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Visco-Elasticity

1 Viscoelastic waves

An important application of visco-elastic materials is in energy absorbing devices which
are used as mechanical dampers. To get a feeling how this works in principle, let us
consider wave propagation through a visco-elastic material. We focus on a scalar case
and write the displacement field as u(x, t) = u∗(x, ω)eiωt and the stress field as

σ(x, t) = σ∗(x, ω)eiωt = G∗(ω)
∂u∗

∂x
eiωt , (1)

where we used ε(x, t) = ∂u(x,t)
∂x

= ∂u∗

∂x
eiωt. Substituting these expressions in the momen-

tum balance equation
∂σ

∂x
= ρ

∂2u

∂t2
(2)

we obtain

G∗ (ω)
∂2u∗

∂x2
= −ρω2u∗ . (3)

Using u∗∼eikx, we obtain a propagating plane-wave solution of the form

u(x, t) ∼ exp

[
iω

(
−
√

ρ

G∗ (ω)
x+ t

)]
. (4)

We observe that G∗ plays the role of the elastic constant in an ordinary (elastic) plane-
waves and that

√
G∗/ρ is a complex wave-speed. Suppose we would like to transmit low

frequency waves and strongly attenuate high frequency ones. What kind of a material
do we need? We would like to have a strong dissipative (viscous-like) response at high
frequencies and an elastic response at low frequency. Therefore, our material should be
Kelvin-Voigt-like. Let us use the complex modulus of the Kelvin-Voigt model (Eq. (9.43)
in the notes) as an example

G∗ = E(1 + iωτ) , (5)

where τ = η/E. We are interested in the inverse complex speed√
ρ

G∗ =

√
ρ

E

1√
1 + iωτ

≡ 1

c

1√
1 + iωτ

, (6)

shown in Fig. 1 in the limits ωτ ≪ 1 and ωτ ≫ 1. In the low frequency limit, ωτ ≪ 1,
we have √

ρ

G∗ =
1

c

1√
1 + iωτ

≃ 1

c

(
1− iωτ

2

)
. (7)

Substituting this result into Eq. (4) we obtain

u ∼ exp

[
−iω (x− c t)

c

]
exp

[
− x

ℓ(ω)

]
, (8)
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Figure 1: The real and imaginary parts of the inverse complex speed for a Kelvin-Voigt
material. The low and high frequency limits are presentes in dashed lines.

where

ℓ(ω) ≡ 2c

ω2τ
=

λ

πω τ
≫ λ for ω τ≪1 , (9)

where λ=2πc/ω is the wavelength. Therefore, in the low frequency limit waves propagate
at the ordinary wave speed with a large attenuation length scale ℓ (many wavelengths).
This is expected as the Kelvin-Voigt model is predominantly elastic in the long timescales
limit.

In the opposite limit, ωτ ≫ 1, we have√
ρ

G∗ =
1

c

1√
1 + iωτ

≃ 1− i

c
√
2ωτ

. (10)

Substituting this result into Eq. (4) we obtain (defining ℓ̃(ω)≡c
√
2ωτ/ω)

u ∼ exp

[
− ix

ℓ̃(ω)
+ iω t

]
exp

[
− x

ℓ̃(ω)

]
= exp

[
−i

(x− ℓ̃(ω)ω t)

ℓ̃(ω)

]
exp

[
− x

ℓ̃(ω)

]
, (11)

which shows that both the wavelength and the decay length are determined by ℓ̃(ω)
(which actually means that they wavelength is ill-defined). Hence we conclude that in
the high frequency limit wave propagation is completely attenuated.

2 Viscoelasticity in more than 1 dimensions

Up to now we only dealt with 1-dimensional models of viscoelasticity. These can be easily
formulated because all the fields (stress, strain, etc.) are scalar and it is easy to write
relations such as

σ =

∫
G(t− t′)ε̇(t′)dt′ . (12)

How would you generalize this to 2D or 3D where σ and ε are tensors? Consider Hooke’s
law, which we write here as

σ = λI tr ε+ 2µε .
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Let’s look at two components of σij, one with i = j and and one with i ̸= j:

σxx = 2µεxx + λ (εxx + εyy + εzz) ,

σij = 2µεij, i ̸= j .
(13)

The shear components of the strain and stress are simply proportional to each other.
Thus, one can define the time-dependent shear modulus µ(t) and use all the formalism
that you know by now. For example, one can write

σij = 2

∫
µ(t− t′)ε̇ij(t

′)dt′ for i ̸= j , (14)

and also the inverse relation etc.. What about the diagonal components which are mixed?
A convenient way to deal with this is to write Hooke’s law using the deviatoric and
volumetric components, i.e. to define

εdev ≡ ε− 1

3
I tr ε , σdev ≡ σ − 1

3
I trσ , (15)

εvol ≡ 1

3
I tr ε , σvol ≡ 1

3
I trσ . (16)

With these, Hooke’s law can be written as

σ = λI tr ε+ 2µε = λI tr εvol + 2µ (εdev + εvol) . (17)

Taking the deviatoric and volumetric parts of this expression, one immediately finds that

σvol = 3Kεvol , σdev = 2µεdev . (18)

where K = λ + 2
3
µ is the bulk modulus. Thus, also the volumetric and deviatoric parts

of ε and σ are proportional to each other and the same logic of Eq. (14) can be applied
here, using the time-dependent bulk and shear moduli,

σvol = 3

∫
K(t− t′)ε̇vol(t′)dt′ , σdev = 2

∫
µ(t− t′)ε̇dev(t′)dt′ . (19)

2.1 The Correspondence Principle

With these formulæ, we are ready to present the powerful “Correspondence Principle”
which offers a generic way to think about (and often to actually solve) viscoelastic prob-
lems by considering the corresponding elastic problems. To see exactly how this goes,
write (on the left) what exactly is an elastic problem, and the corresponding viscoelastic
problem (on the right):
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Elasticity

An elastic problem is the PDE

ρüi(x, t) = ∂jσij(x, t) + bi(x, t) , (20)

with the definitions

σvol = 3Kεvol ,

σdev = 2µεdev ,

εij =
1

2
(∂iuj + ∂jui) ,

(21)

and with the boundary conditions

σijnj = Ti or ui = di . (22)

Viscoelasticity

A viscoelastic problem is the PDE

ρüi(x, t) = ∂jσij(x, t) + bi(x, t) , (23)

with the definitions

σvol = 3

∫
K(t− t′)ε̇vol(t′) ,

σdev = 2

∫
µ(t− t′)ε̇dev ,

εij =
1

2
(∂iuj + ∂jui) ,

(24)

and with the boundary conditions

σijnj = Ti or ui = di . (25)

The similarity is obvious. How do we take advantage of it? Taking the Laplace
transform of the viscoelastic relations and assuming quasi-static conditions (i.e. neglecting
the inertial term in the force-balance equations) we get

Viscoelasticity in s-domain

A viscoelastic problem in the in s-domain is the PDE

0 = ∂jσij(x, s) + bi(x, s) , (26)

with the definitions

σvol = 3sK(s) εvol ,

σdev = 2sµ(s) εdev ,

εij =
1

2
(∂iuj + ∂jui) ,

(27)

and with the boundary conditions

σijnj = Ti or ui = di . (28)

So you see that if you have a viscoelastic problem, you can use whatever you know to
solve the corresponding elastic problem with the recipe:

1. Take a viscoelastic boundary value problem,

2. Replace all time dependent variables in all the governing equations by their Laplace
transform,

3. Replace all material properties by s times their Laplace transform,

4. Solve the elastic problem in the s-domain,

5. Perform an inverse Laplace transform to get the viscoelastic solution in the t do-
main.
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2.2 Example: Reinforced thick wall cylinder

As an example, consider a cylinder whose inner part is filled with a viscoelastic material
as shown in Fig. 2. This geometry is relevant for solid propellant rockets, because the
fuel can be reasonably well described as a linear viscoelastic material. Of course, the real
problem has many other complications (for example, the inner boundary is not a circle
but rather a star shape to help with thrust and ablation), but this is already interesting
enough. The outer cylinder shell is much stiffer than the fuel and for our purposes can
be taken to be infinitely rigid (=undeformable). The inner and outer radii are denoted a
and b, respectively. In the center of the cylinder an internal pressure p0 is applied. What
is the deformation of the solid fuel?

a
b

Figure 2: Reinforced thick Wall cylinder

Some variants of the corresponding elastic problem were solved in the lectures (the
heated annulus, cylindrical cavity, etc.). Therefore, I will not go through the solution of
the elastic problem in much detail. I will just remind you that it can readily be solved
by using Airy’s stress function χ, which satisfies the biharmonic equation. Using polar
coordinates and assuming azimuthal symmetry, it reads

∇2∇2χ(r, θ) =

(
∂2

∂r2
+

1

r
∂r

)(
∂2

∂r2
+

1

r
∂r

)
χ(r) = 0 . (29)

Imposing the boundary conditions σrr(r=a)=−p0 and u(r=b)=0 one can solve to get

σrr = −p0
1 + (1− 2ν)

(
b
r

)2
1 + (1− 2ν)

(
b
a

)2 , σθθ = −p0
1− (1− 2ν)

(
b
r

)2
1 + (1− 2ν)

(
b
a

)2 , (30)

and all other components of σ vanish. Note that the only difference between the two is
a change of sign in the numerator so in what follows we write both Equations (30) as

σr,θ = −p0
1± (1− 2ν)

(
b
r

)2
1 + (1− 2ν)

(
b
a

)2 . (31)

where + corresponds to σrr and − to σθθ.
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Now we are ready to calculate the time-dependent response of the viscoelastic fuel. To
be concrete, we need to assume something about its viscoelastic properties. A common
approximation is that the material is “elastic in compression”, i.e. that its bulk modulus
is purely elastic and does not have viscous properties. This is a reasonable quantitative
assumption. For the shear part, let’s take a Maxwell model. In addition, for simplicity
let’s assume that the pressure is applied infinitely fast, i.e. p(t) = p0H(t). Thus,

µ(t) = H(t)µ0e
−t/τ ⇒ µ(s) =

µ0

s+ τ−1
,

K(t) = H(t)K0 ⇒ K(s) =
K0

s
,

p(t) = H(t)p0 ⇒ p(s) =
p0
s

.

(32)

We use the conversion ν = 3K−2µ
2(3K+µ)

to calculate (1− 2ν) = 1
1
3
+K

µ

. Thus, the stress is

σr,θ(r, s) = −p(s)

1± 1
1
3
+

K(s)
µ(s)

(
b
r

)2
1 + 1

1
3
+

K(s)
µ(s)

(
b
a

)2 . (33)

Plugging Eqs. (32) into this one gets

σr,θ(r, s) = p0

 µ̃τ
(

b2

a2
∓ b2

r2

)
1 +

(
1 + µ̃

(
b2

a2
+ 1

3

))
τs

− 1

s

 , (34)

with the definition µ̃ ≡ µ0/K0. We can now use the the formula

L−1

{
1

a+ bs

}
=

1

b
e−at/b , (35)

to get

σr,θ(r, t) = p0


(

b2

a2
∓ b2

r2

)
µ̃(

1
3
+ b2

a2

)
µ̃+ 1

exp

[
− t/τ(

1
3
+ b2

a2

)
µ̃+ 1

]
− 1

 . (36)

A few notes are in place regarding this result:

1. First, note that for any t we have σrr(r = a) = −p0, so the boundary conditions
are satisfied at all times (also the no-displacement boundary condition at r = b is
satisfied at all times, but this is less immediate to see).

2. In the short time limit t → 0 the exponent is unity and the solution coincides with
the elastic solution of Eq. (30). This is not surprising because at short times a
Maxwell material is simply elastic.

3. In the long time limit t → ∞ the exponent vanishes such that both σrr and σθθ equal
−p0, i.e. the solution becomes that of a hydrostatic liquid. This is not surprising
because at long times a Maxwell material is simply a fluid.

4. Note that the relaxation time is τ
((

1
3
+ b2

a2

)
µ̃+ 1

)
. Dimensionally, it scales of

course with the rheological timescale τ , but it also has a correction due to the
system geometry (a, b) and the system’s elastic constants (µ0, K0).
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3 Kramers-Kronig Relation

The KK relation is a fundamental relation between the real and imaginary parts of a
response function Ĝ(ω). In our case, it relates the storage and loss moduli Ĝ′ and Ĝ′′ but
it is very general and has applications in experimental and theoretical physics, as well as
in signal processing and electrical engineering. The essence of these relations lies in the
fact that the imaginary and real parts of an analytic function are not independent, and
are related via the Cauchy-Riemann Equations, which in turn imply Cauchy’s integral
formula (residue calculus).

We will give two proofs of the KK relations. The standard residue-calculus one,
and another one that singles out the effect of causality. The actual theorem is almost
misleadingly simple:

Theorem: Let Ĝ(ω) = Ĝ′(ω) + iĜ′′(ω) be an analytic function in the upper half
plane that decays at infinity faster than |ω|−1. Then

Ĝ′(ω) =
1

π
P

∞∫
−∞

Ĝ′′(ω′)

ω′ − ω
dω′ , Ĝ′′(ω) = − 1

π
P

∞∫
−∞

Ĝ′(ω′)

ω′ − ω
dω′ , (37)

where P denotes the principal value.

Figure 3: Contour of integration in the upper half plane. Source: wiki commons.

Proof I: The integral of Ĝ(ω)
ω′−ω

over the contour described in Fig. 3 is clearly 0, because

the integrand is analytic. The integral over the half circle vanishes (because Ĝ(ω) decays
fast enough), and the integral over the bump is −iπĜ(ω) (minus one half of the residue).
We therefore have

Ĝ(ω) =
1

iπ
P
∫ ∞

−∞

Ĝ(ω′)

ω′ − ω
dω′ . (38)

Writing this equation in its real and imaginary parts gives exactly Eqs. (37) ■ .

This proof is completely trivial in terms of residue calculus, but as a physicist I am
not quite satisfied by this proof. It leaves me with a feeling that I accept the theorem,

7



but I don’t understand it. Furthermore, we must ask (a) how do we know that Ĝ(ω)
decays at infinity? and (b) how do we know that Ĝ is analytic in the upper half plane?.

The answer to (a) is that we don’t, in general, but it is very reasonable to assume
that systems that are driven at frequencies much higher than their natural frequencies
do not respond (and therefore Ĝ → 0).

The answer to (b) is less trivial. Note that in general the Fourier transform of a
“nice” function is not analytic in the upper half plane. For example, the FT of a Loren-
zian 1

1+(t/τ)2
is ∼ exp (−|ωτ |) which is not analytic anywhere; conversely, the FT of

exp (−|ω0τ |) is a Lorenzian, and thus is analytic almost everywhere but has a pole at
ω = iω0; the FT of a Gaussian is also a Gaussian, which has an essential singularity at
infinity.

The fact that Ĝ(ω) is analytic for I(ω) > 0 stems from causality. In fact, one can
show that Ĝ(ω) is analytic in the upper half plane if and only if G(t) = 0 for t < 0 (this is
called Titchmarsh’s theorem). To see exactly what is the role that causality takes, we’ll
examine a different proof.

Proof II: We first remind ourselves of the trivial fact that the FT of an even function
is purely real, and that of an odd function is purely imaginary. Now, for any function
G(t) we can define

Geven(t) ≡ G(t) +G(−t)

2
, Godd(t) ≡ G(t)−G(−t)

2
, (39)

such that G(t) can be written as G(t) = Geven(t) +Godd(t). Therefore,

Ĝ(ω) = F {Geven(t) +Godd(t)} = F {Geven(t)}+ F {Godd(t)} = Ĝ′(ω) + iĜ′′(ω) . (40)

We can thus conclude that

Ĝ′ = F{Geven} , Ĝ′′ =
1

i
F{Godd} . (41)

In general, the odd and even parts are independent, but for a casual response function
we have G(t) = 0 for t < 0 and therefore

Godd(t) =
1

2

{
−G(−t) t < 0

G(t) t > 0
=

1

2
G(|t|) sign(t) ,

Geven(t) =
1

2

{
G(−t) t < 0

G(t) t > 0
=

1

2
G(|t|) ,

(42)

where sign(t)= t
|t| is the signum function. Thus, for t > 0 we have Godd(t) = Geven(t) and

for t < 0 we have Godd(t) = −Geven(t). This can be compactly written as

Godd(t) = sign(t)Geven(t) , Geven(t) = sign(t)Godd(t) . (43)

Thus, we have

G′(ω) = F{Geven} =
1

2π
F{sign} ∗ F{Godd} =

i

2π
F{sign} ∗G′′ , (44)

G′′(ω) =
1

i
F{Godd} =

1

2πi
F{sign} ∗ F{Geven} =

1

2πi
F{sign} ∗G′ , (45)

where ∗ denote convolution. The FT of the signum function is 2i
ω
. Substituting this result

into the above equations gives (37).
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