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Finite elasticity and incompressibility

In this TA we’ll be looking at non-linear elasticity, a.k.a finite elasticity. We’ll also
discuss how we handle incompressible systems.

1 Elastic cavitation

Consider a spherical cavity of initial radius L inside an elastic material loaded by a radially
symmetric tensile stress far away, σ∞. The symmetry of the problem suggests that all
quantities are functions of r alone and that σϕϕ = σθθ. The force balance equation reads

∂rσrr + 2
σrr − σθθ

r
= 0 . (1)

Integrating this equation from the deformed radius of the cavity ℓ to r we obtain

σrr(r) = −2

∫ r

ℓ

σrr − σθθ

r̃
dr̃ , (2)

where we used the traction-free boundary condition σrr(r = ℓ) = 0 and r̃ is a dummy
integration variable. Denote then r′ = r̃/ℓ and focus on r → ∞, we obtain

σrr(∞) = −2

∫ ∞

1

g(r′, L/ℓ)

r′
dr′ , (3)

where σrr − σθθ = g(r′, L/ℓ) is a property of the solution (which involves also the con-
stitutive relation). From our previous analysis we know that the existence of the cavity
amplifies the (circumferential) stress at the surface as compared to the applied stress σ∞

(for a cylindrical cavity we calculated the amplification factor to be 2 and for a sphere
is it 3/2). If we keep on increasing the applied stress an ordinary material will simply
break near the cavity surface. However, in soft materials something else can happen
(the same can happen is an elasto-plastic material, to be discussed later). We can ask
ourselves whether the cavity can grow (elastically!) without bound under the application
of a finite stress at infinity. To mathematically formulate the question take the ℓ → ∞
limit in Eq. (3) and define

σc = −2 lim
ℓ→∞

∫ ∞

1

g(r′, L/ℓ)

r′
dr′ . (4)

Therefore, if the integral above converges, then for any σ∞ > σc the cavity will grow
indefinitely. The critical stress σc is called the cavitation threshold. σc is finite if
g(r′, L/ℓ) = σrr − σθθ → 0 as r → ∞, which is the typical situation.

Let us see how this works in a concrete example, where the goal is to find σrr − σθθ=
g(r′, L/ℓ) and then evaluate the integral in Eq. (4). Consider an incompressible elastic
material. As above, the initial radius of the cavity is L and the radial coordinate is
denoted as R. The deformed radius is ℓ and the coordinate of the deformed configuration
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is r. Incompressibility implies that the volume of any material piece in the reference
configuration is conserved in the deformed one, in particular we have

4π

3

(
R3 − L3

)
=

4π

3

(
r3 − ℓ3

)
=⇒ R(r) = (r3 + L3 − ℓ3)1/3 . (5)

The non-radial stretches take the form

λϕ = λθ =
r

R
. (6)

Incompressibility implies

λr ≡ λ =⇒ λϕ = λθ = λ−1/2 (7)

which leads to

λ−1/2 =
r

R
=⇒ λ =

(
R

r

)2

. (8)

Finally, this leads to

λ =

(
r3 + L3 − ℓ3

r3

)2/3

=

[
r′3 + (L/ℓ)3 − 1

r′3

]2/3
, (9)

with r′ ≡ r/ℓ. Consider then the stress state. It is triaxial and contains only the diagonal
components (σrr, σϕϕ, σθθ), with σϕϕ = σθθ. However, since the material is incompressible
we can superimpose on this stress state a hydrostatic stress tensor of the form −σθθI
without affecting the deformation state, resulting in (σrr − σθθ, 0, 0), which is a uniaxial
stress state in the radial direction. Therefore, the constitutive relation takes the form
σrr − σθθ = g(λr). Focus then on a neo-Hookean material for which g(λ) = µ(λ2 − λ−1)
and evaluate the integral in Eq. (4)

σc = −2 lim
ℓ→∞

∫ ∞

1

g[λ(r′, L/ℓ)]

r′
dr′ = −2µ

∫ ∞

1

[
(1− r′−3)4/3 − (1− r′−3)−2/3

r′

]
dr′ . (10)

This integral can be readily evaluated (just use x ≡ 1− r′−3 and dx = 3r′−4dr′), yielding

σc =
5µ

2
. (11)

This result, which was verified experimentally (see, for example, J. Appl. Phys. 40, 2520
(1969)), clearly demonstrates the striking difference between ordinary and “soft” solids.
The ideal strength of ordinary solids is about µ/10. The actual strength is much smaller
(see later in the course). However, “soft” solids can sustain stresses larger than µ without
breaking (though, as we have just shown, they can experience unique instabilities such
as elastic cavitation).
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2 2D plane-stress

We’ll now consider a 2D plane-stress problem of an incompressible neo-Hookean material.
The Neo-Hookean energy functional is (Eq. (7.7) in Eran’s notes)

u(F3D) =
µ

2

[
tr(F T

3DF3D)− 3
]
, (12)

together with the requirement that J3D ≡ detF3D = 1. We want to consider now the
case where the stresses are only in-plane. If we consider now λi, the principle values of
F3D, we may write

u =
µ

2

[
λ2
1 + λ2

2 + λ2
3 − 3

]
=︸︷︷︸

λ1λ2λ3=1

µ

2

[
λ2
1 + λ2

2 +
1

λ2
1λ

2
2

− 3

]
. (13)

If we now consider the two-dimensional deformation gradient tensor F2D, we find that
the Neo-Hookean energy functional for plane-stress is

u(F2D) =
µ

2

[
tr(F T

2DF2D) + (detF2D)
−2 − 3

]
. (14)

Note that detF2D appears in the elastic energy functional due to the incompressibility
condition. For the rest of the section I’ll drop the subscript and just write F , as we will
be dealing with 2D problems, but keep in mind that it is F2D.

2.1 The first Piola-Kirchhoff stress tensor

To calculate P ≡ ∂u
∂F

note that

∂ tr(F TF )

∂F
= 2F ,

∂(detF )−2

∂F
= −2(detF )−3

(
trF I − F T

)
, (15)

where the latter can be easily obtained using the identity (valid in 2D only)

detF =
1

2

[
(trF )2 − trF 2

]
. (16)

Therefore, we have

P =
∂u

∂F
= µ

[
F − (detF )−3

(
trF I − F T

)]
, (17)

P = µ

[(
∂Xφx ∂Y φx

∂Xφy ∂Y φy

)
− J−3

(
∂Y φy −∂Xφy

−∂Y φx ∂Xφx

)]
, (18)

where J ≡ detF = ∂Xφx(X, Y )∂Y φy(X, Y )− ∂Y φx(X, Y )∂Xφy(X, Y ).

2.2 Linearized energy functional

Before going fully non-linear, let’s examine the linearized version our equations to see if
we get something that we recognize. Assume for simplicity that the axes are chosen in
parallel to the the principal stretches, i.e.

F =

(
1 + εx 0

0 1 + εy

)
.
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The energy density is then

u =
µ

2

[
(1 + εx)

2 + (1 + εy)
2 +

1

(1 + εx + εy + εxεy)2
− 3

]
. (19)

Expanding to second order in the εi (we need second order because we develop the energy,
which has quadratic terms in the stretch) we have

(1 + εx)
2 = 1 + 2εx + ε2x , (1 + εy)

2 = 1 + 2εy + ε2y ,

1

(1 + εx + εy + εxεy)2
= 1− 2(εx + εy) + 3(ε2x + ε2y) + 4εxεy +O(ε3) ,

(20)

all in all we get
u = µ

(
ε2x + ε2y + (εx + εy)

2
)
= µ tr ε2 + µ tr2 ε . (21)

So we see that the linear form of the energy functional is the familiar and expected form
u = 1

2
(2µ̃ tr ε2 + λ̃ tr(ε)2). This also means that our material has λ̃ = 2µ̃ which implies

ν̃ =
λ̃

2(λ̃+ µ̃)
=

1

3
. (22)

This value of ν should come as a surprise because we started with an incompressible
material, so we should expect to have ν = 1

2
. What went wrong? Keep in mind that

the energy functional (14) is the result of the reduction of a set of 3D equations to 2D.
We have done this in detail in the linear case, and we all remember well that the elastic
constants are not the same as the 3D ones, but renormalized ones (see Eq. (5.62) in the
lecture notes). The relation between the renormalized elastic constants to the real ones
is

µ̃ = µ, λ̃ =
2νµ

1− ν
, (23)

rearranging the latter, we get

ν =
λ̃

λ̃+ 2µ̃
. (24)

Plugging in our result λ̃ = 2µ̃ gives

ν =
2µ̃

2µ̃+ 2µ̃
=

1

2
. (25)

What a relief. The real Poisson ratio is 1/2, which means that the material is indeed
incompressible. The fact that the “apparent” 2D Poisson’s ration is different that 1/2
means that in-plane compressibility is allowed. This is because the material expands in
the third direction, which is unaccounted for in the 2D description.

2.3 The equations of motion in our system

We remind ourselves that in the material coordinates the equations of motion read (see
the related subsection below)

ρ0V̇ = ∇X · P . (26)
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Plugging in our expression for P , Eq. (18), we get

ρ0
µ
φ̈x = ∇2φx −

∂φy

∂Y

∂J−3

∂X
+

∂φy

∂X

∂J−3

∂Y
,

ρ0
µ
φ̈y = ∇2φy −

∂φx

∂X

∂J−3

∂Y
+

∂φx

∂Y

∂J−3

∂X
.

(27)

2.4 Small-on-Large waves

Consider then a homogeneously deformed body with principal stretches λx and λy. On
this stretched state we superimpose a small displacement ∆(X, t). The deformation
φ(X, t) is thus

φX(X, t) = λxX +∆X(X, t) ,

φY (X, t) = λyY +∆Y (X, t) .
(28)

Note that the homogeneous solution ∆ = 0 satisfies the equations of motion. The motion
gradient reads

F =

(
λx + ∂X∆X ∂Y∆X

∂X∆Y λy + ∂Y∆Y

)
. (29)

We want to look at small perturbations on the stretched state, that is, we want to expand
the equations of motion to first order in ∆(X, t). First, we calculate

detF ≃ (λx + ∂X∆X) (λy + ∂Y∆Y ) ≈ λxλy

(
1 +

∂X∆X

λx

+
∂Y∆Y

λy

)
+O

(
∆2

)
(30)

(detF )−3 ≃ 1

λ3
xλ

3
y

(
1− 3

∂X∆X

λx

− 3
∂Y∆Y

λy

)
+O

(
∆2

)
. (31)

The equations of motions are thus, to linear order,

∇2∆X + 3
∂XX∆X

λ4
xλ

2
y

+ 3
∂XY∆Y

λ3
xλ

3
y

=
ρ

µ
∆̈X = c−2

s ∆̈X ,

∇2∆Y + 3
∂Y Y∆Y

λ2
xλ

4
y

+ 3
∂XY∆X

λ3
xλ

3
y

=
ρ

µ
∆̈Y = c−2

s ∆̈Y ,

(32)

where cs ≡
√

µ
ρ
. Assume then a solution in the form of plane waves

∆X(X, t) = aXe
iK(N ·X−ct) ,

∆Y (X, t) = aY e
iK(N ·X−ct) ,

(33)

where N = (cos θ, sin θ) is the direction of propagation in the undeformed coordinates,
K is the wavenumber in the undeformed coordinates, and c is the (yet unknown) speed.
What kind of waves are there in the system? what is (are) the wavespeed(s)?
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Plugging in the ansatz (33) into the equations of motion (32) we get

aX + 3
cos2 θ

λ4
xλ

2
y

aX + 3
sin θ cos θ

λ3
xλ

3
y

aY − c2

c2s
aX = 0 ,

aY + 3
sin2 θ

λ2
xλ

4
y

aY + 3
sin θ cos θ

λ3
xλ

3
y

aX − c2

c2s
aY = 0 ,

(34)

which is more concisely written as1 + 3 cos2(θ)
λ4
xλ

2
y

− c2

c2s

3 cos(θ) sin(θ)
λ3
xλ

3
y

3 cos(θ) sin(θ)
λ3
xλ

3
y

1 + 3 sin2(θ)
λ2
xλ

4
y

− c2

c2s


︸ ︷︷ ︸

≡M

(
aX
aY

)
= 0 . (35)

Similarly to what we’ve done with Rayleigh waves, solutions are obtained when the
determinant vanishes. This condition reads

detM =

(
1− c2

c2s

)(
1 +

3 sin2(θ)

λ2
xλ

4
y

+
3 cos2(θ)

λ4
xλ

2
y

− c2

c2s

)
= 0 , (36)

so you immediately see that there are two families of solutions,

c = ±cs , and c = ±cs

√
1 +

3 sin2(θ)

λ2
xλ

4
y

+
3 cos2(θ)

λ4
xλ

2
y

. (37)

The first family are shear-like waves and their velocity is independent on direction. In
order to see that they are shear waves, note that the amplitudes aX , aY can be obtained,
up to a multiplicative factor, by the kernel of the matrix M (c = cs), which is

(aX , aY ) ∈ ker

 3 cos2(θ)
λ4
xλ

2
y

3 cos(θ) sin(θ)
λ3
xλ

3
y

3 cos(θ) sin(θ)
λ3
xλ

3
y

3 sin2(θ)
λ2
xλ

4
y

 ∝ (λx sin θ,−λy cos θ) . (38)

These waves are “almost transverse” because (aX , aY ) ·N ∝ (λx−λy) sin(2θ). Therefore,
they are purely transverse for θ = 0, π

2
(i.e. in the X or Y directions) or when λx = λy.

Note that this also means that the shape of the waves will depend on the direction of
propagation.

The other family of solutions has a direction-dependent velocity, which is an interest-
ing situation which is not uncommon of anisotropic systems. Following the same logic as
above, the amplitudes of these waves is, up to a multiplicative factor

(aX , aY ) ∝ (λy cos θ, λx sin θ) , (39)

such that (aX , aY )×N ∝ (λx−λy) sin(2θ) and again these waves are purely longitudinal
for waves propagating in the X or Y direction, or for λx = λy.
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2.5 Example

Consider a uniaxial pre-stress (applied λy), for which we have (due to incompressibility)

λx = λ−1/2
y . (40)

With this setup, the longitudinal wavespeed will be

c = ±cs

√
1 + 3

(
1 +

(
1

λ3
y

− 1

)
sin2 θ

)
. (41)

This function is plotted in Fig. 1.

Figure 1: The longitudinal wavespeed (in units of cs) as a function of the propagation
direction θ for three values of λy.

Note that if you’d go to the lab and measure the wave speeds, you’ll find different
results, because these wave speeds are given in the material coordinates, and not in the
deformed (lab) coordinates. Also, the absence of anisotropy in the shear wave-speed is a
special case specific to this constitutive law and not a general feature of finite elasticity.
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3 Equations of motion in the reference configuration

This section deals with formulating the equation of motion in the material coordinates
rather than in the spatial ones. For further reading, see pg. 146 in Holzapfel (it’s in the
library).

As Eran stressed in class, this step is crucial because in a generic problem we do not
know in advance what is the deformed configuration and therefore it is very useful to
describe the motion in the undeformed coordinates. We remark again that in standard
linear elasticity the two sets of coordinates are the same to linear order, so this distinction
is not emphasized in this kind of treatments.

The Piola-Kirchoff stress tensor was defined in class by the relation

T = P dS = σds = t , (42)

where t is the infinitesimal forces in the spatial coordinate and T is its (fictitious) corre-
spondent in the material coordinates. How does dS relate to ds? Consider an arbitrary
line element dX going through dS. The spanned volume is dV = dS · dX. Correspond-
ingly, in the deformed coordinates we have dv = ds · dx. By definition of the Jacobian,
we know that the ratio of the volumes is dv = J dV . Since dx = F dX we have

dXiFjidsj = dxjdsj = dv = JdV = JdXidSi . (43)

Since dX was arbitrary, we get dsjFji = JdSi or in more convenient notation

F Tds = JdS , ds = JF−TdS . (44)

Plugging that into (42) we have
P = JσF−T . (45)

So now we know how P relates to σ. But what are its equations of motion? For this
we need 3 lemmas:

1. Piola’s identity: ∇X ·
(
JF−T

)
= 0.

2. For every two tensors A,B, we have div(AB) = (gradA) : B +A divB.

3. For every tensor A we have divx A = (gradX A) : F−T .

The proofs of these lemmas are trivial:

1. Integrate ∇X ·
(
JF−T

)
over an arbitrary volume Ω0:∫

Ω0

∇X ·
(
JF−T

)
d3X =

∫
∂Ω0

JF−TdS =

∫
∂Ω

ds

=

∫
∂Ω

Ids =

∫
Ω

(∇x · I)d3x = 0 .

(46)

2. ∂j(AikBkj) = ∂jAikBkj + Aik∂jBkj.

3.
∂Aij

∂xj
= ∂Xk

∂xj

∂Aij

∂Xk
.
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Using these lemmas, and defining the reference body force by B(X, t) ≡ J(X, t)b(x, t),
we get

∇X · P = ∇X ·
(
σJF−T

)
= ∇Xσ :

(
JF−T

)
+ σ∇X ·

(
JF−T

)︸ ︷︷ ︸
=0

= J∇Xσ : F−T = J∇x · σ = J (ρv̇ − b)

⇒ ρ0V̇ = ∇X · P +B (47)

Note the resemblance to the equation of motion in the deformed coordinates:

ρv̇ = ∇x · σ + b . (48)

One more point: having Eq. (47) is not enough in order to formulate a problem in
the X coordinates. We also need to transform the boundary conditions to the material
coordinates in order to fully define the problem. If the boundary conditions are forces,
then they have to be transformed to the fictitious material coordinates forces. In the case
of free boundary conditions (i.e. zero tractions) it is easy - they remain free.

4 Divergence in spherical coordinates

In many problems, the geometry of the problem clearly suggests that spherical coordinates
should be used. So let’s take the opportunity to discuss how to derive the equation of
motion ∇ ·σ = ρü in curvilinear coordinates. What do we mean when we write a tensor
A in Cartesian coordinates as

A =

Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

 ? (49)

This is a shorthand notation for A =
∑

ij Aijei ⊗ ej with i, j ∈ {x, y, z} and ei is the
unit vector in the i direction. Writing the tensor in, say, spherical coordinates, means to
write it in terms of the unit vectors er, eθ, eϕ which are space-dependent. Since spherical
coordinates are orthonormal, we know that locally the transformation from Cartesian to
spherical coordinates is given by a rotation,

[A]r,ϕ,θ = R(ϕ, θ)T [A]x,y,zR(ϕ, θ) , (50)

but you have to remember that the rotation matrix R is different in different points in
space.

When you calculate derivative of the tensor in curvilinear coordinates you need to
keep track of the fact that not only the components of the tensor change in space, but
also the unit vectors themselves change. This amounts to differentiating Eq. (50) and
remembering to differentiate both copies ofR(ϕ, θ), because ϕ and θ are space-dependent.
Doing this properly is a long and technical calculation which we will not do here, but you
should be able in principle to do it, and you should definitely understand it’s algebraic
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structure. The bottom line is that the divergence of a tensor in spherical coordinates is

∇ ·A =[
∂Arr

∂r
+ 2

Arr

r
+

1

r

∂Aθr

∂θ
+

cot θ

r
Aθr +

1

r sin θ

∂Aϕr

∂ϕ
− 1

r
(Aθθ + Aϕϕ)

]
er

+

[
∂Arθ

∂r
+ 2

Arθ

r
+

1

r

∂Aθθ

∂θ
+

cot θ

r
Aθθ +

1

r sin θ

∂Aϕθ

∂ϕ
+

Aθr

r
− cot θ

r
Aϕϕ

]
eθ

+

[
∂Arϕ

∂r
+ 2

Arϕ

r
+

sin θ

r

∂Aθϕ

∂θ
+

cos θ

r
Aθϕ +

1

r sin θ

∂Aϕϕ

∂ϕ
+

1

r
(Aϕr + Aϕθ)

]
eϕ .

(51)

You can find similar expressions for other differential operators (Laplacian, gradient,
material derivative, etc.) for both spherical and cylindrical coordinates on this page in
wikipedia.

10

https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates

	Elastic cavitation
	2D plane-stress
	The first Piola-Kirchhoff stress tensor
	Linearized energy functional
	The equations of motion in our system
	Small-on-Large waves
	Example

	Equations of motion in the reference configuration
	Divergence in spherical coordinates

