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First Part



Generalized Langevin Equation
Consider a classical system of n particles with Hamiltonian H.  Lets 
focus on m < n dynamical variables (A1 … Am).  These variable obey 
the classical equations of motion given by:

{ } )(),()( tiLAHtA
dt
tdA

ii
i ≡=

The Liovillian is defined as (we assume that particles interact through a 
pair potential)

( )iji

i i ji i i i

rpiL
m r r p

φ

>

∂∂ ∂
= −

∂ ∂ ∂∑ ∑

( )( ) exp (0)i iA t iLt A=

Formal (but not useful) solution:

The above equation can be written in a different way, which can be 
used as a starting point for approximate methods.



Scalar Products and Projections
Lets first define the scalar product of two dynamical variables:

*( , )A B A B=

If we focus on the m components of A, we can think of these 
components as forming a set of “directions” in the complex vector 
space composed of all dynamical functions.  For example, if

then the set is an orthonormal set spanning the m 
dimensional subspace of all dynamical variables. The Ai’s can be 
viewed as unit vectors.

( , )i j ijA A δ=

Lets define a projection onto this space:
1

2

( , ) ( , )P A A A A
PA A
P P

−= ⋅ ⋅
=

=



Classical GLE

( )( ) exp (0)i iA t iLt A=

Lets look again at the evolution of A:

( ) ( )[ ]

( )

( ) exp (0) exp (1 ) (0)

( ) exp (0)

dA t iLt iLA iLt P P A
dt

i A t iLt QA

= = + −

≡ Ω⋅ +

1Q P= −here               and 1( , ) ( , )i A A A A −Ω = ⋅

and take the time derivative of both sides (                    ):1( , ) ( , )P A A A A−= ⋅ ⋅

Now, we decompose              and solve for g(t):( )exp iLt
( ) ( )
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g t iLg t iPL iQLt
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( )exp iLtFull propagator: 
( )exp iQLtProjected propagator:



Classical GLE cont.

( ) ( ) ( ) ( )
0

exp exp exp ( ) exp
t

iLt iQLt d iL t iPL iQLτ τ τ≡ + −∫

Now, we take the solution for g(t) and plug it into the full propagator:

We would like to use this in the equation for Ai(t): 

( )( ) ( ) exp (0)dA t i A t iLt QA
dt

= Ω⋅ +

Lets define f(t) - the fluctuating (random) force:
( )( ) exp (0)f t iQLt iQLA=

( ) ( )( ) ( )( )
( )( )

, ( ) , exp (0) , exp (0)

, exp (0) 0

A f t A iQLt iQLA A iQL iQLt A

QA iL iQLt A

= = =

=

Note that random force is orthogonal to A at all times
(                                      ):(1 ) 0PA A QA P A= → = − =

This is important for future use.



Classical GLE cont.
Using the following relations:

( ) ( ) ( ) ( ), ( ) , ( ) (1 ) , ( ) (0), ( )i A Lf t i LA f t i P LA f t f f t= = − = −

( ) ( )( ) ( )1, ( ) , , , ( ) 0i PLA f t i A LA A A A f t−= =
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∫

∫

∫

we arrive at

( )( ) ( ) exp (0)dA t i A t iLt QA
dt

= Ω⋅ +

Now we are ready to obtain our final equation starting from the 
following exact expression:



Generalized Langevin Equation
Using these relations we arrive at the exact generalized Langevin 
equation give by

0

( ) ( ) ( ) ( ) ( )
tdA t i A t d K A t f t

dt
τ τ τ= Ω⋅ − − +∫

and the fluctuating random force is given by
( )( ) exp (0)f t iQLt iQLA=

where the memory kernel K(t) is given by (fluctuation-dissipation)

( ) ( ) 1( ) (0), ( ) ,K t f f t A A −= ⋅

0

( ) ( ) ( ) ( )
tdC t i C t d K C t

dt
τ τ τ= Ω⋅ − −∫

We can also express the above GLE as an equation for the correlation 
function (                                       )( ) *( ) (0), ( ) (0) ( )C t A A t A A t= =

{ }( ) ( ), ( )dA t A t H iLA t
dt

 = ≡ 
 



Discussion of the GLE

0

( ) ( ) ( )
t

v
v v

dC t d K C t
dt

τ τ τ= − −∫

So far, what we have done is just to rephrase the the classical 
equation of motion for A(t).  In fact, since f(t) involves the projected 
propagator    (             ), it is more difficult to calculate f(t), than to 
solve for A(t) directly!
However, if we can come up with a useful approximation for K(t), 
then we may find that this rephrasing of the equations for A(t) is 
indeed useful.

Lets consider a simple example where A(t) is the velocity of a tagged 
liquid particle in a monoatomic liquid.  The exact GLE for the velocity 
autocorrelation function is (                     ):

( )exp iQLt

( ) (0) ( )vC t v v t=



Simple example
Now, lets make a simple Gaussian approximation to the memory 
kernel:

( )2

2 2
0

2
0

4 2
0

( ) (0)exp ( )

(0)

2

v v

v

K t K t

K m v

m v

τ

β

τ
β

= −

= ≡ Ω

Ω
=

Ω −

Even this simple approximation (short time expansion) captures some 
of the hallmarks of normal monoatomic liquids.  The reason is that the 
approximation is done at the level of the memory kernel, and thus 
better results are obtained for the correlation function itself.

However, this approximation completely neglects the long time decay 
of the memory kernel.



Classical Mode-Coupling Theory
To properly describe the long time decay of the memory kernel, it is 
useful to look at dynamical variables that are slowly evolving, nearly 
conserved.  What does this mean?
In a liquid, some quantities, like the total number of particles, the total 
energy, the total angular momentum, the total momentum, etc. are
strictly conserved: 

0dN dE dL dP
dt dt dt dt

= = = =

Now, consider the total number of particles 
in a large volume, but not the entire 
system.  As the size of the volume 
approaches the entire box, N(t) becomes 
time independent. But for large regions, the 
timescale of fluctuations of N will be very 
slow. 



Slow Variables
Mathematically, it is useful to define wave vector dependent quantities: 

3

1 1
( ) exp( ( )) exp( ) ( ( ))

N N

k i i
i i

n t ikr t d r ikr r r tδ
= =

= = −∑ ∑∫
3

1 1
( ) exp( ( )) exp( ) ( ( ))

N N

k i i i i
i i

j t v ikr t d r ikr v r r tδ
= =

= = −∑ ∑∫
The former is simple the Fourier transform of the total density, and the 
latter is the Fourier transform of the total momentum density.
As         these quantities become conserved, and therefore at low 
values of k they will vary slowly!

0k→

*1( , ) (0) ( )k kF k t n n t
N

= Intermediate scattering function 

*1( , ) (0) ( )k kJ k t j j t
N

= Current correlation function 



Other Useful Slow Variables
Other slow variables are 

3( ) exp( ( )) exp( ) ( ( ))k i ic t ikr t d r ikr r r tδ= = −∫
3( ) exp( ( )) exp( ) ( ( ))i

k i i i ij t v ikr t d r ikr v r r tδ= = −∫
The former is simple the Fourier transform of the single particle 
density, and the latter is the Fourier transform of the single particles 
momentum density.  The corresponding correlation functions are

*1( , ) (0) ( )s k kF k t c c t
N

= Self intermediate scattering function 

*1( , ) (0) ( )i i
i k kJ k t j j t

N
= Self current correlation function 



A Small Paradox

(0)A

The point is that if we believe that the set of dynamical variables {Ai} 
contains all the important slow variables, then our projection operator 
P projects onto the subspace that evolves slowly.  And Q=1-P projects 
onto the fast subspace.  Accordingly, we can interpret  the random 
force                                as:  Take the fast part of and evolve it in 
the fast part of phase space.

Thus, we expect the memory kernel K(t) (which is proportional to the 
autocorrelation of the random force) to decay very rapidly, and 
perhaps approximate it by                     .

( )( ) exp (0)f t iQLt QA=

( ) (0) ( )K t K tδ=

This is not the case!



A Typical Memory Kernel

A typical memory kernel for 
the velocity autocorrelation 
function of a Lennard-Jones  
fluid at different solvent 
densities.  Not the fast
component, followed by a 
slower component.  The 
slow component becomes 
more dominant at higher 
liquid densities.



Where Does the Slow Part Come From?
Our simple picture assumes that the set {Ai} includes all slow modes is 
not quite correct. If Ai is slow, so is Ai Aj , etc. In other words, the 
products of slow variables are also slow!

Thus, we expect that at short times 
K(t) will indeed decay quickly, but at 
longer times it will have a slow 
components, which will be dominated 
by the slow modes that have not been 
included in the set {Ai}.

We can then “engineer” a memory 
function with the above qualities, with 
some additional approximations.  Lets 
look at an example.



Mode Coupling Approximation

0

( ) ( ) ( )
t

v
v v

dC t d K C t
dt

τ τ τ= − −∫

Lets focus on again on the velocity autocorrelation function.  The exact 
GLE is given by (                     ):( ) (0) ( )v i iC t v v t=

The frequency in this case equals zero: 
1

11 ( )
( , ) ( , ) 0ij

i i i i i
j i

r KTi A A A A v v v v v
r M

φ −
−− ∂  Ω = ⋅ = ⋅ = − = ∂  

∑

and the fluctuating random force is given by
( ) ( )( ) ( )( ) exp exp 1 expi if t iQLt iQLA iQLt P v iQLt v= = − =

The memory kernel K(t) is given by the exact equation:

( ) ( ) ( )
1

1( ) (0), ( ) , (0), ( )B
i i

k TK t f f t v v f f t
m

−
−  = ⋅ =  

 

since
( ) ( ) ( )1 , ,i i i i i i i iP v v v v v v v v− = − ⋅ =



Classical MCT cont.

( )
1

( ) expB
v i i

k TK t v iQLt v
m

−
 =  
 

Putting all together, we arrive at a simple expression for the memory 
kernel, which is exact, and involves the projected propagation of the 
force on particle i:

At short times, the decay if the memory kernel is expected to be rapid, 
and we can use the short time expansion discussed before:

( )2

2 2
0

2
0

4 2
0

( ) (0)exp ( )

(0)

2

FAST
v v

v

K t K t

K m v

m v

τ

β

τ
β

= −

= ≡ Ω

Ω
=

Ω −

Note that this gives a microscopic meaning in terms of well defined 
structural properties of a liquid.



Classical MCT cont.

( )( ) ( ) ( ) ( ) ( ) ( )FAST FAST FAST MCT
v v v v v vK t K t K t K t K t K t= + − ≈ +

Now, we can rewrite the total memory kernel as follows:

Lets keep in mind that             varies slowly.  Thus at longer time, we 
expect the fast part to diminish, and the slow part will be dominated by 
those modes in the liquid that decay slowly.  Hence, we make the
following (ad-doc) approximation:

( )MCT
vK t

( )
1

( ) expMCT B
v i m m i

k TK t v P iLt P v
m

−
 =  
 

And the new projector    operator projects     onto the slow modes.  As 
a first approximation, we can take the slow modes to be a combination 
of single and collective densities, with conservation of momentum:

mP iv

* *
*

*

1

, ,
( )

exp( ) exp( )

k k
m k k k k k k k

k kk k

N

k i k i
i

A A
P A A A c n c n

NS kA A

n ikr c ikr

−

=

= = = =

= =

∑ ∑

∑



Classical MCT cont.
Now, lets plug this back into the expression for the MCT memory kernel. 
After some tedious algebra we obtain:

( )
2

*
2

,
( ) ( ) ( ) (0) ( )

1 1( ) 1
( )

MCT B
v k k

k k

k TmnK t k k c k c k A A t
N

c k
n S k

′

 
′ ′= ⋅ 

 
 

= − 
 

∑

We make a factorization approximation (in fact we made one already for 
the projection onto the slow modes):

*(0) ( ) (0) (0) ( ) ( )

(0) ( ) (0) ( ) ( , ) ( , )
k k k k k k

k k k k s kk

A A t c n c t n t

c c t n n t NF k t F k t δ
′ ′ ′− −

′ ′ ′− −

= ≈

=

Plugging this into the above expression, making use of the delta function, 
and replacing the sum of k with an integral, we arrive at:

4 2
2

0

( ) ( ) ( , ) ( , )
2

MCT B
v s

mk TnK t dkk c k F k t F k t
π

∞ =  
  ∫



Classical MCT (final)

( ) ( )2 4 2 0
2

0

( ) ( ) ( )

(0)exp ( ) ( ) ( , ) ( , ) ( , )
2

FAST MCT
v v v

B
v s s

K t K t K t

mk TnK t dkk c k F k t F k t F k tτ
π

∞

≈ + =

 − + − 
  ∫

We need to combine the fast and slow parts. However, our expression for 
the fast term is exact to second order in time.  We thus need to subtract 
the inertial part from the slow kernel.  Otherwise, we will over count the 
memory kernel at short times.

where            is the “free particle” self intermediate scattering function 
given by:

0 ( , )sF k t

0 2 2( , ) exp
2
B

s
k TF k t k t
m

 = − 
 

What have we done?



Summary of MCT

0

( ) ( ) ( )
t

v
v v

dC t d K C t
dt

τ τ τ= − −∫

We start from an exact GLE:

( )
1

( ) expB
v i i

k TK t v iQLt v
m

−
 =  
 

Decompose the memory kernel to a fast and slow portions:

( )

( )

2

4 2 0
2

0

( ) ( ) ( )

( ) (0)exp ( )

( ) ( ) ( , ) ( , ) ( , )
2

FAST MCT
v v v

FAST
v v

MCT B
v s s

K t K t K t

K t K t

mk TnK t dkk c k F k t F k t F k t

τ

π

∞

≈ +

= −

 = − 
  ∫

And continue until we have a closure, namely, that our equations describe 
all necessary correlation functions.

Why Mode Coupling?



Some Interesting Applications



Mode-Coupling Theory for Classical Liquids

The normalized intermediate 
scattering function for liquid lithium.  
The red curves are results obtained 
from molecular dynamics 
simulations and the blue curves are 
results obtained from a classical 
mode-coupling theory.   The 
agreement between the theory and 
simulations is remarkable for all q 
values shown.



Prediction for Classical Glasses

β

α

MCT predictions

1( , ) a
sF k t f A t−= +Early β

2( , ) b
sF k t f A t= −Late β

( ){ }( , ) exps
tF k t

β

τ= −α regime



Second Part



Outline – Second Part
Quantum Mode-Coupling Theory

Quantum generalized Langevin equation (QGLE).
A natural formulation – Kubo.
Quantum mode-coupling approximations.
Analysis of the theory.

Quantum Mass Transport

Quantum Density Fluctuations
Application to Normal Liquids.
Application to supercooled binary mixtures.



Quantum Transport



Outline of Quantum Approach

Step 1: Formulation of an exact quantum generalized 
Langevin equation (QGLE) using Zwanzig-Mori projection 
operator technique, for the Kubo transform of the dynamical 
variable of interest.  

Step 2: Approximate memory kernel for the QGLE using a
quantum mode-coupling theory.

Step 3: Solution of the QGLE with the approximate memory 
kernel combined with exact static input generated from a 
suitable PIMC scheme.



QGLE for VACF

0

( ) ( ) ( ) 0
t

v
v v

dC t d K t C
dt

κ
κ κτ τ τ+ − =∫

We need to obtain a QGLE for the velocity autocorrelation function (v
is the velocity of a tagged liquid particle along an arbitrary direction):

ˆ ˆ( ) , ( )v i iC t v v tκ κ=

Following similar lines to those sketched for the classical theory, we 
obtain an exact quantum generalized Langevin equation (QGLE):

and the memory kernel is formally given by  
ˆ(1 )1

ˆ ˆ,
ˆ ˆ( ) ,e vi P Lt

v i iv v
K t v v

κ

κ
κ κ−=

ˆ ,
ˆ

ˆ ˆ,
i

v i
i i

v
P v

v v
κ κ

κ
=

where we have used the following projection operator  

ˆ ˆ ˆ ˆ

0

1ˆ ( ) H iHt iHt H
i iv t d e e v e e

β
κ λ λλ

β
− −= ∫



Quantum Mode Coupling Theory
The Kernel is approximated by

)()()( ,, tKtKtK mvbvv
κκκ +=

)/()0()(, τκκ tfKtK vbv =
2/1

ˆ,ˆ

ˆ,ˆ

ˆ,ˆ

ˆ,ˆ
−






 +−= κ

κ

κ

κ

τ
vv

vv

vv

vv
Fast decaying quantum binary term:

( )2

221
, ,ˆ ˆ2 ,

0

( ) ( ) ( , ) ( , ) ( , )v m v s s bn v v
K t dqq V q F q t F q t F q tκ

κ κ κ κ κ
π

∞

≈ −∫
The slow decaying quantum mode-coupling term:

( )
*ˆ ˆ,

( ,0) ( )
q

v
s

b v
V q

NF q S q

κ

κ
κ κ= 1ˆ ˆ( )

1

ˆ ˆ ˆiq r r
q q qb e c nα

α

−
−

≠

= =∑

The vertex:



MC Memory Kernel for VACF

In addition, four point correlation functions are replaced by a product of 
two point correlation functions: 

- - -
ˆ ˆ ˆ ˆ ˆ ˆ, ( ) , ( ) , ( ) ( , ) ( , )q q q q q q sb b t c c t n n t F q t F q tκ κ κ κ κ≈ =

The slow decaying quantum mode-coupling term is obtained using a set 
of approximations. The projected dynamics is replaced with the full 
dynamics projected onto the slow decaying modes:

ˆ ˆ(1 )e evi P Lt iLt
m mP P

κ κ κ− ⇒

( )

*ˆ ˆ ,

,0 ( )
q q

m
q s

b b
P

NF q S q

κ

κ
κ κ=∑

where  the new projection operator is given by: 



PIMC Scheme

∫ −−−=
β

λβλκ λ
β 0

)(eˆeˆTr1ˆ,ˆ HHOOd
Q

OO

We need to calculate the following static Kubo transforms:

ˆ ˆ ˆ ˆ ˆ( ) ( )O G r p pG r= +where

Using the coordinate representation of the matrix element:

( )ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )r rr G r p pG r r i G r r r G r r rδ δ′′ ′ ′ ′+ = ∇ − − ∇ −

We obtain (to lowest order in ε using P Trotter slices):
2

1 1 1 1
1

2 2

ˆ ˆ, ( ) ( ) ( )

( ) ( )

P

P P P j
j

P P j P j

mO O dr dr P r r G r G r

r r r r

κ

εβ − +
=

− + −

= −

× − ⋅ −

∑∫

Our result looks similar to the Barker energy estimator, however, it is  
numerically less noisy.



Static input from PIMC

The static input for the memory kernel of 
the velocity autocorrelation function 
generated from a PIMC simulation 
method for liquid para-hydrogen at 
T=14K (red curve) and T=25K (blue
curve).



Velocity autocorrelation function

The normalized velocity autocorrelation 
function calculated from the quantum 
mode-coupling theory (red curve)  and 
from an analytic continuation of 
imaginary-time PIMC data (blue curve) 
for liquid para-hydrogen at T=14K 
(lower panel) and T=25K (upper panel).  
The good agreement between the two 
methods is a strong support for the 
accuracy of the quantum mode-
coupling approach for liquid para-
hydrogen.



Memory kernel for VACF

The Kubo transform of the memory 
kernel for the velocity 
autocorrelation function for liquid 
para-hydrogen at T=14K (upper 
panel) and T=25K (lower panel). 
Shown are the fast-decaying binary 
term (red curve), the slow-decaying 
mode-coupling term (green curve) 
and the total memory kernel (blue
curve). The contribution of the slow 
mode-coupling portion of the 
memory kernel is significant at the 
low temperature, while at the high 
temperature, the kernel can be 
approximated by only the fast binary 
portion. 



Self-diffusion - liquid para-hydrogen

The frequency dependent diffusion 
constant for liquid para-hydrogen at 
T=14K (red curve) and T=25K (blue
curve).  The self-diffusion obtained 
from the Green-Kubo relation is 0.30
and 1.69 (Å2/ps) for T=14K and 
T=25K, respectively.  These results 
are in good agreement with the 
experimental results (0.40 and 1.60) 
and with the maximum entropy 
analytic continuation method (0.28
and 1.47, Rabani et al., PNAS 99, 
1129-1133 (2002)).



Density Fluctuations



QGLE for Density Fluctuations

0
'

)',()',('),()(),(

0

2
2

2

=−++ ∫ dt
tqdFttqKdttqFq

dt
tqFd t κ

κκ
κ

κ

ω

The exact QGLE for the Kubo transform of the intermediate 
scattering function is given by

To study density fluctuations we need to specify the dynamical 
variable and the corresponding correlation function (the intermediate 
scattering function):

( )
1

ˆ ˆexp
N

q j
j

n iq r
=

= ⋅∑ *1 ˆ ˆ( , ) , ( )q qF q t n n t
N

κ κ=

The formal expression for the memory kernel is

( ) ( )
1

1ˆ ˆ ˆ ˆ ˆexp exp
2

N

q i i ii
i

j p iq r iq r p
m =

= ⋅ + ⋅∑ *1 ˆ ˆ( , ) , ( )q qJ q t j j t
N

κ κ=

( )*1 ˆ ˆ ˆ( , ) ,exp (1 )q q q
q

K q t R i P Lt R
NJ

κ κ κ
κ= − ( )ˆ ˆ ˆ

( )q q q
J qR j iq n
S q

κ

κ= −



Mode Coupling Approximation

( , ) ( , ) ( , )b mctK q t K q t K q tκ κ κ= +
Mode-coupling approximations for the memory kernel

ˆ ˆ(1 )e eqi P Lt iLt
mq mqP P

κ κ κ− ⇒

,
ˆ ˆ ˆk q k k q kb n n− −=

The projected dynamics is replaced with the full dynamics projected onto 
the slow decaying modes:

In addition, four point correlation functions are replaced by a product of 
two point correlation functions. 

* * *
, ,

ˆ ˆ ˆ ˆ ˆ ˆ, ( ) , ( ) , ( ) ( , ) ( , )k q k k q k k k q k q kb b t n n t n n t F k t F q k tκ κ
− − − −≈ = −

where  the new projection operator       projects onto the following 
slow modes: 

mqP
κ



Application to Normal 
Quantum Liquids



Quantum Liquids o-D2

The normalized intermediate 
scattering function for liquid
ortho-deuterium.  The red
curves are results obtained 
from the QMCT and the green
curves are results obtained 
from an analytic continuation 
approach (MaxEnt).  Left 
panels show the 
corresponding memory 
kernels computed from the 
QMCT.



Dynamic Structure Factor o-D2

The normalized dynamic 
structure factor for liquid ortho-
deuterium. Red – QMCT. 
Green - MaxEnt. Black – QVM
assuming a single relaxation 
time. Blue circles -
experimental results from M. 
Mukherjee, F. J. Bermejo, B. Fak, 
and S. M. Bennington, Europhys.
Lett. 40, 153 (1997).



Quantum Liquids p-H2

The normalized intermediate 
scattering function for liquid
para-hydrogen.  The red
curves are results obtained 
from the QMCT and the green
curves are results obtained 
from an analytic continuation 
approach (MaxEnt).  Left 
panels show the 
corresponding memory 
kernels computed from the 
QMCT.



Dynamic Structure Factor p-H2

The normalized dynamic 
structure factor for liquid para-
hydrogen. Red – QMCT. 
Green - MaxEnt. Black – QVM
assuming a single relaxation 
time. Blue circles -
experimental results F. J. 
Bermejo, B. Fak, S. M. 
Bennington, R. Fernandez-Perea, 
C. Cabrillo,J. Dawidowski, M. T. 
Fernandez-Diaz, and P. Verkerk, 
Phys. Rev. B 60, 15154 (1999).



Application to Supercooled Glass-
Forming Quantum Liquids

(No Experiments, Only Predictions)



Quantum Glasses

Can we form a structural quantum glass (super-
fluidity)? 

Are there any thermodynamic signatures that are 
different for a quantum glass?

Are there any dynamic signatures that are different 
for a quantum glass?



Kob-Andersen Model

( )
1

ˆ ˆexp
iN

qin iqrα
α=

=∑ *1 ˆ ˆ( , ) , ( )ij qi qjF q t n n t
N

κ κ=

12 6

( ) 4 ij ij
ij ij

ij ij

V r
r r
σ σ

ε
    
 = −           

1 3/ 2 1/ 2
1 0.8 0.88

AA AB AA

AA AB AA

ε ε ε
σ σ σ

= = =
= = =

0.8 0.2 0.8 1.0A BN N nN N= = = −



Structural Input



Structural Input



Intermediate Scattering Function



Intermediate Scattering Function



Memory Kernel



Memory Kernel



Experimental Realization



Mixtures of p-H2 and o-D2



Centroid Configurations



QMCT - Conclusions

Advantages: No computation of any kind of semiclassical trajectories.  Almost 
any general liquid state correlation can be obtained. Non-Boltzmann statistics 
can be described. The classical limit can simply be obtained. Describe short and 
long time phenomena. Improvements can be made. 

But: Still semi-uncontrolled approximations are made.  These approximations 
can be tested by comparisons to experimental results.  Boundary problems 
cannot be handled (yet). 


