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Coarse graining (and some leftovers)

1 Transformation of areal elements

How does dS relate to ds? Consider an arbitrary line element dX going through dS.
The spanned volume is dV = dS · dX. Correspondingly, in the deformed coordinates we
have dv = ds · dx. By definition of the Jacobian, we know that the ratio of the volumes
is dv = J dV . Since dx = F dX we have

dsjFjidXi = dsjdxj = dv = JdV = JdSidXi . (1)

Since dX was arbitrary, we get dsjFji = JdSi or in more convenient notation

F Tds = JdS , ds = JF−TdS . (2)

2 Linearized strain under shear

We start by getting some intuition about the geometrical meaning of the linearized strain

εij =
1

2
(∂iuj + ∂jui) , (3)

under shear. Two very common strain states are called pure shear and simple shear.
Simple shear is the situation in which displacement in one direction is a linear function

Figure 1

of the orthogonal coordinate, as seen in Fig. 1a. Pure shear is the state when the same
shear is applied in both direction, as seen in Fig. 1b. In this case there are only shear
strains (in some coordinate system), that is, ε is of the form

εij =

(
0 γ
γ 0

)
. (4)

What is the relation between simple shear and pure shear? In simple shear, the displace-
ment field is

x = X + γ Y , y = Y . (5)
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So the deformation gradient is

F =

(
1 γ
0 1

)
. (6)

This can be decomposed into a state of pure shear and infinitesimal rotation:

H = F − I =

(
0 γ

2
γ
2

0

)
︸ ︷︷ ︸
pure shear

+

(
0 γ

2

−γ
2

0

)
︸ ︷︷ ︸
rotation

. (7)

Indeed, it is seen that Fig. 1b is a slightly rotated version of Fig. 1a.
Note that for a deformation that leaves everything in place, i.e. x = X, we have

F = I and thus H ≡ F −I is what quantifies the non-rigid-body deformation. What we
just showed is that F − I can be decomposed to a symmetric part, which is the strain,
and an antisymmetric part, which is a rotation and does not cost energy. This is why
only the symmetric part of F is used in all versions of strain measures.

Lets focus now on pure shear. We can write the pure shear deformation in one of two
forms. We can write

F1 =

(
1 γ/2

γ/2 1

)
, (8)

or as

F2 =

(
1 + γ/2 0

0 1− γ/2

)
, (9)

both shown in Fig. 2. Let us compare F1 and F2 — their trace trF1 = 2 = trF2 and
determinant detF1 =1 − γ2

4
=detF2 are exactly the same. This implies that these two

deformations are equivalent. By diagoanlizing the two F ’s we observe their eigenvectors
are simply rotated by π/4 (or, that one can transform one into another with similarity
transformation) — they represent the same deformation. It is easy to see that both of
these are equivalent to simple shear in the linear approximation, but when consider-
ing the full nonlinear deformation, simple shear is volume preserving, while pure shear
deformations are not.

Figure 2
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3 Coarse Graining

The main purpose of this section is to see how to develop a continuum theory to describe
the deformation of a discrete system, a process known as “coarse graining”. This is also
the first time in the course that we’ll develop a constitutive relation from microscopic
physics, i.e. calculate how the stress depends on the deformation. The system we’ll
examine is a two-dimensional triangular lattice of masses and springs, shown in Fig. 3.
We assume that the springs are usual linear springs with an identical spring constant
k and that in the undeformed state all the springs are at their rest-lengths, which we
denote by a.

A

B C

Figure 3: Left: A triangular lattice with a lattice constant a. Right: the unit cell with
the coordinates of the vertices.

The central quantity we will want to calculate is the energetic cost of deformation.
As you’ve heard from Eran in the last lecture, stresses and strains are intimately related
and the observable that relates the two is the energy. Formally, stress and strain are a
conjugate variable pair (like many other pairs you know of: pressure-volume, magnetic
field-magnetization, chemical potential-particle number etc.).

Assume the material undergoes some motion x = φ(X). A crucial requirement
in coarse graining is that the observables of interest vary slowly in space, much slower
than the relevant microscopic degrees of freedom. Formally, this means that the Fourier
decomposition of φ only has contributions from wavevectors q satisfying |qa| ≪ 1 (you
may have seen a similar requirement when you learned about the Debye model for the
phonon contribution to the specific heat). Thus, we assume that we can analyze each
small portion of the lattice separately and write the energy density u as a function of the
local values of the deformation (and its gradients)

u(r) = u
(
φ(r),F (r),∇F , . . .

)
. (10)

Note that in Eran’s notes energy density is defined per unit mass and here I use densities
per unit volume (=area). The two are simply related by a factor ρ. Finally, we can then
express the total energy of the system as a volume integral U =

∫
u(r)d3r.

So let’s calculate u defined in Eq. (10). Since we do not consider any external fields,
the energy must be independent of global translation, i.e. φ itself. Also, we consider
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here only the contribution of F to the energy and neglect higher gradients. This is an
“extra” approximation which follows the same spirit of the coarse-graining: if |qa| ≪ 1
then two adjacent masses will experience roughly the same F , and the approximation
becomes better when |qa| becomes smaller. Note that it is perfectly “kosher” to consider
also terms like ∇F , ∇2F , etc, but that would require the theory to include explicitly a
microscopic lengthscale, something that we would like to avoid at this point.

Examine the unit cell that in the undeformed state is located at X = 0. Its vertices
are at X(1) = (0, 0), X(2) = (a, 0) and X(3) = (a/2, a

√
3/2). After the deformation, their

positions are

x(X)≈FX +O(a2) ,x(1) =

(
0
0

)
,x(2) = a

(
F1,1

F2,1

)
,x(3) =

a

2

(
F1,1 +

√
3F1,2

F2,1 +
√
3F2,2

)
. (11)

The deformed lengths of the three springs denoted by A,B,C in the figure are

LA =
∣∣∣x(2) − x(1)

∣∣∣ = ∣∣∣(aF1,1, aF2,1)
∣∣∣ = a

√
F1,1

2 + F2,1
2 , (12)

LB =
∣∣∣x(3) − x(1)

∣∣∣ = a

2

√(
F1,1 +

√
3F1,2

)2
+
(√

3F2,2 + F2,1

)2
, (13)

LC =
∣∣∣x(3) − x(2)

∣∣∣ = a

2

√(
F1,1 −

√
3F1,2

)2
+
(√

3F2,2 − F2,1

)2
. (14)

The total energy is given by

Su =
1

2
k (LA − a)2 +

1

2
k (LB − a)2 +

1

2
k (LC − a)2 , (15)

where S = a2
√
3/2 is twice the area of the unit cell1. It’s easy to see that if F = I then

Li = a and clearly the energy will vanish, as expected.
Let us examine this energy function. The first thing we note about u is that it

doesn’t look like a “tensor function”, i.e. it seems to depend on all the entries of F in
some kind of a nasty manner that cannot be written in a nice geometrical form like
f(trF , detF ,F : F , · · · ). Second, it seems that, unlike what we said in the last TA
session, it seems to depend on both the symmetric and the antisymmetric parts of F .

So let’s see if we can write u in a way that makes some more sense. We’ll denote the
line segments that connect the vertices by dX(A), dX(B) and dX(C) and their deformed
counterparts as dx(A) = F dX(A), dx(B) = F dX(B) and dx(C) = F dX(C). The deformed
lengths are

L2
α = dx(α) · dx(α) = dX(α)TF TF dX(α) = F TF : (dX(α) ⊗ dX(α)) . (16)

Starting to look familiar? (I remind you of the definition of the Green-Lagrange strain
tensor E ≡ 1

2
(F TF − I)). In order to write the energy, it seems that the matrices

M (α) ≡ dX(α) ⊗ dX(α) will be handy. Explicitly, they read

M (A) = a2
(

1 0
0 0

)
M (B) =

a2

4

(
1

√
3√

3 3

)
M (C) =

a2

4

(
1 −

√
3

−
√
3 3

)
. (17)

1 Since every spring is shared between two cells.
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Note that trM (α) = a2 and
∑

M (α) = 3
2
a2I. We are now ready to write the energy:

Su =
1

2
k (LA − a)2 +

1

2
k (LB − a)2 +

1

2
k (LC − a)2

=
1

2
k
[
L2
A + L2

B + L2
C − 2a(LA + LB + LC) + 3a2

]
=

1

2
k

[
F TF :

(∑
α

M (α)

)
− 2a

∑
α

√
F TF : M (α) + 3a2

]

=
1

2
k

[
3

2
a2 tr(F TF )− 2a

∑
α

√
F TF : M (α) + 3a2

]

=
1

2
k

[
3

2
a2 tr(2E + I)− 2a

∑
α

√
(2E + I) : M (α) + 3a2

]
⇒

u = k
√
3

[
trE − 2

3

∑
α

√
1 + 2E : M̃ (α) + 2

]
,

(18)

where we defined M̃ (α) = a−2M (α) and in the last transition we divided by S.
So that’s about it. This is the energy function in its full glory. Two things are worth

noting about this energy function: First, you can already see that it depends only on
E which is rotationally invariant and symmetric. That is, the continuum level quantity
E emerges naturally from the discrete analysis. Second, note that although we are
using strictly linear springs whose energies are quadratic in their elongation the energy
function is far from being a simple quadratic function. This is because the geometry itself
introduces nonlinearities.

Let’s take this one step further, and develop u in orders of E to see if we can get
understand this better. The zeroth order clearly vanishes, which is a good sign that we
didn’t have any mistakes. The first order should also vanish (why?), and indeed

u(1) = k
√
3

[
trE − 2

3

∑
α

(
1 +E : M̃ (α)

)
+ 2

]
= k

√
3

[
trE − 2

3
E :

∑
α

M̃ (α)

]
= 0

So in all subsequent orders we can worry only about the sqrt term. To second order we
have (recall that

√
1 + x ≈ 1 + x

2
− x2

8
)

u(2) =
k√
3

∑
α

(
E : M̃ (α)

)2
=

k√
3

∑
α

EijEklM̃
(α)
ij M̃

(α)
kl =

1

2
EijEklCijkl (19)

Cijkl ≡
2k√
3

∑
α

M̃
(α)
ij M̃

(α)
kl =

( 2k

a4
√
3

∑
α

dX(α) ⊗ dX(α) ⊗ dX(α) ⊗ dX(α)
)
ijkl

(20)

C is called the stiffness tensor and you’ve heard a lot about it in Eran’s lecture. Note that
the fact that to quadratic order u = EijEklCijkl for some tensor C is generally true in
the framework of linear elasticity. Also, the fact that Cijkl is symmetric under any of the
transpositions i ↔ j, k ↔ l and ij ↔ kl (and any compositions of them) also generally
holds. However, our C has some extra symmetries on top of that. First, note that
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Cikjl ∝
∑

α dX
(α)
i dX

(α)
j dX

(α)
k dX

(α)
l so the tensor is fully symmetric to any permutation

of ijkl. But there’s even more than that: In fact, explicit calculation shows that

Cijkl =

√
3

4
k
(
δijδkl + δikδjl + δilδkj

)
, (21)

which is, pretty surprisingly, an isotropic tensor. That is, to leading order the elastic
response of triangular lattice is isotropic, although the lattice is clearly not invariant to
rotations. Explicitly, we have

u(E) =

√
3k

8
EijEkl

(
δijδkl + δikδjl + δilδkj

)
=

√
3

8
k
(
(trE)2 + 2 tr(E2)

)
. (22)

As explained at length by Eran last week, the relation between the stress and the
strain is σ = ∂u

∂ε
= Cijklεkl (note that I switched from E to ε, which is OK because we’re

in the linear approximation within which the two are identical). Thus,

σij(ε) =

√
3k

4
εkl

(
δijδkl + δikδjl + δilδkj

)
=

√
3k

4

(
δij tr ε+ 2εij

)
,

σ =

√
3k

2
(tr ε)I +

√
3k

4
ε ,

(23)

As you’ll see next week, the form σ = λ(tr ε)I + 2µε for two constants λ, µ is the
most general constitutive relation for linear isotropic materials. λ and µ are called Lamé
coefficients (µ is also called the shear modulus). Note that the microscopic lengthscale a
does not appear explicitly in the theory, a common situation in continuum theories (but
if we were to include also strain-gradient terms, we could not have avoided having a in
our equations).

4 Onsager’s reciprocal relations

We have talked in class about the continuum description of the laws of thermodynam-
ics. As a complementary discussion, we present here the notion of Onsager’s Reciprocal
Relations, a fundamental concept in close-to-equilibrium statistical mechanics. Though
this is not directly related to continuum theory (i.e. they do not involve spatial degrees
of freedom), they are crucial in understanding macroscopic response of thermodynamic
systems, and we feel that no introductory course in non-equilibrium thermodynamics can
be complete without it. These relations are derived within a linear response theory, i.e.
close to thermal equilibrium. This is the simplest non-equilibrium case and later in the
course we’ll go nonlinear, which will be a whole lot of fun.

4.1 Transport coefficients (out of eq. properties)

Say there is a set of thermodynamic variables {Ai} that describe our system. For sim-
plicity we’ll assume that ⟨Ai⟩ = 0, otherwise we can always define αi = Ai − ⟨Ai⟩. We
define the conjugate fluxes and forces to be

Ji ≡
dAi

dt
, Xi ≡

∂S

∂Ai

, (24)
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where S is the system’s entropy (but could equally as well be any thermodynamic poten-
tial). Note that by Ji we mean a steady change in Ai, not thermal fluctuations. These
changes are maintained by fixing the forces Xi. Using (24), we can write the entropy
production rate Σ as

Σ =
dS

dt
=
∑
i

JiXi (25)

The basic assumption of close-to-equilibrium thermodynamics is that the fluxes are linear
functions of the forces. This is known by the name linear response. Explicitly, we write

Ji =
∑
j

LijXj . (26)

The matrix Lij is called the transport matrix, or the conductivity matrix. The meaning
of “linear response” is that the coefficients Lij do not depend on Xi. They may depend
on state variables such as the temperature, but not on the forces.

Plugging (26) into (25) gives

Σ =
∑
i,j

LijXiXj . (27)

The 2nd law of thermodynamics tells us that Σ is non-negative. We therefore see im-
mediately that Lij is a positive-definite matrix. This constraints the transport coefficient
in a strong way. For example, for any pair of indices i, j we must have

Lii, Ljj < 0 (28)

det

(
Lii Lij

Lji Ljj

)
= LiiLjj − LijLji < 0 . (29)

But Onsager tells us even more, with further reasoning that goes beyond the 2nd law.

4.2 Equilibrium properties

For Onsager’s relation to hold, we need to assume microscopic time-reversibility. Thus,
the equilibrium correlations must satisfy

Cij(τ) = ⟨Ai(t)Aj(t+ τ)⟩ = ⟨Ai(t)Aj(t− τ)⟩ = Cij(−τ) . (30)

Also, in equilibrium we have stationarity so we can shift the time by τ and get

⟨Ai(t)Aj(t+ τ)⟩ = ⟨Ai(t+ τ)Aj(t)⟩ . (31)

Close to equilibrium, we can approximate that

S = Seq +∆S(A1, . . . , An) ≈ Seq −
1

2

∑
i,j

gijAiAj , gij ≡ − ∂2S

∂Ai∂Aj

. (32)
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The linear term vanishes because in equilibrium S is maximal, and the minus sign makes
gij positive definite. gij is also clearly symmetric. In particular, we see that

Xi =
∂S

∂Ai

=
∂∆S

∂Ai

≈ −
∑
j

gijAj (33)

From the definition of the entropy, the probability measure for fluctuations is

f(A1, . . . , An) = eS(A1,...,An)/kB ≈ e∆S(A1,...,An)/kB

normalization
(34)

The matrix gij quantifies the fluctuations in the system - one can immediately calculate
the instantaneous correlation ⟨AiAj⟩ by simple Gaussian integration with the measure f .
However, it does not tell us anything about dynamics.

Eq. (34) tells us that

log(f) = − 1

2kB
gijAiAj + const (35)

kB
∂ log f

∂Ai

= −gijAj = Xi (36)

We therefore get the orthogonality criterion:

⟨AiXj⟩ =
∫

AiXjf(A1, . . . , An)dA1 . . . dAn

= kB

∫
Ai

∂ log f

∂Aj

fdA1 . . . dAn = kB

∫
Ai

∂f

∂Aj

dA1 . . . dAn

= kB

∫ (
∂

∂Aj

(Aif)− f
∂Ai

∂Aj

)
dA1 . . . dAn = −kBδij . (37)

The first term vanishes as it is a boundary term, and the second term is δij because f is
normalized and {Ai} are independent.

4.3 The regression hypothesis and symmetry of Lij

Eq. (26) describes the dynamics of equilibrium fluctuations of {Ai}. Onsager assumed
that when we take the system out of equilibrium by applying external forces, the dynamics
will still be governed by Eq. (26), although the Hamiltonian has changed. That is,
Onsager assumed that the relaxation (“regression”) towards equilibrium follows the same
dynamics as equilibrium fluctuations do. This is called “the regression hypothesis”. We
therefore have

Ji(t) =
∑
j

LijXj(t) (38)

With this at hand, we can differentiate Eq. (31) with respect to τ . The LHS gives

∂

∂τ
⟨Ai(t)Aj(t+ τ)⟩ |τ=0 = ⟨Ai(t)Jj(t)⟩ =

∑
k

⟨Ai(t)LjkXk(t)⟩ = −kB
∑
k

Ljkδik = Lji

(39)
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Where we used Eq. (37) to obtain the δ. Similarly, the RHS gives

∂

∂τ
⟨Ai(t+ τ)Aj(t)⟩ |τ=0 = ⟨Ji(t)Aj(t)⟩ =

∑
k

⟨LikXk(t)Aj(t)⟩ = −kB
∑
k

Likδkj = Lij

(40)
Equating (39) and (40) gives the famous Onsager Reciprocal Relations:

Lij = Lji (41)

4.4 Remarks

4.4.1 Assumptions

Note that we needed:

• Time reversibility.

• Regression hypothesis.

• Independece of Ai, and conjugacy of Ai to Ji through ∆S.

• Linearity.

4.5 Relaxation to equilibrium

Why do systems relax toward equilibrium? One can see this by using Onsager Relations,
as we will now show. Since gij is symmetric positive definite, we can choose to work with
rotated and scaled variables A′

i for which gij = δij. Thus, the relation (33) takes the
simple form Xi = −Ai. The evolution of Ai is then

∂tAi = Ji =
∑
j

LijXj = −
∑
j

LijAj , (42)

or, in compact form,
∂tA⃗ = −LA⃗ (43)

Since Lij is positive definite (by the 2nd law) we see that all the eigenvalues of Lij have
positive real parts, and therefore the system cannot explode, but we are not guaranteed
that we’ll have decay towards equilibrium (A⃗ = 0). Onsager tells us that since Lij is
symmetric, it is diagonalizable with real eigenvalues, and therefore must decay towards
equilibrium without oscillations. For example, suppose we had

L =

(
0 −1
1 0

)
(44)

This L does not violate the 2nd law, but what will the dynamics look like? Let’s say we
start with the initial condition A1 = 1, A2 = 0. The solution of the ODE (43) is(

A1(t)
A2(t)

)
= exp

[(
0 −1
1 0

)
t

](
A1(t = 0)
A2(t = 0)

)
=

(
cos t − sin t
sin t cos t

)(
1
0

)
=

(
cos t
sin t

)
(45)

The solutions are oscillatory and do not decay towards equilibrium. This is because the
eigenvalues of L are ±i, which could not have been the case if L were symmetric.
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