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Fracture

1 Williams expansion

This section is taken from Eran’s lecture notes.

Consider a linear elastic solid under quasi-static conditions, for which we have

∇2∇2χ(r, θ) =
(
∂rr + r−1∂r + r−2∂θθ

)2
χ(r, θ) = 0 , (1)

where χ(r, θ) is the Airy stress potential. Let us look for a solution of the form χ(r, θ) =
rλ+2f(θ) (you already know from previous discussions that there are more solutions, e.g.
log r). Operating with ∇2 on this Ansatz, we obtain

(
∂rr + r−1∂r + r−2∂θθ

)
rλ+2f(θ) = rλ

[
(λ+ 2)2 +

d2

dθ2

]
f(θ) ≡ rλg(θ) . (2)

Operating with ∇2 again yields

(
∂rr + r−1∂r + r−2∂θθ

)
rλg(θ) = rλ−2

[
λ2 +

d2

dθ2

]
g(θ) = 0 , (3)

and therefore we end up with the following ordinary differential equation:[
λ2 +

d2

dθ2

] [
(λ+ 2)2 +

d2

dθ2

]
f(θ) = 0 . (4)

Assume then a solution of the form f(θ) = eαθ, which leads to the following algebraic
equation: [

λ2 + α2
] [
(λ+ 2)2 + α2

]
= 0 , (5)

the solutions to which are
α = ±iλ,±i(λ+ 2) , (6)

therefore

f(θ) = a cos(λθ) + b cos[(λ+ 2)θ] + c sin(λθ) + d sin[(λ+ 2)θ] . (7)

To determine the parameters we need to introduce a crack. Consider then a straight mode
I crack where (r, θ) represents a coordinate system attached to the tip and θ = 0 points
in the direction of the tangent to the crack tip. Symmetry alone, f(θ) = f(−θ), implies
c = d = 0. As we explained above, a crack is introduced mathematically as traction-free
boundary conditions of the form

σθθ(r, θ=±π) = ∂rrχ(r, θ=±π) = 0, σrθ(r, θ=±π) = −∂r
(
r−1∂θχ(r, θ=±π)

)
= 0 . (8)
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Using χ(r, θ) = rλ+2 (a cos(λθ) + b cos[(λ+ 2)θ]), we obtain

σθθ(r, θ) = (λ+ 2)(λ+ 1)rλ (a cos(λθ) + b cos[(λ+ 2)θ]) , (9)

σrθ(r, θ) = (λ+ 1)rλ (aλ sin(λθ) + (λ+ 2)b sin[(λ+ 2)θ]) . (10)

Applying the boundary conditions, we obtain

(a+ b) cos(λπ) = 0 , (11)

[aλ+ b(λ+ 2)] sin(λπ) = 0 . (12)

Denoting n = 0,±1,±2, ..., the solution reads

λ = n =⇒ b = −a , (13)

λ =
2n+ 1

2
=⇒ b = − aλ

λ+ 2
. (14)

We therefore end up with the Williams eigenfunctions expansion

σij(r, θ) =
m=∞∑
m=−∞

amr
m/2f

(m)
ij (θ) , (15)

where f
(m)
ij (θ) are explicitly expressed in terms of trigonometric functions as above. An

immediate striking feature here is that the expansion contains half-integer powers. These
emerge from the fact that a crack introduces a discontinuity in the fields, i.e. a crack is
regarded as a mathematical branch cut.

What can we say about {am}? How can one calculate them? It is crucial to under-
stand that we did not consider the outer boundary conditions of the problem, i.e. we
essentially performed a crack tip asymptotic expansion, without even formulating the
global boundary-value problem. {am} are determined from the solution of each spe-
cific global boundary-value problem, which in general cannot be done analytically. The
Williams expansion in Eq. (15) is therefore universal, independent of the external geom-
etry and boundary conditions. The asymptotic expansion of course has a finite radius of
convergence typically determined by some geometric properties of the crack, e.g. length
for straight cracks or curvature for non-straight ones (note that we imposed the boundary
conditions at θ = ±π, assuming that on the scale of interest any path curvature can be
neglected).

2 Universal singular crack tip fields

The next question we would like to ask ourselves is whether all m’s in the Williams
expansion in Eq. (15) are physically acceptable? The point is the following: all terms
with m < −1 will lead to unbounded linear elastic strain energy in the r → 0 limit.
To see this, recall that in a linear theory we have ε ∼ σ ∼ rm/2 and hence the strain
energy density scales as 1

2
σijεij ∼ rm. Therefore, the energy per unit thickness reads∫

1
2
σijεij r dr dθ ∼

∫
rm+1dr. It diverges in the r → 0 limit form < −1 (more precisely, we
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are interested in the energy flux into the tip region when the crack advances incrementally,
which in fact does not involve integration over r, as will be discussed below). We should
therefore rewrite Eq. (15) as

σij(r, θ) =
m=∞∑
m=−1

amr
m/2f

(m)
ij (θ) . (16)

The above discussion has serious implications. As we have included the m = −1 term
in the expansion, it seems as if we allow the stress tensor to diverge in the r → 0 limit
as long as it results in an integrable elastic energy. This divergence is precisely the one
we discussed in the context of the Inglis solution above. Obviously a physical quantity
such as the stress cannot really diverge, i.e. there must be some small scale physical
regularization of the divergence. However, the square-root singular spatial variation of
the stress (and strain) field near the tip of a crack is real and of enormous importance. We
already understood that it is this singularity that essentially explains the huge discrepancy
between the theoretical and practical strength of materials.

In 1957 Irwin made the next seminal contribution. He pointed out that the series in
Eq. (16) is dominated by the m = −1 term as the crack tip is approached, r → 0. He
therefore focussed on this contribution, for which we have λ = −1/2 and b = −aλ/(λ +
2) = a/3 in Eq. (9), leading to

σθθ(r, θ) =
a

4
√
r

[
3 cos

(
θ

2

)
+ cos

(
3θ

2

)]
=

a√
r
cos3

(
θ

2

)
. (17)

Irwin defined a ≡ KI/
√
2π, where KI is known as the mode I stress intensity factor

(the other symmetry modes have their own stress intensity factors). It is a fundamental
quantity in the theory of fracture as it quantifies the intensity of the near tip singularity.
It has rather strange physical dimensions of stress times square-root of length. Before we
continue to discuss it, we note that for θ = 0 we have

σθθ(r, 0) = σyy(r, 0) =
KI√
2πr

, (18)

which directly quantifies the strength of the tensile stress that tends to drive the crack
into motion. The other two components of the stress field corresponding to the m = −1
term are easily obtained and read

σrθ(r, θ) =
KI√
2πr

cos2
(
θ

2

)
sin

(
θ

2

)
, (19)

σrr(r, θ) =
KI√
2πr

cos

(
θ

2

)[
1 + sin2

(
θ

2

)]
. (20)

This asymptotic stress field σ is termed the “K-field”.
The emerging mathematical and physical picture is neat. Whatever external geometry

and boundary conditions we have, the near crack tip fields are universal and characterized
by a square-root singularity. All the information about the large scales is transmitted
to the crack tip region by a single number, the stress intensity factor KI – the only
non-universal quantity in the universal K-field (if mode II and III loadings are relevant,
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we have two additional universal fields, all featuring a square-root divergence, and two
additional stress intensity factors, KII and KIII). As we stressed above, calculating it
entails the solution of the global crack problem. In the case of a single straight crack of
length ℓ in an infinite medium loaded by a tensile stress σ∞ at infinity (an Inglis crack),
dimensional analysis implies that KI ∼ σ∞

√
ℓ and only the order unity prefactor should

be calculated from the exact global solution.
As we explained above, there must be some physical regularization of the singularity

at small scales, which means that nonlinear and dissipative processes (e.g. plasticity) are
taking place near the tip of crack relax the stress. Therefore, the K-field should be in
fact interpreted as “intermediate asymptotics” separating the large (“outer”) scales lin-
ear elastic behavior from the small (“inner”) scales nonlinear and dissipative behavior. A
crucial assumption here is that we indeed have scales separation, i.e. that linear elasticity
is valid everywhere except for a region near the crack tip – the so-called “process zone”
– whose dimensions are much smaller than any other lengthscale in the crack problem.
This assumption is termed “small scale yielding” (though the nonlinear and dissipative
processes near the tip are not necessarily or exclusively plastic yielding and deformation).
It is important to stress again that the (“inner”) scales near the tip of the crack, where
fracture is actually taking place, are always subjected to universal boundary conditions
in the form of the K-field and that the specific properties of a given problem at the larger
(“outer”) scales are transmitted to the tip region only through the stress intensity factor.
It is this scales separation that makes a linear elastic approach so useful. Fracture is
a physical phenomenon that exhibits a rather unique coupling between widely different
scales. It is also a natural laboratory for extreme out-of-equilibrium physics that takes
place near the tip region even if external loading conditions are mild.

3 Crack tip opening displacement (CTOD)

Let us explore some more consequences of the universal K-field in Eqs. (17), (19) and
(20). First, we use Hooke’s law to transform this stress field into a displacement field.
The result reads (derive)

ux(r, θ) =
KI

√
r

4µ
√
2π

[
(2κ− 1) cos

(
θ

2

)
− cos

(
3θ

2

)]
, (21)

uy(r, θ) =
KI

√
r

4µ
√
2π

[
(2κ+ 1) sin

(
θ

2

)
− sin

(
3θ

2

)]
, (22)

where

κ=

{
3− ν
1 + ν for plane-stress ,

3− 4ν for plane-strain .
(23)

We now ask the following question: what is the shape of the crack tip when it opens up
under external loadings, i.e. what is the crack tip opening displacement? To answer this
question we would be interested in calculating the dependence of φx(r, π) on φy(r, π),
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Figure 1: Experimental observation of the CTOD in dynamic fracture. From Livne,
Bouchbinder, Svetlizky, & Fineberg, Science 327 (2010). Note that at very small scales
the CTOD is no longer parabolic, a feature that was used in the paper to study the
non-linear corrections to the linear theory of fracture that we’re currently discussing.
The scale δ is related to the scale where non-linear corrections to the K-field become
important.

where φ = x + u is the motion (recall that in the linear theory we do not distinguish
between the undeformed X and the deformed x coordinates). We then have

φx(r, π) = r cos(π) + ux(r, π) = −r , (24)

φy(r, π) = r sin(π) + uy(r, π) ∼
KI

µ

√
r . (25)

Therefore, we obtain

φx(r, π) ∼ − µ2

K2
I

φ2
y(r, π) , (26)

which implies that the crack tip opening displacement is parabolic. The curvature of the
parabola is determined by µ2/K2

I .

4 Example

Consider a finite crack of length 2a in an infinite system. The crack occupies the region
−2a < x < 0 and the system is loaded such that at infinity σyy → σ0, and all other
components vanish. This is a pure mode I problem, which is analytically solvable (we
solved the analogous mode-III problem, which is considerably simpler, in TA #3). We
will not present the full solution here, but just state that the tensile stress along the
symmetry axis y = 0 is given by

σyy(x, 0) = σ0
x+ a

√
x
√
x+ 2a

. (27)

This function is plotted in Fig. 2.
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Figure 2: The stress field of Eq. (27).

This is a pretty rare occasion when the full problem is analytically solvable, and
not just the intermediate asymptotics between the inner and outer problems, as Eran
discussed in class. Let’s try to understand what’s going on. First of all, note that the
stress field is essentially constant for x > 2a, i.e. at distances of the order of the crack
length. This was a crucial assumption in the scaling theory of fracture, and it is verified
here explicitly.

Second, let’s see if we can get the Williams expansion around x = 0 in this case.
The coefficient of the leading singular term, a.k.a the stress intensity factor KI , can be
obtained by

KI = lim
x→0

σyy

√
2πx = σ0

√
πa . (28)

That is, σ = 1/
√
2x + O(x0). The next terms in the expansion can be calculated by

substituting
√
x → s and calculating the Taylor (actually, Laurent) series in terms of s.

The result is

σyy(x)

σ0

=
1√

2
√

x/a
+

3

4
√
2

√
x

a
− 5

32
√
2

(x
a

)3/2
+

7

128
√
2

(x
a

)5/2
+O

(x
a

)7/2
. (29)

These are plotted in Fig. 3, where it is seen that the K-field gives an essentially perfect
description of the total stress field for x < 0.06a, or σ > 3σ0.
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Figure 3: The stress field (thick blue), the leading singular term a.k.a the K-field (dashed
purple) and the next leading term (dahsed yellow).
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5 Some notes about x → 0

Let’s try to see when do we expect the solution to break down at very small x’s. Is
our solution self consistent and indeed there is an intermediate range where the K-field
dominates but linear elasticity still holds?

The solution should break down when linear elasticity breaks down. This might
happen due to plastic flow which happens, roughly, when σ ≈ σY . At very small x’s we
are surely inside the K-field, and thus σ ∼ K/

√
x, i.e. yielding occurs at

σY ≈ KI√
x
≈ σ0

√
a

x
→ x ≈ a

(
σ0

σY

)2

≈ K2
I

σ2
Y

. (30)

Since σ0 ≪ σY , this occurs at x’s much smaller than a and the solution is self consistent.
Another possibility is that the strain field will deviate towards non-linear elasticity before
irreversible flow occurs. This will happen when

ϵ ≈ σ

E
≈ σ0

E

√
a

x
≈ 1 , (31)

which leads, according to the same scaling, to

x ≈ a
(σ0

E

)2
. (32)

Let’s try to be a little bit more quantitative about this. Where exactly in space does
the material reach the yield criterion? The K field solution is

σ =

(
σrr σrθ

σrθ σθθ

)
=

KI√
2πr

(
cos3 θ

2
cos2 θ

2
sin θ

2

cos2 θ
2
sin θ

2
cos θ

2

(
1 + sin2 θ

2

)) . (33)

We already know that the spatial scale of the plastic zone is
K2

I

σ2
Y
, and the interesting part

is the angular dependence. σ’s eigenvalues are

√
2πr

KI

σ1 = cos
θ

2
− sin θ

2
,

√
2πr

KI

σ2 = cos
θ

2
+

sin θ

2
. (34)

The location of the plastic zone now depends slightly on whether we use plane-stress or
plane-strain conditions.

5.1 Plane Stress

For plane stress the third eigenvalue is 0. Therefore, the von-Mises criterion reads

σ2
Y =

(σ1 − σ2)
2 + σ2

1 + σ2
2

6
=

K2
I

48πr
(7 + 4 cos(θ)− 3 cos(2θ)) . (35)

The Tresca criterion reads

σ2
Y =

1

4
max{(σ1 − σ2)

2, σ2
1, σ

2
2} . (36)
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It can be easily seen that (σ1−σ2)
2 is always smaller than either σ2

1 or σ
2
2, so this simplifies

to

σ2
Y =

max{σ2
1, σ

2
2}

4r
=

K2
I

32πr

(
sin(|θ|) + 2 cos

(
θ

2

))2

. (37)

The contour of the elasto-plastic boundary is thus given by

r(θ) =
K2

I

16πσ2
Y

{
1
3
(4 cos(θ)− 3 cos(2θ) + 7) von-Mises

1
2

(
sin(|θ|) + 2 cos

(
θ
2

))2
Tresca

. (38)

5.2 Plane Strain

For plane strain, we have

σzz = σ3 = ν(σxx + σyy) = ν(σrr + σθθ) = ν(σ1 + σ1) =
2νKI cos

(
θ
2

)
√
2πr

. (39)

The von-Mises criterion reads

σ2
Y =

(σ1 − σ2)
2 + (σ1 − σ3)

2 + (σ2 − σ3)
2

6
⇒

r(θ) =
K2

I

12πσ2
Y

cos2
(
θ

2

)
(5− 8(1− ν)ν − 3 cos(θ)) .

(40)

For the Tresca condition you need to be more careful, as for different ν and θ different
branches become the maximal. The final result1 is

r(θ) =
K2

I

8πσ2
Y

cos2
(
θ
2

) (
1− 2ν + sin

(
|θ|
2

))2
|θ| < 2 sin−1(1− 2ν)

sin2(θ) |θ| > 2 sin−1(1− 2ν)
. (41)

All the four possible options for r(θ) are shown in Fig. 4.
Notice that the non-smooth nature of the Tresca criterion is demonstrated in the plain

strain case. Also notice that for the same KI and σY , the plastic region is smaller in plain
strain, as some of the stresses can go in the z direction.

1 For positive ν. For negative ν the result is the same as the first branch.
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Figure 4: The four options for the contour of the plastic deformation. For the plain strain
cases ν=1/4 was used.
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