2 − 1)

)
, (11)

e =
1

2

(
I − F−TF−1

)
=

1

2

(
1− h−2

)( sin2(θ) − cos(θ) sin(θ)
− cos(θ) sin(θ) cos2(θ)

)
, (12)

ε =
1

2

(
F + F T − 2I

)
=

(
cos(θ)− 1 −1

2
(h− 1) sin(θ)

−1
2
(h− 1) sin(θ) h cos(θ)− 1

)
. (13)

Note that in the expression for E, h is shorthand for X/R, and θ is shorthand for 2πY/R
(incidentally, E is independent of θ). However, in the expression for e, h is shorthand for√
x2 + y2/R, and θ stands for tan−1(y/x). This is an important distinction – E is given

in terms of X and Y , and e in terms of x and y!
Now let’s analyze these expressions. We see that E is diagonal in the X coordinates

and is independent of Y (or θ). e is a bit more complicated, but actually it can be written
in a much simpler manner. If we define the rotation matrix R as

R =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (14)

then we can write e as

e = RT

(
0 0
0 1

2
(1− h−2)

)
R . (15)

So we see that like E, e has one eigenvalue which is always zero, and the other eigenvalue
is independent of θ (but not of y!). However, the principal directions in the spatial
coordinates are rotating with θ, which is not surprising. The principal directions are
indeed the polar and radial directions.

As for ε, things are much less neat. Its eigenvalues are

ε1 =
1

2
((1 + h)(cos θ − 1)) , ε2 =

1

2
(h− 3 + (1 + h) cos θ) , (16)
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and the principal directions are also a mess.
It seems that E and e are somehow “the same” in some sense, but that ε is fun-

damentally different: To begin with, E and e are small everywhere (remember that
h2 − 1≈1− h−2≈O(H/L) ≪ 1) and the diagonal elements of ε are not; E and e have a
0 eigenvalue, while ε does not (except for θ = 0 or 2π); and most importantly, E and e
are θ-independent (in a proper sense) and ε is not.

This is very weird: for X =R (that is, h=1) we have E= e=0, but ε ̸=0!! Aren’t
they supposed to be equal to linear order? Or at least agree on whether they vanish or
not? Which of the above is better?

The error lies in ε! The system is indeed θ-invariant. The physical picture you should
have in mind is that each “layer” in the rod (i.e. constant X), which was initially of
length L, is stretched and attains the length 2πX in the deformed configuration. The
ratio of the two lengths, 2πX/L=h, is the stretch in the Y direction. In the X direction
the material is not stretched. Note that the eigenvalues of E, and e are exactly what you
should expect, if you happen to remember Eqs. (5) and (6). Furthermore, the principal
directions are also exactly what we should expect: they are indeed X and Y , and in the
deformed coordinates they are r̂ and θ̂. Since we work in Cartesian spatial coordinates,
the principal directions are simply given by rotating the (x, y) directions by an angle θ.

So we got a good intuition as to why E and e do exactly what we expect them to,
and all is well and nice. But what goes wrong in ε? The answer is that the displacement
gradient F is not small, due to the finite large rotations. Sadly, ε is not rotationally
invariant. To see this, consider the following rigid body rotation

x = X cos θ − Y sin θ ,

y = Y cos θ +X sin θ ,
(17)

we have

F = ∇Xφ =

(
cos θ − sin θ
sin θ cos θ

)
, (18)

and

ε =
1

2

(
F + F T

)
− I =

(
cos θ − 1 0

0 cos θ − 1

)
, E = e = 0 . (19)

That means that ε ̸= 0 for finite rotations. For infinitesimal rotations, θ ≪ 1, we
have

εxx ≃ εyy ≃ O(θ2) , εxy = 0 . (20)

So ε = 0 to linear order in θ, i.e. only for infinitesimal rotations. This is rather trivial as
ε is a linearized version of the rotationally invariant strain measures E and e (they are
the same to linear order). We see that the large values of ε at θ’s far from zero do not
stem from physical stretches in the material, but rather from rotation of the axes, which
has no physical significance.

A word of caution: Note that ε is the “plain vanilla” strain measure. If you go to Rami
Levy and ask for a strain measure, this is what they’ll give you. It is the absolute standard
in the majority of works in linear elasticity and is often presented as the “natural” one.
Beware!
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2 Linearized strain under shear

We start by getting some intuition about the geometrical meaning of the linearized strain

εij =
1

2
(∂iuj + ∂jui) , (21)

under shear. Two very common strain states are called pure shear and simple shear.
Simple shear is the situation in which displacement in one direction is a linear function

Figure 1

of the orthogonal coordinate, as seen in Fig. 1a. Pure shear is the state when the same
shear is applied in both direction, as seen in Fig. 1b. In this case there are only shear
strains (in some coordinate system), that is, ε is of the form

εij =

(
0 γ
γ 0

)
. (22)

What is the relation between simple shear and pure shear? In simple shear, the displace-
ment field is

x = X + γ Y , y = Y . (23)

So the deformation gradient is

F =

(
1 γ
0 1

)
. (24)

This can be decomposed into a state of pure shear and infinitesimal rotation:

H = F − I =

(
0 γ

2
γ
2

0

)
︸ ︷︷ ︸
pure shear

+

(
0 γ

2

−γ
2

0

)
︸ ︷︷ ︸
rotation

. (25)

Indeed, it is seen that Fig. 1b is a slightly rotated version of Fig. 1a.
Note that for a deformation that leaves everything in place, i.e. x = X, we have

F = I and thus H ≡ F −I is what quantifies the non-rigid-body deformation. What we
just showed is that F − I can be decomposed to a symmetric part, which is the strain,
and an antisymmetric part, which is a rotation and does not cost energy. This is why
only the symmetric part of F is used in all versions of strain measures.
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Lets focus now on pure shear. We can write the pure shear deformation in one of two
forms. We can write

F1 =

(
1 γ/2
γ/2 1

)
, (26)

or as

F2 =

(
1 + γ/2 0

0 1− γ/2

)
, (27)

both shown in Fig. 2. Let us compare F1 and F2 — their trace trF1 = 2 = trF2 and
determinant detF1 =1 − γ2

4
=detF2 are exactly the same. This implies that these two

deformations are equivalent. By diagoanlizing the two F ’s we observe their eigenvectors
are simply rotated by π/4 (or, that one can transform one into another with similarity
transformation) — they represent the same deformation. It is easy to see that both of
these are equivalent to simple shear in the linear approximation, but when consider-
ing the full nonlinear deformation, simple shear is volume preserving, while pure shear
deformations are not.

Figure 2

3 Symmetry of Cauchy’s stress tensor

In this section, we’ll see why the Cauchy stress tensor must be symmetric. We’ll do
this in two ways: the first is intuitive and physically transparent, and the second is a
bit technical and uses the machinery of continuum theories. I hope that you’ll learn to
appreciate both.

The first, “easier”, way uses examination of an infinitesimal areal element, and the
analysis of the forces acting on it. Lets do a quick warm-up using this technique, and
obtain the linear momentum force balance relations ρv̇ = ∇x ·σ, which is non other than
the continuum analogue of mv̇ = F .

Lets consider forces in the x direction, acting on the 4 sides of an infinitesimal square.
The traction forces in the x direction are tx = σxxnx + σxxny. The right side gives
tRx = σR

xix̂iℓ, while the left side yields tLx = −σL
xi (−x̂i) ℓ, because the normal is outwards!

Similarly, the top and bottom sides give tT = σxi · ŷiℓ and tB = σB
xi (−ŷi) ℓ. Overall we
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have tx = ℓ
[(
σR
xx − σL

xx

)
+
(
σT
xy − σB

xy

)]
. Now we divide and multiply by ℓ, and use the

derivative infinitesimal limit, we have tx=ℓ
2 (∂xσxx + ∂yσxy) = ℓ2∇ · σ. The momentum

balance equation is thus ℓ2ρv̇ = ℓ2∇·σ. Both sides scale with ℓ in the same way, so that
ℓ does not matter at all.

Lets repeat this exercise for torque, i.e. the discrete equation Iω̇ = τ . We have
Iω̇ = mℓ2ω̇ = ρℓ4ω̇. Lets see what happens to the torques. τ = r × t. For the forces
to yield torques, we must have F ⊥ r, so now we consider ty on the right and left faces,
and tx on the top and bottom faces (as before).

For the left and right faces we have τR = ℓx̂× tRy ŷ = ℓ2x̂
(
σR
yxŷ
)
= ℓ2σR

yxẑ. Similarly,
we have τL = (−ℓx̂) × tLy (−ŷ) = ℓ2σL

yxẑ. We also have τT = ℓŷ × tTx x̂ = −ẑℓ2σT
xy. We

now have the total torque as τ = ℓ2 (σyx − σxy) ẑ. We can approximating this again with
ℓ3∇× σ.

Now watch — we have ℓ4ρω̇ = ℓ3∇×σ — you can see that we run into some troubles.
The powers of ℓ are not identical. That is, if we consider different square sizes, Iω̇ scale
with ℓ4, while τ scales with ℓ3 only.

The second method was not shown in class, but is given here for completeness. For
the second way of showing angular momentum balance, we will need to use Reynold’s
transport theorem. In class you have proven that

D

Dt

∫
Ω

ψ(x, t)dx3 =

∫
Ω

[
∂tψ(x, t) +∇x ·

(
ψ(x, t)v(x, t)

)]
dx3 . (28)

You’ll be glad to know that there is a more useful version of this theorem. Since in the
theorem ψ can by any field, one can replace it by ρψ. Then, using Leibniz’s rule for the
divergence ∇·(fg) = f∇·g+ g·∇f , we get (I omit all the arguments of the functions for
readability. Remember that everything is a function of (x, t)):

D

Dt

∫
Ω

ρψdx3 =

∫
Ω

[∂t(ρψ) +∇x ·(ρψv)] dx3

=

∫
Ω

[
ρ
(
∂tψ + v · ∇xψ

)
+ ψ

(
∂tρ+∇x ·(ρv)

)]
dx3 .

(29)

Note that the expression in the first brackets is exactly D
Dt
ψ. Also, the term in the second

brackets vanishes identically due to mass conservation (Eq. (4.5) in Eran’s lecture notes).
Thus, we conclude that Reynold’s theorem can be reformulated in a more pleasant way:

D

Dt

∫
Ω

ρ(x, t)ψ(x, t)dx3 =

∫
Ω

ρ(x, t)
D

Dt
ψ(x, t)dx3 . (30)

Very loosely speaking, this means that in the material coordinates, the operator D
Dt
(·)

commutes with the operator
∫
Ω
ρ(x, t)(·)dx3. Remember that ψ can be a tensor of any

rank.
Physically, the symmetry of Cauchy’s stress tensor is the local version of the conser-

vation of angular momentum. To see this, we first define the total angular momentum J
(do not confuse with the Jacobian J):

J =

∫
Ω

ρ(x, t)r × v(x, t)dx , (31)
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analogous to mr × v. We apply Reynold’s theorem to this definition, getting

DJ

Dt
=

∫
Ω

ρ (ṙ×v + r×v̇) dx =

∫
Ω

ρ r×v̇ dx , (32)

where we used the fact that ṙ×v = v×v=0. Newton’s second law says that

DJ

Dt
=

∫
Ω

(r × b)dx+

∫
∂Ω

(r × t)ds , (33)

where b, t are the body force and traction fields, respectively. We use the relation t = σn,
and equate Eqs. (32) and Eqs. (33):∫

Ω

r × [ρv̇ − b] dx−
∫
∂Ω

(r × σn)ds = 0 . (34)

Here we use a little lemma:
Lemma: Let u,A be vector and tensor fields defined in the region Ω. Then∫

∂Ω

u×An ds =

∫
Ω

[
E : (gradu)AT + u× divA

]
dv , (35)

where E is the Levi-Civita tensor. To see this, write in index notation∫
∂Ω

u×An ds =

∫
∂Ω

Eijkuj(An)k ds =

∫
∂Ω

EijkujAklnl ds

=

∫
∂Ω

(E :uA)il nl ds =

∫
Ω

div (E :uA) dv

=

∫
Ω

∂l (EijkujAkl) dv =

∫
Ω

[
Eijk(∂luj)Akl︸ ︷︷ ︸
E:(gradu)AT

+ Eijkuj(∂lAkl)︸ ︷︷ ︸
u×divA

]
dv .

(36)

We now plug that into (34) to get∫
Ω

r × [ρv̇ − b− divσ] dv −
∫
Ω

E :σT dv = 0 . (37)

The first integrand vanishes identically, as this is an equation of motion. The second one
can be integrated on an arbitrary volume and so we see that E : σT = 0, or in other
words, σ is symmetric.
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