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Plasticity

1 Unloading, residual stresses,

shakedown (auto-frettage)

We consider a cylindrical shell under internal pressure, similar to the spherical problem
fully solved by Eran. It’s important to note that here we define p≡−σrr (r=a), which
is exactly the pressure in the usual stress, but is obviously related to it, and is the main
physical player in the driving. The equations of plane strain (ϵzz = 0) are

ϵrr =
1 + ν

E
((1− ν)σrr − νσθθ) , (1)

ϵθθ =
1 + ν

E
((1− ν)σθθ − νσrr) . (2)

Plugging these into the compatibility equation, which in polar coordinates reads ϵrr =
d
dr
(rϵθθ), gives

d

dr
[(1− ν)σθθ − νσrr] =

σrr − σθθ

r
. (3)

Together with the force balance ∂rσrr + (σrr − σθθ)/r = 0, we get

d

dr
(σrr + σθθ) = 0 . (4)

1.1 Recap - elastic solution

The elastic solution may be obtained either by using the Airy stress fuction χ, or by
substitution and symmetry considerations. Let us quickly recap how this is done —
using χ we have σrr =

∂rχ
r

+ ∂θθχ
r2

, σrθ =−∂r
(
∂θχ
r

)
, and σθθ = ∂rrχ. Due to the azimutal

symmetry, we are looking for θ-independent solution. Substituting we have

∂rχ

r
+ ∂rrχ = C1 . (5)

Solving the homogeneous equation we have χ=C2 log (r)+C3. Together with the private
solution, we have χ=C2 log (r) + C3 +

C1

4
r2.

To find the various constants, we need to use the boundary conditions. Take r= a,
where we know σrr (r=a) = C1

2
+ C2

a2
= −p, which is one relation. Using the outside,

traction-free, boundary we have that σrr (r=b)= C1

2
+ C2

b2
=0. Solving for the coefficients

from these two equations, we have C1=− 2a2p
a2−b2

and C2=
a2b2p
a2−b2

, and altogether

σrr = p · a2

a2 − b2

(
b2

r2
− 1

)
, σθθ = −p · a2

a2 − b2

(
b2

r2
+ 1

)
. (6)
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1.2 Plasticity

We now introduce the Tresca Criterion for plasticity, i.e. that 1
2
max

(
|σi − σj|i ̸=j

)
= σy.

As the loading happens from the inside we know the elastic region will be in the outer
part, up to some internal radius c. In this elastic region c < r < b we have

σrr = σy

(
c2

b2
− c2

r2

)
, σθθ = σy

(
c2

b2
+

c2

r2

)
, (7)

and in the plastic region a < r < c it is

σrr = σy

[
c2

b2
− log

(
c2

r2

)
− 1

]
, σθθ = σy

[
c2

b2
− log

(
c2

r2

)
+ 1

]
, (8)

where the logarithmic contribution arises from the different constitutive law in the plastic
zone, and the quasi-static momentum balance ∂rσrr + (σrr − σθθ)/r = 0. Since we are in
plane-strain conditions, we the zz component of the stress is given by σzz = ν(σrr +σθθ).

We now evaluate pE — the pressure above which the solution is no longer elastic ( i.e.
the onset of plasticity at r=a) —, pU — the pressure for which the whole shell becomes
plastic —, and pc, as

pc = −σrr(r = c) = σy

(
1− c2

b2

)
, pE = σy

(
1− a2

b2

)
, pU = σy log

b2

a2
, (9)

and c satisfies σrr (r=a) = −p, that is

p

σy

= 1− c2

b2
+ log

c2

a2
. (10)

Now, what happens if we remove the internal pressure? How do we deal with this kind
of (un)loading? What is the constitutive law that one should use?

This is a tricky subject and there are many subtleties in the general case. In our case
of perfect plasticity you can think about it in the following manner: The perfect plastic
constitutive law makes sure that the stress state at any given point in the material will
always be inside the yield surface (in the elastic case) or strictly on it (in the plastic case).
In other words, every point which is in a plastic state is also exactly on the threshold of
yielding. Thus, the unloading dynamics is governed by elasticity. Or more precisely, as
we’ll soon see, at least the first part of it is governed by elasticity.

So we conclude that to get the unloaded state we need to subtract the fully elastic
solution from the elasto-plastic solution. That is, we need to subtract Eq. (7) with c → a
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and σy → p/(1− a2

b2
) from Eqs. (7)-(8). The result is

σrr = −σy

(
c2

a2
− p

pE

)(
a2

r2
− a2

b2

)
σθθ = σy

(
c2

a2
− p

pE

)(
a2

r2
+

a2

b2

) c < r < b , (11)

σrr = −σy

[
p

pE

(
1− a2

r2

)
− log

r2

a2

]
σθθ = −σy

[
p

pE

(
1 +

a2

r2

)
− log

r2

a2
− 2

] a < r < c . (12)

Note that the system has no tractions at the boundaries but the stress field does not
vanish! These stresses are called residual stresses. The largest value of |σθθ − σrr|/2 is
at r = a, where it is σy(p/pE − 1). Unloading is thus purely elastic if p/pE ≤ 2. This is
surely the case if pU < 2pE. That is, if

σy log
b2

a2
< 2σy

(
1− a2

b2

)
. (13)

The condition (13) is satisfied if b/a ≤ 2.218. If, on the other hand, p > 2pE then the
unloading itself will create a new plastic zone at a < r < c′.

We can therefore define ps = min(2pE, pU) (s for shakedown). If pE < p < ps
then unloading is elastic although the loading was elastic-plastic, and every subsequent
loading/unloading with pressure up to p is also elastic!.

Physically, the portions of the cylinder that have underwent plastic deformation are
now providing additional hoop stresses to the cylinder, making it stronger than it was
before the plastic flow. In the context of reinforcing metal cylinders so that they can
withstand high internal pressures (you can guess what is the technological motivation for
that) this is called auto-frettage (“frettage” is French for the process of putting hoops). In
a more general context this is called “shakedown”. A similar concept is used in prestressed
concrete. To sum it up, we have four regimes

0 < p < pE System is fully elastic.

pE < p < ps Elastic-plastic loading, elastic unloading.

ps < p < pU Elastic-plastic loading and unloading, if exists.

pU < p No static axiosymetric solution exists.

2 Plastic cavitation

Earlier in the course, we considered the problem of elastic cavitation in soft solids. Can
we analyze a similar problem for hard solids?

The answer is definitely yes, such an analogous phenomenon exists for hard solids,
though the physical processes is different; while for soft solids elastic deformation can be
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very large and lead to cavitation, hard solids show a limited range of elastic response and
the origin of cavitation is plastic deformation.

We follow the kinematic analysis of elastic cavitation (starting in Eq.(7.50) in Eran’s
lecture notes), which is reproduced here

λr =

(
1 +

L3 − ℓ3

r3

)2/3

, (14)

where λr is the radial stretch, L is the radius of the undeformed cavity and ℓ is the radius
of the deformed one. The logarithmic strain ϵr reads

ϵr = log λr =
2

3
log

(
1 +

L3 − ℓ3

r3

)
. (15)

Note that we use the logarithmic strain because it is thermodynamically-conjugated to
the Cauchy stress that we use next. The force balance equation in terms of the Cauchy
stress is given by dσr

dr
+ 2σr−σθ

r
=0, and the boundary conditions are

σr(r = ℓ) = 0 and σr(r → ∞) = σ∞ . (16)

Since symmetry implies σθ = σϕ and we assume incompressibility, the stress state is
essentially uniaxial and we can write down a general constitutive law as

σr − σθ = σyf(ϵr) . (17)

We then have∫ ∞

ℓ

dσr = −2σy

∫ ∞

ℓ

f(ϵr)dr

r
= −2σy

∫ ∞

ℓ

f

[
2

3
log

(
1 +

(L/ℓ)3 − 1

(r/ℓ)3

)]
d(r/ℓ)

(r/ℓ)

=⇒ σ∞ = −2σy

∫ ∞

1

f

[
2

3
log

(
1 +

(L/ℓ)3 − 1

x3

)]
dx

x
. (18)

The cavitation threshold σc is defined as the stress needed to grow the cavity indefinitely,
i.e. ℓ ≫ L. This leads to

σc = lim
ℓ→∞

σ∞ = −2σy

∫ ∞

1

f

[
2

3
log

(
1− x−3

)]
x−1dx . (19)

The constitutive law (σr − σθ)/σy = f(ϵr) we adopt is that of perfect plastic material,
which we interpret here as pertaining to the logarithmic strain and also allow all quantities
to be signed,

f(ϵr) =
ϵr
ϵy

for |ϵr| < ϵy

f(ϵr) = sign(ϵr) for |ϵr| ≥ ϵy , (20)

where ϵy ≡ σy/E. With this law at hand, after a few rather simple mathematical ma-
nipulations, we obtain a nice analytic result. First, we use the yield strain ϵy inside the
argument of f(·) in the above integral

−ϵy =
2

3
log

(
1− x−3

y

)
=⇒ xy = [1− exp(−3ϵy/2)]

−1/3 . (21)
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This allows us to use the constitutive law in order to split the integral into its elastic and
plastic contributions as

σc

σy

= 2

∫ xy

1

x−1dx︸ ︷︷ ︸
Plastic domain

− 4

3ϵy

∫ ∞

xy

log
(
1− x−3

)
x−1dx︸ ︷︷ ︸

Elastic domain

. (22)

We now recall that there exists a small parameter in the problem, ϵy ≪ 1 (since for
ordinary hard solids the yield stress is much smaller than the elastic modulus). Therefore,
we have

xy ≃
(

2

3ϵy

)1/3

≫ 1 and log
(
1− x−3

)
≃ −x−3 . (23)

This immediately yields

σc

σy

≃ 2 log(x)

∣∣∣∣
(

2
3ϵy

)1/3

1

− 4

3ϵy
× x−3

3

∣∣∣∣∞(
2

3ϵy

)1/3
=

2

3
log

(
2

3ϵy

)
+

2

3
. (24)

Therefore,
σc

E
≃ 2ϵy

3

[
1 + log

(
2

3ϵy

)]
. (25)

As expected, σc is an increasing function of σy (for a fixed E), but the dependence is
not trivial and could not have been guessed to begin with (note, though, that the elastic
term is related to the elasticity limit presented in the spherical shell example when in the
b/a→∞ limit). This is an example of unlimited plastic flow under a fixed applied stress
(“plastic collapse”).

3 Kramers-Kronig Relation

The KK relation is a fundamental relation between the real and imaginary parts of a
response function Ĝ(ω). In our case, it relates the storage and loss moduli Ĝ′ and Ĝ′′ but
it is very general and has applications in experimental and theoretical physics, as well as
in signal processing and electrical engineering. The essence of these relations lies in the
fact that the imaginary and real parts of an analytic function are not independent, and
are related via the Cauchy-Riemann Equations, which in turn imply Cauchy’s integral
formula (residue calculus).

We will give two proofs of the KK relations. The standard residue-calculus one,
and another one that singles out the effect of causality. The actual theorem is almost
misleadingly simple: Theorem: Let Ĝ(ω) = Ĝ′(ω) + iĜ′′(ω) be an analytic function in
the upper half plane that decays at infinity faster than |ω|−1. Then

Ĝ′(ω) =
1

π
P

∞∫
−∞

Ĝ′′(ω′)

ω′ − ω
dω′ , Ĝ′′(ω) = − 1

π
P

∞∫
−∞

Ĝ′(ω′)

ω′ − ω
dω′ , (26)

where P denotes the principal value.
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Figure 1: Contour of integration in the upper half plane. Source: wiki commons.

Proof I: The integral of Ĝ(ω)
ω′−ω

over the contour described in Fig. 1 is clearly 0, because

the integrand is analytic. The integral over the half circle vanishes (because Ĝ(ω) decays
fast enough), and the integral over the bump is −iπĜ(ω) (minus one half of the residue).
We therefore have

Ĝ(ω) =
1

iπ
P
∫ ∞

−∞

Ĝ(ω′)

ω′ − ω
dω′ . (27)

Writing this equation in its real and imaginary parts gives exactly Eqs. (26) ■ .

This proof is completely trivial in terms of residue calculus, but as a physicist I am
not quite satisfied by this proof. It leaves me with a feeling that I accept the theorem,
but I don’t understand it. Furthermore, we must ask (a) how do we know that Ĝ(ω)
decays at infinity? and (b) how do we know that Ĝ is analytic in the upper half plane?.

The answer to (a) is that we don’t, in general, but it is very reasonable to assume
that systems that are driven at frequencies much higher than their natural frequencies
do not respond (and therefore Ĝ → 0).

The answer to (b) is less trivial. Note that in general the Fourier transform of a
“nice” function is not analytic in the upper half plane. For example, the FT of a Loren-
zian 1

1+(t/τ)2
is ∼ exp (−|ωτ |) which is not analytic anywhere; conversely, the FT of

exp (−|ω0τ |) is a Lorenzian, and thus is analytic almost everywhere but has a pole at
ω = iω0; the FT of a Gaussian is also a Gaussian, which has an essential singularity at
infinity.

The fact that Ĝ(ω) is analytic for I(ω) > 0 stems from causality. In fact, one can
show that Ĝ(ω) is analytic in the upper half plane if and only if G(t) = 0 for t < 0 (this is
called Titchmarsh’s theorem). To see exactly what is the role that causality takes, we’ll
examine a different proof.

Proof II: We first remind ourselves of the trivial fact that the FT of an even function
is purely real, and that of an odd function is purely imaginary. Now, for any function
G(t) we can define

Geven(t) ≡ G(t) +G(−t)

2
, Godd(t) ≡ G(t)−G(−t)

2
, (28)

such that G(t) can be written as G(t) = Geven(t) +Godd(t). Therefore,

Ĝ(ω) = F {Geven(t) +Godd(t)} = F {Geven(t)}+ F {Godd(t)} = Ĝ′(ω) + iĜ′′(ω) . (29)
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We can thus conclude that

Ĝ′ = F{Geven} , Ĝ′′ =
1

i
F{Godd} . (30)

In general, the odd and even parts are independent, but for a casual response function
we have G(t) = 0 for t < 0 and therefore

Godd(t) =
1

2

{
−G(−t) t < 0

G(t) t > 0
=

1

2
G(|t|)(t) ,

Geven(t) =
1

2

{
G(−t) t < 0

G(t) t > 0
=

1

2
G(|t|) ,

(31)

where (t)= t
|t| is the signum function. Thus, for t > 0 we have Godd(t) = Geven(t) and for

t < 0 we have Godd(t) = −Geven(t). This can be compactly written as

Godd(t) = (t)Geven(t) , Geven(t) = (t)Godd(t) . (32)

Thus, we have

G′(ω) = F{Geven} =
1

2π
F{} ∗ F{Godd} =

i

2π
F{} ∗G′′ , (33)

G′′(ω) =
1

i
F{Godd} =

1

2πi
F{} ∗ F{Geven} =

1

2πi
F{} ∗G′ , (34)

where ∗ denote convolution. The FT of the signum function is 2i
ω
. Substituting this result

into the above equations gives (26).
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