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Linear elasticity III and Thermo elasticity

1 Elastic waves

I remind you that you have shown in class that the Navier-Lamé Equation,

(λ+ µ)∇ (∇ · u) + µ∇2u+ b = ρ∂ttu , (1)

is basically two uncoupled wave equations for dilatational and shear waves. They propa-
gate at velocities

cs =

√
µ

ρ
, cd =

√
λ+ 2µ

ρ
. (2)

Thus, Eq. (1) can also be written as

(c2d − c2s)∇ (∇ · u) + c2s∇2u+ b/ρ = ∂ttu . (3)

The two wave speeds differ by a significant factor. cs is always smaller than cd and
their ratio is

β ≡ cs
cd

=

√
µ

λ+ 2µ
=

√
1− 2ν

2(1− ν)
. (4)

For a typical value of ν = 1/3, this gives a ratio of 1
2
. This function is plotted in Fig.

3. Note that the ratio goes to 0 for ν → 1
2
. This is because incompressible materials

(ν = 1/2) the dilatational velocity cd diverges (as the bulk modulus K diverges). Seis-
mographers use the difference in propagation velocity to determine the distance to an
earthquake source, as is seen in Fig. 3.

1.1 Leftovers from Eran’s lecture

In class, you have discussed the polarization of these two waves by writing

u = g(x · n− c t)a , (5)

where n is the propagation direction, a is the direction of the displacement and |n| =
|a| = 1. You have shown without proof that this implies

(c2d − c2s)(a · n)n+ (c2s − c2)a = 0 . (6)

Eran promised that I will show how to get from the former to the latter. This is done
simply by applying the differential operators to u giving

∇g = ∂ig = g′ni = g′n , (7)

∇u = ∂jui = ∂j(gai) = g′njai = g′a⊗ n , (8)

∇2u = ∇ · ∇u = ∂j(g
′njai) = g′′njnjai = g′′a , (9)

∇ · u = tr (∇u) = g′a · n , (10)

∇ (∇ · u) = ∂i(g
′a · n) = g′′(a · n)ni = g′′(a · n)n , (11)

∂ttu = c2g′′a . (12)
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Plugging Eqs. (11)-(12) into (3) gives immediately Eq. (6).
The two waves are independent in the bulk. However, on the boundary of a body

the traction-free condition σijnj = 0 couples between the two modes, and more modes
arise with a distinct propagation velocity. These are called Rayleigh waves, and are very
interesting.

Figure 1: Left: cs/cd as a function of Poisson’s ratio (Eq. (4)). Right: Seismograph
reading of an earthquake. One can clearly see a P-wave (longitudinal) and an S-wave
(transverse) arriving at different times. Later, surface waves are visible. The time differ-
ence can be used to obtain the distance from the earthquake source.

1.2 Rayleigh waves

So let’s see exactly how this works. We want to look at surface waves which propagate,
say, in the x-direction. To this end, consider a material that fills the lower half-space
z < 0, and assume that

u = f(z)eikx−iωt . (13)

If u satisfies the wave equation ( 1
c2i
∂tt −∇2)u = 0, with ci = cs or cd, we have

∂zzf =

(
k2 − ω2

c2i

)
f .

If k2 > ω2

c2i
this gives a damped wave in the bulk. We denote

f(z) = γ(i)eηiz, ηi =

√
k2 − ω2

c2i
, i = s, d .

As stated above, Rayleigh waves are modes which mix dilational and shear waves. We
therefore guess the ansatz

u = u(d) + u(s) , (14)

u(i) =
(
γ(i)
x x̂+ γ(i)

z ẑ
)
eηiz+ikx−iωt , (15)
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where u(d),u(s) are dilatational and shear waves, and γ
(i)
j are constants. That is, each of

u(d),u(s) satisfies its own wave equation,

(∂tt − c2s∇2)u(s) = 0 (∂tt − c2d∇2)u(d) = 0 . (16)

They both oscillate with the same frequency ω (the ω of Eq. (13)). Of course, the u(i)

are not exactly bulk modes, because they decay exponentially with z, each over over a
different length-scale ηi.

Following the discussion about the different polarizations of the different types of
waves, note that we should demand

∇⃗ · u(s) = ∇⃗ × u(d) = 0 . (17)

Plugging the ansatz into equation (17) yields

∂u
(s)
x

∂x
+

∂u
(s)
z

∂z
=
(
ikγ(s)

x + ηsγ
(s)
z

)
e... = 0 ⇒ γ

(s)
z

γ
(s)
x

= −i
k

ηs
, (18)

∂u
(d)
x

∂z
− ∂u

(d)
z

∂x
=
(
ηdγ

(d)
x − ikγ(d)

z

)
e... = 0 ⇒ γ

(d)
z

γ
(d)
x

= −i
ηd
k

. (19)

So we write

u(s) = A (ηsx̂− ikẑ) eηsz+ikx−iωt A ∈ C , (20)

u(d) = B (ikx̂+ ηdẑ) e
ηdz+ikx−iωt B ∈ C , (21)

We now want to demand that the boundary is traction-free. That is, we want to
impose σij|z=0nj = 0, where nj is the local normal to the deformed surface. In principle,
n̂ also changes because the surface deforms. However, since σ is already first-order in
the deformation, we are allowed to take the zeroth order of n̂, that is, we can take n̂ = ẑ.
Therefore, imposing the traction-free boundary conditions means σxz = σyz = σzz = 0 on
z = 0. This translates via Hooke’s law to

σxz = 2µεxz = µ (∂zux + ∂xuz) = 0 , (22)

σzz = (2µ+ λ)εzz + λεxx = (2µ+ λ)∂zuz + λ∂xux =
c2d∂zuz + (c2d − 2c2s) ∂xux

ρ
= 0 .

(23)

We now plug Eqs. (20)-(21) into (22)-(23). This is some uninteresting but necessary
algebra. Eq. (22) is relatively simple:

0 = ∂zux + ∂xuz =
(
η2sA+ iηdkB

)
+
(
k2A+ iηdkB

)
=
(
η2s + k2

)
A+ 2iηdkB , (24)

Eq. (23) requires some simplification in order to be sensible:

0 = c2d∂zuz +
(
c2d − 2c2s

)
∂xux

= c2d
(
η2dB − ikηsA

)
−
(
c2d − 2c2s

) (
ikηsA− k2B

)
=

(
c2d
c2s

(
η2d − k2

)
+ 2k2

)
B − 2ikηsA

(25)
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But since (k2 − η2i )c
2
i = ω2 is the same for both i’s, we can replace (η2d − k2) c2d in the

last equation by (η2s − k2) c2s and get(
η2s + k2

)
B − 2ikηsA = 0 , (26)

Eq. (24) together with (26) form a linear set of equations:(
k2 + η2s 2ikηd
−2iηsk k2 + η2s

)(
A
B

)
= 0

The condition for a non-trivial solution to exist is det = 0, that is (k2 + η2s)
2
= 4k2ηsηd.

Plugging in η2i = k2 −
(

ω
ci

)2
and squaring, this gives

(
2k2 − ω2

c2s

)4

= 16 k4

(
k2 − ω2

c2s

)(
k2 − ω2

c2d

)
. (27)

This is the dispersion relation for Rayleigh waves (sometimes this equation is called the
Rayleigh equation). It is a very nice and simple dispersion relation because...it is linear!
Huh! you didn’t see that coming now, did you? Divide both sides by k8 to get(

2−
(

ω

kcs

)2
)4

= 16

(
1−

(
ω

kcs

)2
)(

1−
(

ω

kcs

)2(
cs
cd

)2
)

.

Denoting the dimensionless phase velocity z = ω
kcs

=
cph
cs

and remembering our definition
β = cs

cd
(cf. Eq. (4)), this turns to(

2− z2
)4 − 16

(
1− z2

) (
1− β2z2

)
= 0 ,

or,
z6 − 8z4 + 8

(
3− 2β2

)
z2 + 16

(
β2 − 1

)
= 0

So knowing β, which is a material parameter that equals
√

1−2ν
2(1−ν)

gives the (physically

unique) solution for z and thus completely defines the linear dispersion relation ω = zcsk.
the solution is shown in Fig. 2a, and it is seen that the wave speed, zcs, is somewhat
slower than cs.

1.2.1 Some remarks regarding Rayleigh waves

• Dilational and shear waves travel at two different speeds. Nevertheless, Rayleigh
waves couple the two (!) to create a different mode that travels at a third speed
(!!), and all this is within a linear theory (!!!).

• The coupling comes from the traction-free boundary condition.

• A single Rayleigh mode with k, ω is a combination of two evanescent bulk modes
with the same ω, but different k.
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(a) Numerical solution for z. (b) A Rayleigh wave (from wikipedia).

Figure 2: Stuff about Rayleigh waves.

• The bulk modes are evanescent because the velocity of the Rayleigh mode is slower
than cs and cd. This makes ηs, ηd real. Otherwise, the modes will not be localized
on the surface.

• Rayleigh waves are surface waves.Therefore, their magnitude decreases only as 1/
√
r

rather than the bulk 1/r. In large earthquakes, some Rayleigh waves circle the earth
a few times before dissipating!

• They are confined to propagate on the surface and decay exponentially with depth.
Therefore, the amplitude of earthquake-generated Rayleigh waves is generally a
decreasing function of the depth of the earthquake’s hypocenter (origin/focus).

• The particle trajectories in a Rayleigh wave are elliptic, much like in ocean surface
waves.

Figure 3: The real parts of us, ud and u = us+ud of the obtained solutions to the Rayleigh
derivation. This was produced with ρ=1000kg/m3, µ=50GPa, and ν = 1

3
(resulting in

β= 1
2
).
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2 Thermoelasticity

You have seen in class how a scalar field — the temperature — could couple to the
displacement field in the energy functional, and how this coupling gives rise to interesting
physics. Here we will consider two examples: the first case will aim at giving some
intuition about the thermal effects on stresses, strains and the like. The second example
will demonstrate how to satisfy boundary conditions for one field while we already know
the solution of a related field, and will demonstrate the nontrivial effect of the temperature
field.

2.1 Warm-up — heated rod

Consider a rod of radius R and length L pointing along the z direction, and being held
between two rigid walls at z = 0 and z = L. It is free of constraints in the other two
dimensions. The rod is then uniformly heated by some amount ∆T . Lets estimate the
stresses and strains in the rod, forces on the walls, and elastic energy stored in the rod
scale with the lengths R and L and ∆T (without solving the problem completely).

Warming up a material by ∆T is equivalent to increasing all its length scales by
∼ αT∆T . Therefore, the situation is equivalent to putting a rod of length L(1+ 1

3
αT∆T )

between walls which are only L apart. The strain is therefore ∆L/L ∼ αT∆T and is
independent of R and L. The stress is linear in the strain and therefore has the same
scaling. The forces on the walls go like

F ∼ σR2 = αT∆TR2

and the elastic energy stored in the rod goes like

u ∼
∫
V

ϵ2d3x ∼ R2L(αT∆T )2

2.2 Heated annulus — boundary conditions

Recall the problem Eran discussed in class: a thin annulus of internal radius R1 and
external radius R2 heated according to a nonuniform, purely radial, temperature field
T (r). In class you have derived the resulting displacement fields. Here is a brief review.

Due to the angular symmetry the only non-vanishing displacement component is
ur(r, θ) = u(r). We then have to solve

∂rru+
∂ru

r
− u

r2
=

αT K

λ+ 2µ
∂rT . (28)

As both the inner and outer surfaces of the annulus are traction-free, we have the following
boundary conditions

σrr(r = R1) = σrr(r = R2) = 0 . (29)

By integrating twice Eq. (28) you have obtained

u(r) =
αT K

λ+ 2µ

1

r

∫ r

R1

T (r′)r′dr′ +
c1r

2
+

c2
r

, (30)

6



where c1 and c2 are two integration constants. But our solution is not complete yet, as
we need to determine c1 and c2 as to satisfy the boundary conditions Eq.(29).

So? Where do we start? Lets think first about the dimensionality of the problem
— the annulus is “thin” — lets think about this whole problem simply in 2D (it will be
much simpler this way).

We first need to express the stress tensor using ur. To do that, recall that σij=Cijklεkl,
with εkl ≡ 1

2
(∂kul + ∂luk). Lets start with ε — as ε is expressed in tensor notation, it

implies its definition could be used in whichever coordinate system we want, as long as
we are consistently transforming our differential operators appropriately.

I assume no one really remembers how the gradient looks in cylindrical coordinates
— here we use your favorite Wikipedia page, Landau-Lifshitz No. 7, or your favorite
resource for getting these kinds of identities. The strain is given by

ε =

(
∂rur

1
2

[
∂ruθ − 1

r
(uθ + ∂θur)

]
1
2

[
∂ruθ − 1

r
(uθ + ∂θur)

]
1
r
(∂θuθ + ur)

)
. (31)

We are really lucky, huh? Almost all the terms vanish for our problem, and we are left
with

ε =

(
∂rur 0
0 1

r
ur

)
. (32)

Now lets use our plane-stress relations to obtain the stresses. The resulting relations
are

σij = −KαT (T − T0) δij +K tr εδij + 2µ(εij −
1

3
tr εδij) . (33)

We are interested in the behavior of σrr at r=R1 and R2, so we may look at

σrr = −KαT (T − T0) +K

(
∂rur +

1

r
ur

)
+ 2µ

[
∂rur −

1

3

(
∂rur +

1

r
ur

)]
. (34)

So we see that in order to evaluate the constants we will have to use both ur and its
derivative. We already have ur in Eq. (30), and its derivative is

∂rur =
αT K

λ+ 2µ

(
T (r)− 1

r2

∫ r

R1

T (r′)r′dr′
)
+

c1
2
− c2

r2
. (35)

Now we use these expressions to obtain the stresses at both r=R1 and R2. The inner
circle r=R1 is easier, and we get

σrr (r=R1) = KαT (T − T0) +KαTT (R1) + c1(K +
µ

3
)− c2

2µ

R2
1

. (36)

The other end is a bit nastier, but still manageable:

σrr (r=R2) = KαT (T−T0)+KαT

[
T (R2)−

6µ

R2
2 (3K + 4µ)

∫ R2

R1

T (r′)r′dr′
]
+c1(K+

µ

3
)−c2

2µ

R2
2

.

(37)
These are two equations with two independent constants c1 and c2. Solving these is
trivial, but you can see already that these constants will depend on the geometry R1 and
R2 as well as on the integral of the temperature field

∫ R2

R1
T (r′)r′dr′ — as advertised in

class.
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