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Linear elasticity II

1 Green’s function for an infinite medium

It seems that the time is ripe to fully and completely solve a problem, with all the 2π’s
and everything, without resorting to hand waving and scaling arguments. While the
emphasis will still be on the structure of the problem, we think it will be instructive, at
least once, to write down a problem and solve it exactly.

A nice problem to consider is the response of an infinite linear isotropic homogeneous
elastic medium to a localized force f⃗ = Fiδ(r⃗), i.e. finding the Green’s function of an
infinite medium.

We define the Green function (matrix) Gij(r⃗1, r⃗2) as the displacement in the i direction
at the point r⃗1 as a response to a localized force in the j direction applied at r⃗2. For
homogeneous materials we know that Gij(r⃗1, r⃗2) = Gij(r⃗1 − r⃗2). We therefore denote
r⃗ = r⃗1 − r⃗2. You all know well that, within the linear elastic theory, this will allow us
to solve the problem of an arbitrary force distribution f(r⃗) by convolving f(r⃗) with the
Green function.

Conceptually, the structure is the following. We would like to find a displacement
field ui(r⃗), from which we calculate

ui ⇒ εij ⇒ σij ⇒ ∂jσij = δ(r⃗) ,

but of course, we will want to do the whole thing backwards. I stress (no pun in-
tended1) that we already know how to express div(σ) in terms of ui - this is what we
called the Navier-Lamé equation. But for completeness, let’s do it again:

σij = λεkk δij + 2µ εij = λ∂kukδij + µ (∂iuj + ∂jui) ,

∂jσij = ∂j (λ∂kukδij + µ (∂iuj + ∂jui)) = (λ+ µ)∂i∂juj + µ∂j∂jui ,

which is nothing but the u-dependent term of the Navier-Lamé equation. Since the
equation is linear, it seems right to solve the problem by Fourier transform. We use the
conventions

ui(q⃗) =

∫
d3x⃗ eiq⃗·r⃗ui(r⃗) , (1)

ui(r⃗) =
1

(2π)3

∫
d3q⃗ e−iq⃗·r⃗ui(q⃗) . (2)

The equation we want to transform is

(λ+ µ)∂j∂iuj + µ∂j∂jui = −Fiδ(x⃗) , (3)

which readily gives
−(λ+ µ)qjqi uj − µ qjqj ui = −Fi . (4)

1 Just kidding, of course it’s intended.
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This is a matrix equation:

[(λ+ µ)qjqi + µ qkqkδij]uj = Fi . (5)

Or even more explicitly: (λ+ µ) q21 + µ|q⃗|2 (λ+ µ) q1q2 (λ+ µ) q1q3
(λ+ µ) q1q2 (λ+ µ) q22 + µ|q⃗|2 (λ+ µ) q2q3
(λ+ µ) q1q3 (λ+ µ) q2q3 (λ+ µ) q23 + µ|q⃗|2

u1

u2

u3

 =

F1

F2

F3

 . (6)

This matrix can be inverted by using any of your favorite methods, giving

ui =
1

µ

[
δij
qkqk

− 1

2(1− ν)

qiqj
(qkqk)2

]
Fj . (7)

Where we used ν = λ
2(λ+µ)

. In other words, we have found the Fourier representation of
the Green function:

Gij(q⃗) =
1

µ

[
δij
qkqk

− 1

2(1− ν)

qiqj
(qkqk)2

]
. (8)

We now need to preform the inverse Fourier transform. We’ll begin with the first
term, and do it in spherical coordinates with the qz direction parallel to r⃗:

1

(2π)3

∫
d3q⃗

e−iq⃗·x⃗

q2
=

1

(2π)3

∫
e−iqr cos θ

q2
q2 sin θ dθ dq dϕ =

1

(2π)2

∫
e−iqr cos θ sin θ dθ dq

=
1

(2π)2

∫
eiqr − e−iqr

iqr
dq =

2

(2π)2

∫ ∞

0

sin(qr)

qr
dq =

1

4πr
.

If this result surprises you, maybe you should remind yourself of the first linear field
theory that you met in your life - Poisson’s equation for a point charge ∇2ϕ = δ(r⃗). I’ll
let you complete the analogy by yourselves.

For the second term, we use a dirty trick:

F−1

{
qiqj

(qkqk)2

}
= −1

2
F−1

{
qi

∂

∂qj

(
1

qkqk

)}
=

i

2

∂

∂xi

F−1

{
∂

∂qj

(
1

qkqk

)}
=

i

2

∂

∂xi

(
−ixjF−1

{
1

qkqk

})
=

1

2

∂

∂xi

( xj

4πr

)
=

1

2

(
δij
4πr

− xixj

4πr3

)
.

(9)

Plugging in (8) we get

Gij(r⃗) =
1

16(1− ν)πµr

[
(3− 4ν)δij +

xixj

r2

]
. (10)

A more elegant way to go, is to write Gij as gradients of r (I mean |r|, not r⃗):

Gij(r⃗) =
1

8πµ

[
∂k∂kr δij −

1

2(1− ν)
∂i∂jr

]
=

1

8πµ

[
I∇2r − ∇∇r

2(1− ν)

]
. (11)
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Figure 1: Top: Displacement field lines in the x − y plane for point F⃗ = Fx̂ in the
horizontal direction. From left to right, with ν = 0, 0.33, 0.5. Bottom: deformation of
a regular mesh under this motion. Note that crossing of two lines of the same color is
physically forbidden (why?).

1.1 Notes about the solution

1. The displacements go as 1/r, which means that the strain/stress go as 1/r2. There-
fore the elastic energy density, which goes like ε2, goes like 1/r4 and its integral
diverges. This is much like the case of electrostatics, where the total energy of the
electrical field of a point charge diverges.

2. The scaling u ∼ 1/r could also have been obtained from simple dimensional anal-
ysis. It is quite common that dimensional considerations in elasticity take the
“dimension” from the shear modulus µ, and then there’s an unknown (and usually
uninteresting) function of ν.

3. You might have noticed that Gij is a symmetric matrix. This might look at first
glance as a trivial property that stems from the translational symmetry or rotational
symmetry (=isotropy), but this is not the case. This symmetry property does not
stem from any simple argument (that I can think of). Instead, this symmetry is
a special case of a more general property that is called reciprocity. For a general
linear elastic solid, and by general I mean that Cijkl(r) can have any symmetry and
can even depend on space, the static Green function satisfies

Gij(r, r
′) = Gji(r

′, r) . (12)
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2 Clapeyron’s & Betti’s theorems and reciprocity

Clapeyron’s theorem is a nice result in static elasticity that says that “the total elastic
energy stored in a body is equal to half the work done by the external forces computed
assuming these forces had remained constant from the initial state to the final state”.
You already know a trivial version of this theorem, in the context of the energy stored
in a simple spring. Assume you load a given spring with a force F . The energy stored in
the spring is

U = 1
2
kx2 = 1

2
(kx)x = 1

2
Fx . (13)

If you assume that during the elongation of the spring the force had the constant value
F (although the force clearly started from zero and ramped up to F ) you get that the
total work done was Fx. The real energy, however, is exactly one half that value.

The proof is pretty simple. Assume an elastic body is subject to volume forces b(r)
and surface tractions t(r). The total elastic energy in the body is

U =

∫
Ω

1
2
σij(r)εij(r)d

3r
(1)
= 1

2

∫
Ω

σij∂iuj d
3r = 1

2

∫
Ω

[
∂i(σijuj)− uj∂iσij

]
d3r

(2)
= 1

2

[∫
∂Ω

σijujni d
2r +

∫
Ω

bjuj d
3r

]
= 1

2

[∫
∂Ω

tjuj d
2r +

∫
Ω

bjuj d
3r

]
,

(14)

where in the transition (1) we used the symmetry of σ and in (2) we used Gauss’ theorem
and the equilibrium condition ∂jσij + bi = 0.

Betti’s theorem (sometimes called “Betti’s reciprocal theorem”) is a general important
result about the energetics in static elasticity. It is useful in theoretical analyses (e.g. for
proving the uniqueness of solutions to the static Navier-Lamè equation) and is also for
practical use if average quantities are calculated (you might have an exercise about that
in the HW).

Suppose that when a set of body and traction forces b(1) and t(1) is applied to a body,
the resulting deformation field is u(1), and the stress and strain fields are σ(1) and ε(1).
Suppose also that when a different set of body and traction forces, b(2) and t(2), is applied
then the resulting deformation field is u(2), and the stress and strain fields are σ(2) and
ε(2). Betti’s theorem states that∫

∂Ω

t
(1)
i u

(2)
i d2r +

∫
Ω

b
(1)
i u

(2)
i d3r =

∫
∂Ω

t
(2)
i u

(1)
i d2r +

∫
Ω

b
(2)
i u

(1)
i d3r . (15)

That is, the work done by the set (1) through the displacements produced by the set
(2) is equal to the work done by the set (2) through the displacements produced by the
set (1).

To see this, consider the total energy of the system if both sets of forces are applied:

U =
1

2

∫
Ω

(
σ
(1)
ij + σ

(2)
ij

)(
ε
(1)
ij + ε

(2)
ij

)
d3r (16)

=
1

2

∫
Ω

[
σ
(1)
ij ε

(1)
ij + σ

(2)
ij ε

(2)
ij + σ

(1)
ij ε

(2)
ij + σ

(2)
ij ε

(1)
ij

]
d3r (17)

= U (1) + U (2) +
1

2

∫
Ω

[
σ
(1)
ij ε

(2)
ij︸ ︷︷ ︸

A

+σ
(2)
ij ε

(1)
ij︸ ︷︷ ︸

B

]
d3r . (18)

4



The first two terms are the energies of each of the “pure modes” and the integral is the
“interaction energy”. Using exactly the same arguments as we used in Eq. (14) it is
possible (and easy) to show that term A equals the left-hand-side of Eq. (15) and term
B equals the right-hand-side. However, terms A and B are equal since

A = σ
(1)
ij ε

(2)
ij = Cijklε

(1)
kl ε

(2)
ij = Cklijε

(1)
kl ε

(2)
ij = ε

(1)
kl σ

(2)
kl = B , (19)

where the symmetry Cijkl = Cklij was used, and the theorem is proven. Note that we
did not invoke isotropy or translational invariance. The symmetry Cijkl = Cklij is a
thermodynamic one that holds for the most general linear elastic case.

With Betti’s theorem it is very easy to prove the reciprocity property, Eq. (12). If
the set (1) is a point force F (1) applied at r(1) and set (2) is a point force F (2) applied at
r(2) then

b
(1)
i = F

(1)
i δ(r − r(1)) b

(2)
i = F

(2)
i δ(r − r(2)) (20)

u
(1)
i (r) = Gij(r, r

(1))F
(1)
j u

(2)
i (r) = Gij(r, r

(2))F
(2)
j .

Homogeneous boundary conditions on ∂Ω mean either u = 0 or t = 0, or that some
portions of the surface is subject to that and other portions to the other. In any case,
this means that the boundary integrals in Eq. (15) vanish identically. Then, using the
properties of the delta function, we immediately get

F
(1)
i F

(2)
j Gij(r

(1), r(2)) = F
(2)
i F

(1)
j Gij(r

(2), r(1)) , (21)

and since F1, F2, r(1) and r(2) were arbitrary the reciprocal theorem of Eq. (12) is
obtained.

3 Equations of elasticity as a consequence of mini-

mizing an action

In this section we will show how the equations of linear elasticity arise from the mini-
mization of an action S through the Euler-Lagrange equations. As we all know, the size
to be minimized is the action, which is the time integral of the Lagrangian

S =

∫ tf

t0

Ldt , (22)

where L = T − U is the difference between the kinetic and potential energies.
In a continuous system we know that the kinetic and potential energies are

T =

∫
Ω

ρu̇2

2
d3x =

∫
Ω

ρ

2
u̇ju̇jd

3x , (23)

and

U =

∫
Ω

1

2
Cijklεijεkld

3x =

∫
Ω

1

2
Cijkl∂iuj∂kuld

3x , (24)

5



where in the last transition we used the symmetry of C. Together, we see that we can
write down L as a spatial integral over a Lagrangian density L

L =
ρ

2
∂tuj∂tuj −

1

2
Cijkl∂iuj∂kul , (25)

and the dynamical equations are the Euler-Lagrange equations,

∂L
∂uα

= ∂t

(
∂L

∂ (∂tuα)

)
+ ∂β

∂L
∂ (∂βuα)

. (26)

Let’s look at Eq. (26) term by term:

1. ∂L
∂uα

- As L does not depend on u but just on its derivatives, this term is zero.

2. ∂L
∂(∂tuα)

= 1
2
ρ
∂tuj∂tuj

∂(∂tuα)
= ρ∂tuj

∂(∂tuj)

∂(∂tuα)
= ρ∂tujδαj = ρ∂tuα. Therefore ∂t

(
∂L

∂(∂tuα)

)
=

ρ∂ttuα.

3. ∂β
∂L

∂(∂βuα)
is a bit more delicate, due to the many more indices, so I’ll do it carefully

∂L
∂ (∂βuα)

=− 1

2
Cijkl (δiβδjα∂kul + δkβδlα∂iuj) =

− 1

2
(Cijβα∂iuj + Cβαkl∂kul) = −Cijβα∂iuj ,

(27)

where we have used all the symmetries of C. Taking another divergence we find

∂β
∂L

∂ (∂βuα)
= −Cijβα∂β∂iuj . (28)

Putting it all together, we find the equations of motion are

ρ∂ttuα = Cijβα∂β∂iuj , (29)

which are correct for any homogeneous linear elastic material. By setting the form for
an isotropic material,

Cijkl = λδijδkl + µ(δilδjk + δikδjl) , (30)

one recovers the standard Navier-Lamé equation.
Possible generalization to this derivation are:

• An non homogeneous material can also be considered. The derivation of the equa-
tions should be along the same line, except for the fact that we can’t interchange
∂ and C as we have done, so the equations will be much more complicated.

• Non-linear elasticity. In general it is doable, but much more difficult. Since we want
the domain of integration to stay the same for all times, you’d better try performing
the calculation in the Lagrangian2 coordinates, and write the potential U in terms
of the lagrangian displacement.

2 It’s annoying having to use the same word to describe different things, I know. What can you do.
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