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REDUCTION TO A QUASI-1D SYSTEM

Our goal here is to explain how the quasi-1D approxi-
mation used in Eq. (2) in the main text is systematically
derived. The limit of small H, which is mentioned in the
main text, means that H� `, where ` characterizes the
length scale of variation of the fields in the x-direction.
Under these conditions, the system can be described ef-
fectively as 1D [1, 2] and the procedure of the dimensional
reduction is detailed below.

In most general terms, we solve the momentum-
balance equation

ρü = divσ , (S1)

for the elastic body described in Fig. S1, where Hooke’s
law is assumed to hold in the bulk. σ is Cauchy’s stress
tensor, ρ is the mass density and u is the displacement
field.

The friction law outlined in the main text describes the
shear stress applied by the interface to the elastic bulk.
It serves as a boundary condition to Eq. (S1) at y = 0.
The other boundary conditions are (cf. Fig. S1)

• y=0 : uy=0 and σxy=τ ,

• y=H : σyy=σ and σxy=τd ,

• x=0 : ∂tux=vd and σxy=0 .

In actual calculations, we use systems that are sufficiently
large in the positive x-direction to be effectively regarded
as semi-infinite along this dimension.

We assume plane-strain conditions, under which
Hooke’s law takes the form(
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where εij = 1
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)
is the linearized strain tensor,

G is the shear modulus and ν is Poisson’s ratio. This
linear equation can be solved for σxx in terms of εxx and
σyy as
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Integrating the x-component of Eq. (S1) from y=0 to
y =H using Eq. (S3), the boundary conditions on σxy
and assuming σyy is x-independent, we obtain∫ H

0
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(S4)

In order to get a quasi-1D description, we define the
effective 1D displacement field u(x, t) as the mean dis-
placement in the x-direction

u(x, t) =
1

H

∫ H

0

ux(x, y, t)dy (S5)

and maintain that the y-component of Eq. (S1) is au-
tomatically satisfied in the main approximation with re-
spect to H/`. Physically, the last two conditions mean
that for H/`�1, the variation of ux and σyy with y can
be neglected (in the main approximation). Combining
Eqs. (S4) and (S5) we obtain Eq. (2) in the main text

ρHü =
2GH

1− ν
∂xxu+ τd − τ , (S6)

with Ḡ = 2G
1−ν . For our parameters (i.e. ν = 1/3, see

below) we obtain Ḡ= 3G, which implies that the elastic
wave-speed (there is only one wave-speed in this quasi-1D
approximation) is larger than the bulk shear wave-speed

FIG. S1. Sketch of the system’s geometry and loading config-
uration. Note that in addition to the system described in the
main text, we allow here also for shear stresses to be applied
at y=H.
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and smaller than the bulk dilatational wave-speed. For
plane-stress conditions (not used here), the result reads
Ḡ= 2(1 + ν)G. Note also that we set τd= 0 in the main
text.

Using Eq. (S3) the force per unit width (out-of-plane)
exerted by the loading machine on the lateral boundary
x=0 can be calculated as

fd(t) = −
∫ H

0

σxx(x=0, y, t)dy

= −ḠH ∂u

∂x

∣∣∣∣
x=0

+
ν
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∫ H

0

σyydy ,

where the latter time-independent contribution was not
included in fd(t) reported on in the main text. Finally,
note that throughout our calculations we choose H (see
below) such that H� ` under all circumstances consid-
ered in the main text. The question of when and how
this quasi-1D formulation crosses over to the fully 2D
formulation is interesting and important, and will be dis-
cussed elsewhere. In the next section we briefly discuss
one aspect of it.

RELATION TO THE NUCLEATION SIZE IN 2D
MODELS

To connect our analysis to some of the available litera-
ture on the nucleation size in 2D, we interpret Lc of Eq.

(5) in the main text as the 1D nucleation size L
(1)
c , which

is valid if L
(1)
c �H. The 1D limit is expected to break

down when L
(1)
c ∼ H ∼ L

(2)
c , where L

(2)
c is the critical

nucleation size in 2D. Using the last relation in Eq. (5)
of the main text, we obtain

L(2)
c ∼

GD∣∣∣ ∂τss∂ log v

∣∣∣ (S7)

(here we do not distinguish between Ḡ and G), which
is a known result, see for example [3, 4]. The 1D
and 2D results can be combined into one expression

Lc=L
(2)
c f(H/L

(2)
c ), where f(z) is a scaling function that

satisfies f(z)=
√
z for z�1 and f(z)=1 for z�1.

STEADY-STATE PROPAGATING FRONTS

As discussed in great detail in [1, 2], under constant
stress boundary conditions steady-state rupture front so-
lutions might emerge, see Fig. S2. These fronts exist
when the homogeneously applied τd surpasses a thresh-
old value and the system is bistable. The fronts con-
nect a region which slips steadily at a velocity v2 and
in which φ=D/v2 to a region which slips at a velocity
v1� v2. Since v1 is extremely small, we can practically
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FIG. S2. Steady-state sliding friction vs. slip velocity v (solid
blue line). The dashed horizontal line marks τd for the steady-
state front shown in Figs. 3b-d of the main text.

treat this region as a “stick” (non-slipping) one and char-
acterize it by φ=φstick, the age of the interface into which
the front penetrates. Note that we do not typically con-
sider the “true” steady-state of φ in the “stick” region,
φ = D/v1, because it takes unrealistically long time to
reach it (when v1 is extremely small). For a given τd and
φstick, the spatial distribution of the front’s fields, as well
as its propagation velocity, are uniquely determined.

In the main text, we described a fast event which
emerges nonlinearly as the outcome of the linear insta-
bility of the creep patch (Fig. 3). The event features
a steadily propagating rupture front, which penetrates
a region with φ = 17.4s and moves at c = 902m/s. As
explained above, there exists a unique steady-state front
with these characteristics, and this is the front shown in
Figs. 3b-d of the main text. No other free parameters
were used. The top-loading shear stress for this front,
τd = 0.358σ, is marked in Fig. S2, as well as the veloci-
ties v1 and v2, which correspond to this stress.

DIFFERENT VELOCITY-STRENGTHENING
BEHAVIORS

In the main text we examine 3 types of behav-
iors at high slip velocities: (i) logarithmic velocity-
strengthening, (ii) pure logarithmic velocity-weakening
(iii) linear velocity-strengthening. In this section we
briefly describe the origin of these possible behaviors, and
the way they are introduced within our model.

Logarithmic velocity-strengthening

Logarithmic velocity-strengthening behavior stems
from the short time cut-off φ∗ in the aging dynamics,
as explained at length in [2]. The contact area A is given
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by

A(φ) =
σ

σH

[
1+b log

(
1+

φ

φ∗

)]
. (S8)

In steady-state sliding at velocity v the age of the in-
terface is φ = D/v. The fact that A decreases with
increasing v is the source of the velocity-weakening be-
havior at low sliding velocities. However, at high slid-
ing velocities D/v becomes negligible with respect to
φ∗, implying that A in Eq. (S8) saturates at a finite
value. This happens at vm ≈ D/φ∗, where the system
crosses over from logarithmic velocity-weakening to log-
arithmic velocity-strengthening because the viscous part
of the friction stress, τvis(v, φ) = η v∗A(φ) log (1+v/v∗),
increases monotonically and logarithmically with v. The
short-time cutoff was directly observed experimentally in
PMMA [5] and other materials [6, 7], and the crossover
from velocity-weakening to velocity-strengthening was
observed in different materials by various authors, e.g.
[8–15].

Pure velocity-weakening

The aforementioned crossover can be removed simply
by using a constitutive equation for A which does not
feature the short time cutoff, namely

Aweak(φ) =
σ

σH

[
1+b log

(
φ

φ∗

)]
, (S9)

which is commonly used in the rate-and-state litera-
ture. This law was used to generate the pure velocity-
weakening behavior shown by the dashed yellow line in
Fig. 1b in the main text.

Linear velocity-strengthening

As explained above, using τvis(v, φ) =
η v∗A(φ) log (1+v/v∗) (together with Eq. (S8)) eventu-
ally determines the logarithmic velocity-strengthening
behavior at high slip velocities. However, some studies
reported on a much stronger than logarithmic velocity-
strengthening behavior, possibly linear in v [10, 11, 14].
We believe this is an important, and possibly generic,
feature of friction which we will discuss separately
elsewhere. In the main text we explore the dramatic
implications of this behavior by making τvis(v, φ) linear
in v above some value of v, as shown in the dotted red
line in Fig. 1b in the main text.

DETERMINATION OF PARAMETERS FOR
PMMA

We determined our realistic set of parameters for
PMMA (a glassy polymer), an extensively used material

in laboratory experiments. In particular, its interfacial
elastic response [16], the existence of slow rupture fronts
[5, 17–19], the variation of static friction coefficient with
loading conditions [20], and additional properties [21–25]
were carefully characterized.

The interfacial elastic response data of Fig. 2 in [16]
indicated that hσH/µ0 is in the µm scale. The slope of
the ageing data in Fig. 9 of [26] determines the value of
µ0D b
σHh

= 0.02. The “direct effect” measurement in Fig.
4 of [26] determine ηv∗/σH = 0.005. In [19], Fig. 3,
the authors deduce that D is of the order of 1µm. With
these constraints, and using known values of indepen-
dently measured parameters such as µ, σH and ρ, we
fitted all the aforementioned experimental data. Finally,
we set σ = 1MPa, which is similar to the value used in
[5, 19] and H = 200µm. This value of H ensures the
validity of the quasi-1D approximation, though the lat-
ter approximation remains valid for much larger values
of H (of the order of 1cm). The value v0 =10−9m/s was
chosen to be much smaller than any other velocity scale
in the problem, and has no influence on the results we
report. The parameters are summarized in table I.

G 3.1GPa H 200µm

ρ 1200 Kg/m3 vd 10µm/s

v∗ 10−7 m/s µ0/h 3 · 1014 Pa/m

φ∗ 0.33 msec η 27 · 1012 Pa sec/m

D 0.5µm σH 540MPa

σ 1MPa b 0.075

ν 1/3 v0 10−9 m/s

TABLE I. Parameters of the model.
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