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Linear elasticity I

In this TA session we’ll dive deep into linear elasticity theory. Linear elasticity by itself
can be the topic of a year-long course, and in the TA’s we’ll try to convey a significant
fraction of the richness of the theory.

1 Hooke’s law, stiffness, and compliance

Hooke’s law is

σij = λεkkδij + 2µεij =

(
λ+

2

3
µ

)
tr(ε)δij + 2µ

(
εij −

1

3
tr(ε)δij

)
. (1)

Let’s write it explicitly, to get a better feel of what’s going on

σxx = 2µεxx + λ (εxx + εyy + εzz) = (2µ+ λ)εxx + λ (εyy + εzz) ,

σyy = 2µεyy + λ (εxx + εyy + εzz) = (2µ+ λ)εyy + λ (εxx + εzz) ,

σzz = 2µεzz + λ (εxx + εyy + εzz) = (2µ+ λ)εzz + λ (εxx + εyy) ,

(2)

σij = 2µεij, i ̸= j (3)

or in matrix form
σxx

σyy

σzz

σzy

σzx

σxy

 =
2µ

1− 2ν


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν




εxx
εyy
εzz
εzy
εzx
εxy

 . (4)

The shear terms i ̸= j have a simple dependence, while the others are a bit more
complicated. This equation has the general form of σ = Cϵ, where C is called the
stiffness tensor.

Let’s try to invert these relations to find ε(σ) - that is, let’s find the compliance
matrix for an isotropic linear elastic material. The same considerations that we used to
derive Eq. (1) (i.e. that ε and σ are related by a 4-rank isotropic tensor) allow us to write

εij = a σkkδij + b σij , (5)

so finding the compliance reduces to finding a, b. If tr ε = 0, then Eq.(1) and (5)1 reduce
to, respectively,

σij = 2µ εij , (6)

εij = b σij , (7)

1 Recall that trσ∝tr ε
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so we immediately find b = (2µ)−1. Taking the trace of Eq. (1) and (5) gives, respectively

tr(σ) = (3λ+ 2µ) tr(ε) , (8)

tr(ε) = (3a+ b) tr(σ) , (9)

which tells us that

3a+ b = (3λ+ 2µ)−1 ⇒ a =
1

3

(
1

3λ+ 2µ
− b

)
=

−λ

2µ(3λ+ 2µ)
⇒

εij = − λ

2µ(3λ+ 2µ)
tr(σ)δij +

1

2µ
σij .

(10)

Writing explicitly, we have

εxx =

(
1

2µ
− λ

2µ(3λ+ 2µ)

)
σxx −

λ

2µ(3λ+ 2µ)
(σyy + σzz) ,

εyy =

(
1

2µ
− λ

2µ(3λ+ 2µ)

)
σyy −

λ

2µ(3λ+ 2µ)
(σxx + σzz) ,

εzz =

(
1

2µ
− λ

2µ(3λ+ 2µ)

)
σzz −

λ

2µ(3λ+ 2µ)
(σxx + σyy) ,

(11)

εij =
1

2µ
σij for i ̸= j . (12)

As discussed in class, the term in parentheses in Eq.(11) is the inverse of the Young’s
modulus, and for uniaxial stress it reads

E = σxx/εxx =

(
1

2µ
− λ

2µ(3λ+ 2µ)

)−1

= µ
3λ+ 2µ

λ+ µ
. (13)

It is the microscopic analogue of the spring constant. If the uniaxial stress is in the x
direction, then we have

εyy = − λ

2µ(3λ+ 2µ)
σxx = − λ

2µ(3λ+ 2µ)
Eεxx = − λ

2(λ+ µ)
εxx , (14)

and as discussed in class, −εyy/εxx is known as the Poisson ratio ν = λ
2(λ+µ)

. Rewriting

Eqs. (11) with these quantities yields a much nicer expression:

εxx =
1

E
[σxx − ν(σyy + σzz)] ,

εyy =
1

E
[σyy − ν(σxx + σzz)] ,

εzz =
1

E
[σzz − ν(σxx + σyy)] ,

εij =
1 + ν

E
σij for i ̸= j ,

(15)

or in matrix form
εxx
εyy
εzz
εzy
εzx
εxy

 =
1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν




σxx

σyy

σzz

σzy

σzx

σxy

 . (16)
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This is just an inversion of Eq. (4) into the form ε = Sσ, where S = C−1 is the
compliance tensor (if you noticed that C is called the stiffness tensor and S is called the
compliance tensor and wondered about it, this is not a mistake and there is no intention
to confuse you. It is a long-time convention that cannot be reverted anymore). A useful
table with all the conversions is found in Wikipedia. We are now ready to perform the
reduction to 2D.

2 2D elasticity

As shown in class, the field equation of elasticity is the Navier-Lamé equation

ρ∂ttu = (λ+ µ)∇ (∇ · u) + µ∇2u+ b . (17)

It is notoriously difficult to solve. However, things become much simpler in 2D. There
are 3 generic ways in which one can obtain an effectively 2D elastic system, by ignoring
the z dimension:

1. Plane stress: when σzi = 0. This typically holds in very thin systems (in the z
direction).

2. Plane strain: when the system is translationally invariant in z, and therefore ∂z
of anything vanishes. This typically holds in very thick (in the z direction) systems.

3. Anti plane - scalar elasticity: If the motion is only in z and does not depend
on z. This is mainly a pedagogical example, though some physical examples exist,
mainly thin sheets and mode-III fracture (tearing).

4. “Flatland”: If the world truly is two dimensional. We will not treat this case as
it is a bit delicate.

The fourth case is a bit delicate, and we will not discuss it in the course. We’ll now
develop the theory for the first two cases, and Eran demonstrated in class the formalism
of scalar elasticity (the third case). We will also see an example of scalar elasticity in the
second part of the TA.

To see how one reduces elasticity to 2 dimensions, let us explicitly write Hooke’s law
(15) in terms of µ and ν. We note that although the stiffness matrix is a 4-rank tensor,
it can be represented as a 6 by 6 matrix by rearranging the entries as in Eq. (4).

2.1 Plane-stress

We first consider objects that are thin in one dimension, say z, and are deformed in
the xy-plane. What happens in the z-direction? Since the two planes z = 0 and z = h
(where h is the thickness which is much smaller than any other lengthscale in the problem)
are traction-free, we approximate σzz = 0 everywhere (an approximation that becomes
better and better as h → 0). Similarly, we have σzy = σzx = 0. We can therefore set
σzz = σzy = σzx = 0 in Eq. (16) to obtainεxx

εyy
εxy

 =
1

E

 1 −ν 0
−ν 1 0
0 0 1 + ν

σxx

σyy

σxy

 , (18)
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and
εzz = − ν

E
(σxx + σyy) . (19)

To obtain the plane-stress analog of Eq. (17), the Navier-Lamé equation, we need to
invert Eq. (18), obtainingσxx

σyy

σxy

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1− ν

εxx
εyy
εxy

 . (20)

Note that the last equation can not be obtained from Eq. (4) by simply removing columns
and rows. We can now substitute the last relation in the 2D momentum balance equation
∇ · σ = ρ∂ttu (we stress again that σ and u are already 2D here). The resulting 2D
equation reads [

νE

1− ν2
+ µ

]
∇ (∇ · u) + µ∇2u = ρ∂ttu , (21)

which is identical in form to Eq. (17) simply with a renormalized λ

λ → λ̃ =
νE

1− ν2
=

2νµ

1− ν
=

2λµ

λ+ 2µ
. (22)

The shear modulus µ remains unchanged

µ̃ = µ =
E

2(1 + ν)
. (23)

Finally, we can substitute σxx(x, y) and σyy(x, y) inside Eq. (19) to obtain εzz(x, y). Note
that uz(x, y, z) = εzz(x, y)z is linear in z.

2.2 Plane-strain

We now consider objects that are very thick in one dimension, say z, and are deformed
in the xy-plane with no z dependence. These physical conditions are termed plane-strain
and are characterized by εzx = εzy = εzz = 0. Eliminating these components from Eq. (4)
we obtain σxx

σyy

σxy

 =
2µ

1− 2ν

1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

εxx
εyy
εxy

 , (24)

and

σzz(x, y) =
2µν

1− 2ν
[εxx(x, y) + εyy(x, y)] . (25)

We can now substitute Eq. (24) in the 2D momentum balance equation ∇ · σ = ρ∂ttu
(where again σ and u are 2D). The resulting 2D equation is identical to Eq. (17), both
in form and in the elastic constants. With the solution at hand, we can use Eq. (25) to
calculate σzz(x, y). Finally, we note that Eq. (24) can be inverted toεxx

εyy
εxy

 =
1

2µ

1− ν −ν 0
−ν 1− ν 0
0 0 1

σxx

σyy

σxy

 , (26)
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which can not be simply obtained from Eq. (16) by eliminating columns and rows. Using
the last relation we can rewrite Eq. (25) as

σzz(x, y) = ν [σxx(x, y) + σyy(x, y)] . (27)

In summary, we see that in both plane-stress and plane-strain cases we can work
with 2D objects instead of their 3D counterparts, which is a significant simplification.
This allows to use the heavy mathematical tools available in 2D: complex analysis and
conformal mapping. One has, though, to be careful with the elastic constants as explained
above.

3 Complex representation of scalar elasticity

We study a case of scalar elasticity, where u = ux3(x1, x2)ex3 . The strains are

εx2,x3 =
1

2
(∂x2ux3 + ∂x3ux2) =

1

2
∂x2ux3 , (28)

εx1,x3 =
1

2
(∂x1ux3 + ∂x3ux1) =

1

2
∂x1ux3 , (29)

εx1,x1 = εx2,x2 = εx3,x3 = εx1,x2 = 0 . (30)

We have seen in class that ∇2ux3 = 0, that is, ux3 is a harmonic function. This means
that we can write ux3 as

ux3 = 2ℜ(ϕ) = ϕ(z) + ϕ(z), z = x1 + ix2 , (31)

where ϕ is an analytic complex function. We will use the Cauchy-Riemman equations,
that tell us that

∂x1ϕ = −i∂x2ϕ = ϕ′ , (32)

∂x1ϕ = ∂x1ϕ = i∂x2ϕ = ϕ
′
, (33)

and therefore the stresses are

σx1,x3 = µ∂x1ux3 = µ
(
∂x1ϕ+ ∂x1ϕ

)
= µ

(
ϕ′ + ϕ

′
)
= 2µℜ(ϕ′) ,

σx2,x3 = µ∂x2ux3 = µ
(
∂x2ϕ+ ∂x2ϕ

)
= iµ

(
ϕ′ − ϕ

′
)
= −2µℑ(ϕ′) ,

⇒ 2µϕ′ = σx1,x3 − iσx2,x3 ,

(34)

and all other components vanish.
If our domain contains a free boundary, given by a curve that is parameterized by

x1(s), x2(s) with s being arc-length parametrization, then the normal to the boundary is
given by n = (∂sx2,−∂sx1). On the boundary we thus have

0 = σx3,x1nx1 + σx3,x2nx2

= µ
[(
∂x1ϕ+ ∂x1ϕ

)
∂sx2 −

(
∂x2ϕ+ ∂x2ϕ

)
∂sx1

]
= µ

[(
−i∂x2ϕ+ i∂x2ϕ

)
∂sx2 −

(
i∂x1ϕ− i∂x1ϕ

)
∂sx1

]
= −iµ

[(
∂ϕ

∂x2

∂x2

∂s
+

∂ϕ

∂x1

∂x1

∂s

)
−
(

∂ϕ

∂x2

∂x2

∂s
+

∂ϕ

∂x1

∂x1

∂s

)]
= −µ

(
∂ϕ

∂s
− ∂ϕ

∂s

)
= 2µ

∂ℑ(ϕ)
∂s

,

(35)
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so on the boundary ℑ(ϕ) is constant. Since ϕ is only given up to an additive constant,
we can choose ℑ(ϕ) = 0, or, in other words, ϕ = ϕ on the boundary. We see that solving
for the displacement field is equivalent to finding an analytic function whose imaginary
part is constant on the boundary.

4 Conformal mapping: Inglis crack
(Refernce: Marder & Fineberg, Physics Reports 1999)

Complex treatment of 2D elasticity is very useful because Laplace’s equation is confor-
mally invariant, so one can use conformal mappings to deform the region over which we
need to solve the equation into a more convenient geometry. Here we’ll see an appli-
cation of this method, which is called the Inglis (mode III) problem. In 1913 Charles
Inglis solved the general problem of an elliptic hole in an infinite plate subject to distant
loading. His solution turned out to be one of the cornerstones of fracture mechanics, and
was later used and generalized by the works of Griffith, Irwin, and others.

So let’s look at an infinite plane with an elliptic hole, subject to antiplane shear
σx2,x3 = σ∞ at x2 → ±∞. As working with ellipses is unpleasant, we want to find a
conformal mapping that maps the region outside the ellipse to a region outside a circle.
Luckily, such a mapping is well known, and is given by

z = f(ω) = R
(
ω +

ρ

ω

)
, (36)

ω = f−1(z) =
z

2R
+

√( z

2R

)2
− ρ . (37)

f maps the unit circle in the ω-plane to an ellipse with axes R(1 ± ρ) in the z-plane.
0≤ρ≤1 is a parameter that measures the ellipse’s eccentricity2 - when ρ = 0 the ellipse
is a circle, while for ρ = 1 it is a 1D crack of length 4R. The conformal mapping is shown
in Fig. (1).

The crux of the conformal mapping technique is that while in the real coordinates
the geometry is elliptic (and thus complicated), in the ω-plane the domain is a circle
(simple!), and therefore we want to reformulate the problem in terms of ω. That is, we
want to describe ϕ as a function of ω, by the mapping ϕ(ω) = ϕ(ω(z)).

On the hole’s boundary, which is the unit circle in ω-plane, we have

ϕ(ω) = ϕ(ω) = ϕ(ω) = ϕ(1/ω) , (38)

because on the unit circle ω = 1/ω. The property (38) can be analytically extended to
all the ω-plane.

What are the singularities of ϕ? Outside the hole, it must be completely regular,
except at infinity where it diverges as ϕ ∼ z. This is because Eq. (34) tells us that far
from the hole we have ∂zϕ ∝ σ/µ, and therefore we conclude that

ϕ ≈ −i
σ∞

µ
z ≈ −i

σ∞

µ
Rω, for ω, z → ∞ . (39)

2 Note that ρ isn’t the eccentricity as usually defined in geometry, which is e =
2
√
ρ

ρ+1 .
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Figure 1: The conformal mapping. Polar lines (top row) and the Cartesian lines (bottom
row) are shown. Note that, after the mapping, the lines remain perpendicular.

Using the analytical continuation of Eq. (38), we get that

ϕ(1/ω) ≈ −i
σ∞

µ
Rω, for ω → ∞ , (40)

or equivalently,

ϕ(ω) ≈ i
σ∞R

µω
, for ω → 0 , (41)

and there are no other singularities inside the unit circle. Having determined all the
possible singularities of ϕ, it is determined up to an additive constant. It must be

ϕ(ω) = i
σ∞R

µ

(
1

ω
− ω

)
. (42)

As discussed above, another way of finding ϕ is to find a function whose imaginary
part vanishes on the boundary on the hole, i.e. on the unit circle. The function i (1/ω − ω)
fits this requirement, therefore, it is exactly the function we’re looking for, up to a mul-
tiplicative factor which we have obtained from the external BC.

We can now calculate the displacement field in the “real” coordinate z by joining Eqs.
(42) and (37):

uz = 2ℜ

{
−i

σ∞R

µ

(
ζ +

√
ζ2 − ρ− 1

ζ +
√

ζ2 − ρ

)}
, where ζ ≡ z

2R
. (43)

What is the stress at the tip of the ellipse? We can differentiate uz(z) of Eq. (43)
explicitly, but this gives a nasty expression that is very difficult to understand. It is
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simpler to use the conformal property of the mapping:

∂zϕ(z) = ∂zϕ(ω(z)) = ϕ′(ω)
∂ω

∂z
,

ϕ′(ω) = −i
σ∞R

µ

(
1 +

1

ω2

)
,

∂ω

∂z
=

(
∂z

∂w

)−1

=
1

f ′(ω)
,

f ′(ω) = R(1− ρ

ω2
) ,

ϕ′(z) =
−iσ∞R

µ

(
1 + 1

ω2

)
R(1− ρ

ω2 )
= −iσ∞

µ

ω(z)2 + 1

ω(z)2 − ρ
.

(44)

Note that in the last equation ω is a function of z.
Now let’s examine the solution. One thing we would like to know is where in space

is the stress maximal. Clearly, ϕ′ diverges for w = ±√
ρ, but remember that ρ < 1 and

our domain is outside the unit circle, so this point is inside the hole. Some trivial algebra
shows that the ϕ′ is maximal for ω=±1, which are, not surprisingly, the closest points
outside the unit circle to ±ρ. When ω = ±1 we have z = ±R(1 + ρ) - these are the
horizontal tips of the ellipse. The stresses there are

σx1,x3 − iσx2,x3 = µϕ′ = −σ∞
2i

1− ρ
⇒

σx1,x3 = 0 , σx2,x3 =
2σ∞

1− ρ
.

(45)

The case ρ = 0 gives σx2,x3 = 2σ∞, in accordance with what was done in class. In the
opposite extremity, ρ → 1, the stress field diverges (but the displacement doesn’t). We
see that the stress at the tip decreases with the radius there. An interesting consequence
of this is that in order to arrest a crack from propagating, one can drill a hole at its tip
(!). This will reduce the radius of curvature at the tip and weaken the singularity.

The limiting case ρ → 1 is of particular interest, as it describes a 1-dimensional cut
in the material. It is known in the literature as Mode III crack. The power with which
σx3,x2 diverges in the case ρ = 1 can be easily obtained. In this case we have

ϕ = −iRσ∞

µ

√
z2

R2
− 4 . (46)

Plugging in z = 2R (1 + δ) (where δ ∈ C) and keeping the leading order in δ gives

ϕ = −i
2
√
2Rσ∞

µ

√
δ +O

(
δ3/2
)
⇒

σx2,x3 ∼
σ∞√
2
√
δ
.

(47)

The fact that near the crack tip the stress field diverges as the square root of the distance
from the crack tip, and that the displacement field is regular, is of general applicability,
and is true for static cracks in all loading configurations. The square-root divergence is
a consequence of the branch-cut at the crack surface.
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