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Perturbative expansion and linear stability analysis

1 Perturbative expansion:

the Asaro–Tiller–Grinfeld (ATG) instability

We first examine the Asaro–Tiller–Grinfeld (ATG) instability, to demonstrate how linear
elasticity combined with additional physics yields non-trivial spatiotemporal instabilities.

The ATG instability deals with the behavior of a solid submitted to uniaxial stress
while in contact with its melt (i.e. solid-liquid interface). We will be following “Direc-
tional solidification under stress” by I. Cantat et. al., Phys. Rev. E 58, 6027. But before
going into the details of the instability, lets discuss generally some mechanisms of mass
transport.

1.1 Mass transport and chemical potential

We introduce a new (non-elastic, non-equilibrium) piece of physics: mass transport along
the surface of the solid. The surface evolves with a normal velocity vn, which is driven
by variation of the chemical potential density µ (the chemical potential is the relevant
thermodynamic quantity because we are talking about mass transport). Mathematically
speaking we say that

vn = D(µ) , (1)

where D(·) is a differential operator that depends on the physical nature of the mass
transport.

We may think of several mass transport processes. When the solid is in equilibrium
with its liquid phase (or gaseous phase), mass transport can take place by melting-
recrystallization (or evaporation-condensation). In both cases, the transport law takes
the form

vn ∼ −∆µ , (2)

where ∆µ = µs − µl is the chemical potential difference between the solid and liquid
phase (or gaseous phase µg).

Another possible process would be surface diffusion, which is the surface analog of
ordinary bulk diffusion. In this case, surface gradients of µ drive a material flux Js

Js ∼ −∂µ

∂s
, (3)

where s is the arclength parameterization of the surface. Mass conservation implies

vn ∼ −∂Js
∂s

∼ ∂2µ

∂s2
. (4)

Putting the prefactors in, we end up with

vn =
D

γ

∂2µ

∂s2
, (5)
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where D, whose dimension is length4/time, is proportional to the surface diffusion coeffi-
cient and γ is the surface tension. We stress that the evolution of the surface, encapsulated
in vn is a non-equilibrium dissipative process.

The next step would be to write down an expression for the chemical potential density
(in the presence of a liquid phase, we are of course interested in the chemical potential
difference between the solid and the liquid). Let us first write down the answer and then
try to understand its origin. The chemical potential density contains two contributions,
one is an elastic strain energy contribution near the surface and the other is a surface
contribution

µ = µe + µs =
1− ν2

2E
(σtt − σnn)

2 + γκ , (6)

where µe and µs are the elastic and surface energy contributions to the chemical potential
density. t and n are the tangent and normal to the surface, respectively, γ is the surface
tension/energy as above and κ is the surface curvature.

If the surface is not in contact with its liquid phase, i.e. σnn = 0 (note that σnt = 0
with or without a liquid), the elastic contribution is simply the elastic strain energy in the
solid. If the surface is in equilibrium with its liquid phase, then there is a finite pressure
of magnitude |σnn| also in the liquid, and the chemical potential difference depends on
the difference σtt − σnn. This result also shows that under hydrostatic conditions in the
solid, σtt = σnn there’s no elastic contribution (and the effect we are interested in will
disappear).

What about the surface energy contribution? The change in the Gibbs free energy due
to surface area changes is dG = γdA. Since the (surface) chemical potential is the change
of G with the number of particles of total volume dV added to the surface, µ=dG/dV , we
should ask ourselves how the surface area changes when we add a volume dV of material
to a surface (we stress that dV is not an incremental deformation, but rather represents
a piece of a material). That obviously depends on the curvature of the surface.

For a convex/concave surface an addition of a particle of volume dV results in an
increase/decrease in the surface area by an amount dA ∼ dV κ, where κ is the signed
curvature (assumed positive for convex surfaces). To make this absolutely clear, consider
a spherical surface of radius R and the addition of an infinitesimal mass element of
volume dV . The change in the sphere’s volume is given by 4πR2dR = dV , and hence
the change in the effective radius is dR = dV/4πR2. Hence, the change is the area is
dA = d(4πR2) = 8πRdR = 2dV/R ∼ dV κ. For a spherical cavity, we get the same result
with a minus sign. Therefore, the surface energy contribution to the chemical potential
density is γκ.

Finally, we assume that the growth velocity of these protrusions vn is fast, and is
proportional to the difference in chemical potential between the solid µs and liquid µl

phases, i.e.

vn = −kνµ = −kν

[
1− ν2

2E
(σtt − σnn)

2 + γκ

]
. (7)

We also assume that vn is fast, but nothing compared to the speeds of sound in the
material, i.e. vn≪cs, cd (as we want to consider the quasi-static case).

Realistically the material may have surface fluctuations, and is not perfectly flat.
What happens to such a small fluctuation in the interface? What happens if the material
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is subjected to constant uniaxial strain? Our goal is to derive analytically an expression
for σtt − σnn which, as you can see from Eq. (6), has dramatic effect on µ.

1.2 Background and intuition

Consider a solid, say of rectangular shape, under the application of uniaxial tension (or
compression) of magnitude σ0 (the non-hydrostatic conditions are important). The stress
is small and the response is linear elastic. The solution is simply that of homogeneous
stress and it is stable (i.e. , if a compressive stress is applied, we assume the conditions
for buckling are not met).

Now imagine this solid is in contact with its melt. Plugging the expression for µ in
Eq. (6) into Eq. (7) we obtain a dynamic equation that can be used to study the stability
of the surface against small perturbations. To be absolutely clear about the last point,
we denote the deviation of the surface from being flat by h(x, t), where x is the load
application direction. Both vn and µ can be expressed in terms h(x, t). For a flat surface,
h(x, t) = 0, κ = 0 and µ is constant µ = 1−ν2

2E
σ2
0 (here σ0 = σtt − σnn). This, of course,

implies vn = 0, as expected.
To understand what happens when the surface is not flat, we should introduce a small

spatiotemporal perturbation h(x, t) ̸= 0 and see if it grows or decays in time. Before we
do that, let us first try to make a rough estimate. For that aim, consider a square wave
perturbation of the surface, with an amplitude a and a wavelength λ. Let us estimate the
change in the Gibbs free energy due to the perturbation. On the one hand, the protruding
parts of the perturbation are far less stressed than they were when the surface was flat.
Therefore, the elastic energy (per wavelength) is reduced roughly by

∆Ge ∼ − σ2
0

2E

λa

2
. (8)

The surface energy is increased due to the creation of new surface of size 2a (again per
wavelength) by

∆Gs = 2γa . (9)

Therefore, the total variation of the Gibbs free energy is given by

∆G = ∆Ge +∆Gs ∼ − σ2
0

2E

λa

2
+ 2γa . (10)

The important insight here is that there is a competition between an elastic effect, that
tends to reduce the free energy (a destabilizing effect), and a surface effect that tends
to increase it (a stabilizing effect). For sufficiently small wavelengths, the surface term
penalizes more, and stability is expected. For sufficiently large wavelengths, the elastic
term wins and the free energy is reduced. The critical wavelength scales as

λc ∼
γE

σ2
0

, (11)

where wavelengths satisfying 0 < λ < λc are stable and λ > λc are unstable. While
this is a crude estimate, it gives us some insight into the physics behind the instability
and essentially the right answer (as we will see soon). Actually it is no more than a
dimensional analysis, which is in general quite a powerful tool.
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1.3 Elastic equations

Lets take a more systematic approach and see properly how a linear stability analysis is
done.

Consider an isotropic elastic material, under plane-strain conditions (reducing the
problem to 2D) — we set ϵzz=0. Hooke’s law implies

σij =
E

1 + ν

(
ϵij +

ν

1− 2ν
ϵkkδij

)
, (12)

with E being the Young’s modulus and ν being the Poisson’s ratio.
Now consider such a material to be rectangular, of length L in the x direction and

filling the y ≤ 0, with a free surface at y=0 as shown in Fig. 1. The remaining space is
filled with a liquid. We first constrain the material to ϵxx=0. Under these conditions, we
have at the top free boundary

σ (x, y=0) · n̂=(σxy, σyy)
T =(0,−pl)

T , (13)

where pl is the pressure applied by the melt.
As we have a linear elastic problem in 2D, we can use all the machinery from linear

elasticity. Lets try and solve the elastic problem using the Airy stress function χ (x, y),
defined as

σxx = ∂yyχ , (14)

σyy = ∂xxχ , (15)

σxy = −∂xyχ . (16)

We also know that the Airy stress function should satisfy the bi-Laplacian equation
∇2∇2χ=0.

What are the boundaries, and what are the corresponding boundary conditions? We
have a free boundary at y=0, and for x = ±L

2
, for which we have

σnn = −pl , (17)

σtn = 0 , (18)

here σtn= t̂ · σ · n̂. If we impose stresses in the x̂ direction we have an additional stress
σ0 in σxx, so we have to add this in the x̂ direction. Note that unlike in Eq. (13), here
the boundaries are not necessarily flat. Because of this, we cannot a priori say that t̂= x̂,
or that n̂= ŷ — these geometric vectors are going to change in space. Explicitly, the
boundary conditions are

pl + n2
xσxx + 2nxnyσxy + n2

yσyy = 0 , (19)

nxtxσxx + nxtyσxy + nytxσyx + nytyσyy = 0 . (20)

Eventually we will be interested in surface perturbation to the top face of the material.
We will describe the top free surface of the material as h (x, t) (sometimes referred to as
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the Monge’s gauge), from which we derive the normal and tangent vectors as

(nx, ny) =
1√

1 + (∂xh)
2
(−∂xh, 1) , (21)

(tx, ty) =
1√

1 + (∂xh)
2
(1, ∂xh) . (22)

n

t

n
t

σ0
pl

pl

Figure 1: Left: a material in a melt, in the presence of an isotropic pressure pl. Right: the
same material subjected to uniaxial stress σ0 in the x direction, and a spatial perturbation
of the upper surface.

1.4 Perturbative expansion

Solving the elastic problem for any given surface is going to be challenging, and may be
tackled numerically. Instead we are going to consider perturbations to the flat surface we
started with, and expand the problem (and the solution) in orders of a small parameter
δ. We anticipate that the stress tensor σ will contain contributions that are spatially
independent, σ(0), contributions that are first order in the small parameter δ, σ(1), etc.
Generically, we write σ=σ(0) + δ · σ(1) + δ2 · σ(2) + .... Similarly, we can expand

σ=σ(0) + δ · σ(1) + δ2 · σ(2) + ... , (23)

χ=χ(0) + δ · χ(1) + δ2 · χ(2) + ... , (24)

h=h(0) + δ · h(1) + δ2 · h(2) + ... . (25)

Let us first deal with the zeroth order, and consider contributions in the absence of
spatial perturbation. For the zeroth order n(0) = (0, 1), and t(0)=(1, 0). Eq. (19) yield

n2
yσ

(0)
yy = −pl , (26)

and the second condition vanishes identically (we have no shear stresses to first order

σ
(0)
xy =0). From the definition of the Airy stress function Eq. (14) its clear that χ must

depend on x and y in order to produce these conditions. We then have

χ(0) (x, y) = −pl
x2

2
+ (σ0 − pl)

y2

2
, (27)

where we satisfy that σxx=σ0−pl originating from both the hydrostatic pressure applied
by the surrounding liquid pl and the applied stress σ0.
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Is this flat solution stable against spatial perturbations? Consider a spatial perturba-
tion of the form h(1) (x, t) = h0e

iqxx−ωt, and the consequent perturbation χ(1) in Fourier
space. The only spatial wavelength available is qx, and we will be considering only linear
terms, so χ(1) must also have some periodicity in the x direction with the same qx.

Lets see what the bi-Laplace equation has to tell us about the relation between wave-
lengths in the x and y directions. First, plug in to the bi-Laplace equation χ=eiqxx+iqyy,

giving
(
q2x + q2y

)2
= 0, implying that for a real qx, we must have qy = ±iqx. As we are

considering the domain y ≤ 0, it makes sense that χ(1) will exponentially-decay in the
bulk in the y direction. Finally, χ(1) could also depend on time. We can thus write
χ(1) = (A+By) eiqxx+qxy+ωt — higher multiples of y will not obey the bi-Laplace equa-
tion.

Plugging in to our definition of Eq. (14), we express the stresses σ as

σxx = (σ0 − pl) + δqx [2B + qx (A+By)] eiqxx+qxy+ωt , (28)

σyy = −pl − δq2x (A+By) eiqxx+qxy+ωt , (29)

σxy = iqxδ [B + qx (A+By)] eiqxx+qxy+ωt . (30)

We would like to use the boundary conditions of Eq. (19), but we first need to expand
both n̂ and t̂ to first order in δ. We have now for the top boundary

(nx, ny) ≃
(
−iqxδh

(1), 1
)
, (31)

(tx, ty) ≃
(
1, iqxδh

(1)
)
. (32)

We now use our previous expressions for the boundary conditions Eq. (19) to first
order

σ(0)
yy + δσ(1)

yy +O
(
δ2
)

= −pl , (33)

δ
[
−iqxσ0h (x, t) + σ(1)

xy

]
+O

(
δ2
)

= 0 . (34)

Upon substitution of Eq. (28), and evaluating the expressions at the free surface, y=0,
we have

A = 0 , (35)

B = −h0σ0 . (36)

Substituting into σtt and σnn we have that

σtt − σnn = σ0

[
1− 2δ|qx|h(1) (x, t)

]
. (37)

Using this expression in Eq. (6) and collecting contributions up to linear order in the
small parameter δ, we have

µ =
1− ν2

2E
σ2
0

(
1− 4δqxh

(1) (x, t)
)
+ γδq2xh

(1) (x, t) . (38)

The zeroth order contribution is positive, meaning that a stress increases the solid chemi-
cal potential, and renders it unfavorable (which causes the solid to melt). We shall ignore
this contribution for now (in the original paper it was balanced by a gravitational force).

6



The linear order contribution is more interesting. Relating vn ≃ ∂h
∂t
, and plugging in

our result from Eq. (7) yields

ω = kv

[
2σ2

0 (1− ν2)

E
qx − γq2x

]
, (39)

implying that non-zero σ0 destabilize the surface perturbation while the surface tension

stabilizes it. Any perturbation with wavenumber smaller than qcx = 2(1−ν2)
Eγ

σ2
0 will grow

according to this.
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