Calculation of quantum barrier crossing rates in

dissipative environments:
A non-Markovian density matrix approach

Anna Pomyalov and David Tannor
Dept. of Chemical Physics
Weizmann Institute

coworkers:

Chris Meier

Eitan Geva

Efrat Rosenman
Ulrich Kleinekathofer
Eli Pollak



Motivation

*The calculation of quantum reaction rates in solution phase is a
central challenge of theoretical chemistry

ePath integral methods provide an exact procedure, but are
computationally costly, and impractical for large N-level systems

*Mixed classical-quantum methods are accurate at high 7 but
deteriorate at low T

*QME methods are very intuitive and treat the system quantum
mechanically, but are derived under weak friction assumptions
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1. Review of the NM-QME  ---- Preliminaries
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NM-QME: Equations of Motion

ps=11[ O]

t
5, (1) = =il p (t) + dt' K (t — ) p, (¢
p s
— 00

Kt —t)=L_e *a(t —=t") L —ib(t —t')L4]



a(t) = ia;eﬂf b(t) = Zﬂl"f ;7
j=1

By expansion of ¢(t) in terms of complex exponents
may be recast into a set of coupled simultaneous equations:
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auxiliary matrices

*Nakajima-Zwanzig procedure in reverse!
*The new coupled equation of motion can be viewed as
those of a surrogate Hamiltonian
*Physical interpretation in terms of 2nd-order system-bath interaction
*Correlated 1nitial conditions = nonzero initial auxiliaries!



. Calculation of Using NM-OME
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*Flux operator is propagated as if F(f/2) were an initial
density matrix

*Propagation 1s backwards in time (Heisenberg picture)
eSeparable initial conditions



3. OME in the Collective Mode Representation

Original representation:
N
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3rd representation:

Old system coordinate defines collective mode O
N
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Comments:

o |-d system (g) becomes 2-d system (p. o)

e The parameters of the new bath modes are not needed — only the new
spectral density or friction, ~, (1)

e Can’t get v,(t) but can get

Yo (8) = F(U,L, s) = G('}(S),wi, s) (continuum limit)



More Comments:

e M s the solution of M 4 AN (AF) = Wt (Grote-Hynes frequency)
softening of the barrier frequency

e Coupling to the bath is now via the o coordinate only!

e Example: Drude spectral density
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2-d Potential Surface in OME-CM
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Drude vs

. Ohmic Spectral Density
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4. Results (DWI parameters)

Barrier transmission vs. temperature for different frictions
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Barrier transmission vs. friction: Kramers turnover?
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Conclusions

*NME-CM extends the range of validity of QME from
dimensionless frictions of 0.1 to 0.5

*The computational effort scales approximately as N3
compared with the exponential scaling of path integration

*In contrast with methods based on classical dynamics, the
NME-CM does exact quantum mechanics in the system
degrees of freedom, and hence does not deteriorate at low 7.

*NME-CM should find a useful niche for computing quantum rate
constants at low temperature and intermediate friction

*Can the strategy be extended to dissipative dynamical processes
other than barrier crossing? Can it be extended to stronger friction?



Results: Barrier Crossing in a Double Well

NM-QME:

v'Spectral density: Ohmic with exponential cut-off.
NG a me "
, 16E*
with parameters of DW1 [3].

v'The potential: W (gq) = — g

v Dimensionless coupling strength 7, = &/ M,@"



