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Experimental and simulational studies of the dynamics of vortex reconnections in quantum fluids

showed that the distance d between the reconnecting vortices is close to a universal time dependence

d ¼ D½�jt0 � tj�� with � fluctuating around 1=2 and � ¼ h=m is the quantum of circulation.

Dimensional analysis, based on the assumption that the quantum of circulation � ¼ h=m is the only

relevant parameter in the problem, predicts � ¼ 1=2. The theoretical calculation of the dimensionless

coefficient D in this formula remained an open problem. In this Letter we present an analytic calculation

of D in terms of the given geometry of the reconnecting vortices. We start from the numerically observed

generic geometry on the way to vortex reconnection and demonstrate that the dynamics is well described

by a self-similar analytic solution which provides the wanted information.
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The study of vortex reconnections in quantum fluids
received a huge boost by the experimental visualization
of this process in liquid helium [1]. Of special interest is
the dynamics of the approach of vortices towards recon-
nection as displayed by the minimal distance between
them, denoted as dðtÞ. When dðtÞ is much larger than the
vortex core size one can neglect the core size; then dimen-
sional considerations based on the assumption that the
quantum circulation � ¼ h=m (with h being Planck’s con-
stant and m the mass of the 4He atom) is the only relevant
parameter of the problem predict that [2,3]

dðtÞ ¼ D½�jt0 � tj��; � ¼ 1=2; (1)

where D is a dimensionless parameter. Experiments and
simulations exhibited a range of exponents near � ¼ 1=2
[1,2], but the question of the coefficient D and how to
compute it theoretically remained an open question. The
aim of this Letter is to solve this open question.

We first note that the core size � in superfluid 4He is
about one Angström, � � 10�8 cm. We can assume that
dðtÞ � �, and describe the evolution of quantized vortex
lines by the Biot-Savart equation according to which each
point of the vortex line is swept by the velocity field
produced by the other existing vortices

VðsÞ ¼ �

4�

Z
C

ð~s� sÞ � d~s

j~s� sj3 : (2)

Here the vortex line is represented in a parametric form
sð�; tÞ, where � is an arc length, t is the time, and the
integral is taken over the entire vortex tangle configuration.
The core size � appears implicitly in this equation as the
cutoff length that protects the logarithmic singularity that
is embodied in Eq. (2). Finally the core radius � appears in
the present problem as a logarithmic term of the form
� ¼ lnðdðtÞ=�Þ.

The strategy employed here is to start from the remark-
able numerical discovery that independently of initial

conditions, near the reconnection point vortices arrange
themselves to become antiparallel, forming an evolving
structure that appears like a self-similar solution [4,5].
The whole reconnection process is made of the dynamics
of the approach of the vortices towards reconnection, the
process of reconnection itself, and finally the receding of
the reconnected vortices [6–9]. In this Letter we construct
an approximate self-similar evolution of the vortex lines
towards their reconnection, ignoring the weak logarithmic
dependence on �. Thus our starting point is the vortex
configuration found in [4] and reproduced in Fig. 1 as a
pyramidal construction with A, B, C,D, E, and F points on
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FIG. 1 (color online). The proposed ‘‘generic’’ pyramidal con-
figuration of two vortex lines on the way to collision and
reconnection [4]. The two vortex lines (blue and green) are
hyperbolas on the two opposite side edges ACG and DFG of
the ACDFG pyramid. The conjecture of Ref. [4] is that the
vortex lines proceed to collide at the G point. In this example
� ¼ 60�, � ¼ 12:5�. We show in this Letter that some serious
modifications are necessary to reach a true self-similar solution.
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the base and the G point on the top. Two vortices occupy
two side edges as shown by the solid (A–C blue and D–F
green) lines. The vortex lines are separated (at a given
moment of time t) from the reconnection G point by a
distance aðtÞ ! 0 at t ! t0. Far away from the G point the
lines are almost straight, approaching four semi-infinite
straight lines shown in Fig. 1 as dashed AG and GC lines
(blue vortex) and DG with GF lines (green vortex).

In our analysis we will use two coordinate systems. The
first (basic) (~x, ~y, ~z)-coordinate system (shown in red) has an
origin at the G point and the ~x axis is parallel to the straight
ABC- and DEF-straight lines. By 2� we denote the angle
between theAG andCG lines, equal to the angle between the
DG and FG lines. By 2� we denote the angle between the
CG andDG lines, equal to the angle between theAG andFG
lines. The ~z axis is directed down fromG to the pointH and
the ~y axis is parallel to the BE line. In addition we will use a
(blue) (x, y, z)-coordinate system, in which x ¼ ~x, the (x, y)
plane coincides with the ACG plane such that the y axis is
obtained by turning the ~y by an angle ð�=2Þ � � around the x
axis. Here 2� is the angle between the ACG and the DEG
planes (or between BG and EG lines), related to � and � as
follows: cos� sin� ¼ sin�.

The construction of the self-similar evolution will be
achieved in three steps. In the first step we will disregard
the tip region and approximate the vortex configuration by the
four straight lines: AG, CG,DG, and FG. Then we compute
the velocity induced on a given vortex line, e.g., AG, by the
other three. Clearly the contribution from one straight vortex
line on itself is zero, since a straight vortex line is an obvious
null solution of Eq. (2). For this goal we recall the fundamen-
tal result of the Biot-Savart equation for the velocity field
Vðr; ’Þ produced by a semi-infinite vortex line

Vðr; ’Þ ¼ �

4�r
ðcos’þ 1Þ: (3)

Here r is a distance from the X point shown in Fig. 1 where
the velocity is measured to the semi-infinite vortex line;
’ is the angle between the semi-infinite vortex line and
the line between the end point of the vortex line and the
measurement pointX. Using Eq. (3) we can find the velocity
VðXÞ induced by the CG, DG, and FG lines on the X point.
A straightforward but quite cumbersome calculation that
involves lots of trigonometry yields

VBSðXÞ ¼ �

4�x
V; V ¼ fV?;Vþ; 0g; (4a)

V? ¼ � cos�þ sin� tan�

sin2�þ sin2�
; (4b)

Vþ ¼ cos�sin3�

ðsin2�þ sin2�Þ sin� : (4c)

HereV is a vector of dimensionless numbers defined entirely
by the geometry: V? is the component orthogonal to the
ACG plane,Vþ is an in-plane component, normal to theAG
line, and V k ¼ 0 is the component along the AG line. The

crucial observation of the first step of the calculation is that for
large x the velocity field decays like 1=x. This asymptotic
statement is independent of the near-tip structure, and will be
reproduced by the solution discussed below. Note that
improving the accuracy of the solution below can achieved
by going to the next order expansion [terms ofOð1=x3Þ] at the
price of increasing complexity.
In the second step of the calculation we will adopt for a

start the proposition of Ref. [4] that the reconnecting vortex
lines have a form of two identical hyperbolae AC (blue)
and FD (green) lying in the corresponding planes, see
Fig. 1. The AC hyperbola in the (x, y) plane is

y20ðx; aðtÞÞ ¼ a2ðtÞ þ x2cot2�: (5a)

Wewill see below that this proposition is too restrictive and
it cannot be satisfied accurately by the a self-similar solu-
tion. We thus go beyond the guess of Ref. [4]; we find it
advantageous to use a less restrictive form which we refer
to as ‘‘quasihyperbola’’ and write as

y21ðx; aðtÞ; "Þ ¼ y20ðx; aðtÞÞþ
"a2ðtÞx2cot2�
y20ðx; aðtÞÞ

: (5b)

Clearly, y1ðx; aðtÞÞ ! y0ðx; tÞ for " ! 0 and/or x ! 1,
while for x & a the curvature of y1ðx; tÞ depends on ".
The yðx; tÞ lines (5) are translated in time due to the t

dependence of aðtÞ such that aðtÞ ! 0 for t ! t0. Naturally
there are infinitely many mappings of a given yðx; tÞ line to
a future yðx; tþ �tÞ line. We remember, however, that
these are quantized vortex lines and therefore vortex
stretching does not affect the circulation. Therefore the
tangential component of the velocity is not relevant for
the present construction. We thus seek self-similar kine-
matics by requiring that each point of the vortex line should
move perpendicularly to the vortex line with the in-plane,
normal to the line velocity Vþ which is

VMþ ðx; tÞ ¼ da

dt

�
@y

@a

�
x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
@y

@x

�
2

a

s
: (6)

From Eq. (6) we see that the asymptomatic behavior of
VMþ ðx; tÞ for x � aðtÞ is determined by ð@y=@aÞx. But in
step 1 we found that the asymptotic is 1=x. Consistency
requires the following condition on the function y:
limx!1ð@y=@aÞ / ð1=xÞ. It is obvious that both lines (5)
indeed satisfy this condition. In addition, a direct calcula-
tion using Eqs. (6) and (5) yields

VMþ ðx; a; �; "Þ ¼
da
dt a½y40ðx; aÞ þ "x4cot4��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y80ðx; aÞða2 þ x2cot2�csc2�Þ þ "x2a2cot2�y40ðx; aÞ½y20ðx; aÞ þ 2a2cot2�� þ "2a8x2cot4�
q : (7)
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Of course, the leading asymptotics of VMþ (for x � a) must
be consistent with Eqs. (4) which resulted from Eq. (2).
The conditions for consistency are

da2

dt
¼ � �Vþ cot�

2� sin�ð1þ "Þ : (8)

Solving this equation one finds a2ðtÞ ¼ A2�ðt0 � tÞ, where

A2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2�Þ þ cosð2�Þp

sin�

2
ffiffiffi
2

p
�ðsin2�þ sin2�Þ sin�ð1þ "Þ : (9)

Although we showed that the self-similar solutions (5)
are asymptotically consistent with the Biot-Savart result
for the normal component of the velocity in the plane, we
should note that the Biot-Savart result contains also a VBS

?
component of the velocity, orthogonal to the plane. In the
considered geometry this component vanishes, VM

? ¼ 0,
because the lines (5) are moving in the plane. Such a
component would obviously destroy the self-similarity of
the chosen configuration of two flat quasihyperbolae lying
each in its own plane. This is another point where we have
to go beyond the guessed solution of Ref. [4]. In the third
step of the analysis we fix this discrepancy by choosing
quasihyperbolae that lie not on the planes but on quasihy-
perbolic surfaces as shown in Fig. 2. Explicitly, we choose
the quasihyperbolic surface using the relation

~zð~y; tÞ ¼ y1ð~y; bðtÞ; ~"Þ; (10a)

with the same quasihyperbola (5b) but defined in the
different(tilde) coordinate system, see Figs. 1 and 2.

Such a construction automatically provides the desirable
asymptotics because the VM

? component of the velocity is

defined now by the same type of expression as Eq. (7),
replacing � ) � and a ) b:

VM
? ¼ VMþ ð~y; b; �; ~"Þ: (10b)

In the new coordinates we have asymptotically limx!1~y ¼
x cot� sin�. In its turn, the VM

? component of velocity will

be asymptotically

lim
x!1V

M
? ¼ b2ð1þ ~"Þ

ax cotð�Þ cot�
da

dt
: (11)

Now the distance b is defined by the condition

lim
x!1V

M
? ¼ VBS

? ;
b2ð1þ ~"Þ

ax cotð�Þ cot�
da

dt
¼ �V?

4�x
: (12)

After a direct calculation we find

b

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "

1þ ~"
ðsin2�� cot2�sin2�Þ

s
: (13)

Finally, we note that we defined the quasihyperbolic
surface instead of the two (blue and green) planes to embed
the vortex lines in them, but did not specify explicitly how
this is done. To achieve the correct embedding we employ
the condition that far from the tip the vortex lines and the
measurement point X should coincide for a large value
of x. This condition will move the point G to a new point
G0, see Fig. 2. The distance IG0 between the collision point
and the point G0 is determined by the requirement that the
arc length in the bent plane (quasihyperbolic surface)
coincides with the distance in the flat plane:
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FIG. 2 (color online). The third step of the analysis including
the second modification to Ref. [4]: now the quasihyperbolas are
embedded in a surface which is also a quasihyperbola.
Consistency with the asymptotic solution (large X) requires
moving the collision G point to a new G0 point. Note that the
two vortex lines are here but only one branch in each is shown.
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FIG. 3 (color online). Comparison of the the normalized
vortex velocity profiles 4aðtÞ�Vþðx; tÞ=� (in plane) and
4aðtÞ�V?ðx; tÞ=� (normal to the plane), computed from the
Biot-Savart equation (solid lines) and different value of �=a
with the model prediction, shown by a dashed black line.
The parameters used in the theory are � ¼ 60�, � ¼ 12:5�,
� ¼ �0:06 and ~� ¼ 1.

PRL 111, 145302 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 OCTOBER 2013

145302-3



IG0 ¼ lim
~y!1

�
~y

sinð�Þ � Lð~yÞ
�
; (14)

where L is the arc length of the quasihyperbola which is
defined by

Lð~yÞ ¼
Z ~y

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
d~z

d~y0

�
2

s
d~y0: (15)

Now we can write the parametric equation for the configu-
ration of the vortex line in the tilde coordinate system:

~xðxÞ ¼ x; ~yðxÞ ¼ L�1½y1ðx; a; "Þ � IG0�; (16)

where L�1 is the inverse function of L, defined in Eq. (15),
and ~zðxÞ ¼ y1ð~yðxÞ; b; ~"Þ.

This finalizes the self-similar solution, given by
Eqs. (5b), (10), and (13). While we expect this solution
to be quite accurate, it cannot be exact, since we neglected
the logarithmic correction involved with the inner cutoff of
the Biot-Savart integral (2). To assess the accuracy we
compare the vortex velocity found from the time evolution
of the suggested self-similar solution [(5b), (10), (13), and
(16)], denoted as ‘‘theory’’ in Fig. 3, with direct numerical
calculations of the vortex velocity from the Biot-Savart
Eq. (2) with the vortex configuration [(5b), (10), (13), and
(16)]. The calculations were performed at different values
of �=a. At this point we can fit the parameters " and ~" as
detailed in the caption of Fig. 3 where the results are
presented as a function of x=a. We conclude that the
Biot-Savart velocity always agrees with the theory far
from the tip (for x > 4a). The agreement is almost perfect
for the Vþ component for all values of x=a and �=a. On the

other hand the V? component is more sensitive, near the
tip, to the local contributions that exist in the Biot-Savart
integral. It differs from the self-similar solution in the tip
region and obviously cannot be fitted for all values of �=a.
Nevertheless, even near the tip the agreement is still rea-
sonable, especially taking into account the fact that V? is
less than a 1=3 of Vþ for all values of �=a.
Finally, we return to the question of computing the

coefficient D in Eq. (1). The numerical simulations in
Ref. [4] were used to determine an approximate value of
D in the vicinity of 0.4. In light of our analysis it is obvious
thatD depends on the angle � and is a function rather than
a number, as is indeed found in the experimental work,
cf. [1]. Since Ref. [4] estimated the value of D only in the
range 58� � � � 68� we calculate D in the same range
(with the angle � ¼ 12:5�). The result is shown in Fig. 4.
It is clear that the analytic prediction is in quite close
agreement with the numerical estimate.
In summary, we presented an analytic self-similar solu-

tion for the dynamics of vortex lines approaching a recon-
nection. The solution is in good agreement with numerical
simulations. In future work one needs to understand how to
continue and extend this work to include the reconnection
event itself and the change in topology. There are reasons
to believe that this process includes the release of energy in
the form of sound waves [10], leading to an asymmetry
between the dynamics before and after the reconnection.
This cannot be done with Biot-Savart dynamics and calls
for a fully quantum mechanical model.
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FIG. 4 (color online). The coefficient D as a function of the
angle � (in �) in the range of angles considered in Ref. [4] with
� ¼ 12:5�.
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